ANALYZING AND MODELING GLOBAL TERRORISM

Aaron Clauset Santa Fe Institute

ON MODELING

STUDYING TERRORISM

What is "terrorism"?

- definitions differ, change over time
- at least as old as ancient Greeks, Persians

Many subjective, conflicting claims, beliefs

• causes, trends, strategies, etc.

Involves human decisions and technology

- political, capricious behavior
- technologically enhanced violence

STUDYING TERRORISM

What we might like to know:

- is terrorism changing?
- are there any interesting patterns?
- underlying similarities, differences worldwide?
- any chance of modeling?
- any chance of prediction, intervention?

DEFINING "TERRORISM"

Definition is important:

determines which violent acts we study

Terrorism seems different from other violence

- non-state actors
- targets civilians
- instills fear
- for political purposes

DEFINING "TERRORISM"

Definition is important:

determines which violent acts we study

Terrorism seems different from other violence

- non-state actors
- targets civilians
- instills fear
- for political purposes

a reasonably narrow definition

DEFINING "TERRORISM"

What constitutes an "event" of terrorism?

- single target
- single location
- single day

}

a reasonably narrow definition

- Hard to make a **big** event (prevents aggregations)
- **Big** + **rare** events seem inherently interesting

- Domestic vs. Trans-national events
- Aggregated analysis (averages, counts, etc.)
- Categorical trends
 - tactics (hijacking, assassination, bombing, etc.)
 - weapons (chem, bio, guns, "unconventional", etc.)
 - regions (Americas, Mid East, Asia, etc.)
- Assume: big events qualitatively different from small events

source: NCTC Report

Regression:

- choose dependent variable *Y* (e.g., incidence)
- enumerate and quantify "important" independent variables *X* (e.g., "freedom", income, region, etc.)

• regress on X to predict Y

$$\epsilon + \sum_{i=1}^{n} \alpha_i X_i^{\beta_i} = Y$$

AN EXAMPLE

Data from economically developed countries

- predict GDP (Y) from energy usage (X)
- regression result:

$$Y = 1.5 X^{1.14}$$

$$r^2 = 0.91$$

CAVEATS

Regression:

$$\sum_{i=1}^{n} \alpha_i X_i^{\beta_i} = Y - \epsilon$$

assumes linear model with normal errors

(many variations exist)

- typically sensitive to "outliers", variable selection
- r^2 value only as good as assumptions
- thinking typically not required "garbage in = garbage out"

ON SEVERE EVENTS

Big / severe / "outlier" events

- relatively few casualties (automobiles > terrorism)
- very infrequent
- disproportionate destabilizing effect
 - economic and political impacts

For example: major re-organization of US/UK national security apparatus after 9.11

NYC, 2001

Mumbai, 2006

sources: wikipedia, BBC

Oklahoma City, 1995

Bali, 2002

Lockerbie, 1988

sources: wikipedia

TERRORISM DATA

narrow event definition 40 years data (1968 - 2007) 32,829 events, worldwide ~5600 cities, 187 countries 14,062 with casualty > 0

alternative sources: ITERATE, GTD, ICT, etc.

MIPT TERRORISM KNOWLEDGE BASE™

incident profile

ABU HAFS AL-MASRI BRIGADE AND SECRET ORGANIZATION OF AL-QAEDA IN EUROPE ATTACKED TRANSPORTATION TARGET (JULY 7, 2005, UNITED KINGDOM)

Incident Date: July 7, 2005

Terrorist Organization(s): Abu Hafs al-Masri Brigade , Secret Organization of al-Qaeda in Europe

Target: Transportation

City: London

Country: United Kingdom

Region: Western Europe

Tactic: Bombing

Weapon: Explosives

Fatalities: 27

Injuries: 0

source: tkb.org

TERRORISM DATA

narrow event definition 40 years data (1968 - 2007) 32,829 events, worldwide ~5600 cities, 187 countries 14,062 with casualty > 0

Event severity: number of casualties, deaths, or injuries

alternative sources: ITERATE, GTD, ICT, etc.

MIPT TERRORISM KNOWLEDGE BASE™

incident profile

ABU HAFS AL-MASRI BRIGADE AND SECRET ORGANIZATION OF AL-QAEDA IN EUROPE ATTACKED TRANSPORTATION TARGET (JULY 7, 2005, UNITED KINGDOM)

Incident Date: July 7, 2005

Terrorist Organization(s): Abu Hafs al-Masri Brigade , Secret Organization of al-Qaeda in Europe

Target: Transportation

City: London

Country: United Kingdom

Region: Western Europe

Tactic: Bombing

Weapon: Explosives

Fatalities: 27

Injuries: 0

source: tkb.org

ALTERNATIVE APPROACH

- Statistical modeling (fitting *probability* models to data)
 - data exploration -- looking for interesting patterns
 - no assumptions about causal relationships
 - model "agnostic"
 - explanatory modeling comes later
 - few / no predictions at this stage

	$ar{x}$	σ	x_{\max}
deaths	4.22	28.21	2749
injuries	12.25	85.28	5000
casualties	11.15	83.28	5213

	$ar{x}$	σ	x_{\max}
deaths	4.22	28.21	2749
injuries	12.25	85.28	5000
casualties	11.15	83.28	5213

• std much bigger than mean $\sigma > \bar{x}$

	$ar{x}$	σ	x_{\max}
deaths	4.22	28.21	2749
injuries	12.25	85.28	5000
casualties	11.15	83.28	5213

- std much bigger than mean $\sigma > \bar{x}$
- max much bigger than expected $x_{\text{max}} > \bar{x} + 3\sigma$

	$ar{x}$	σ	x_{\max}
deaths	4.22	28.21	2749
injuries	12.25	85.28	5000
casualties	11.15	83.28	5213

- std much bigger than mean $\sigma > \bar{x}$
- max much bigger than expected $x_{\text{max}} > \bar{x} + 3\sigma$
- only 880 (8%) events (deaths) with $x \ge 10$
- heavy-tailed distribution, **power law**?

FITTING AND TESTING THE HYPOTHESIS

Fit power-law distribution to data $P(x) = \left(\frac{x}{x_{\min}}\right)^{\alpha-1}$

- estimate parameters x_{\min} and α from the data
- test plausibility of estimated model (*p*-value) [see arXiv:0706.1062 for methodology]

	\hat{x}_{\min}	\hat{lpha}	n_{tail}	$\mid p$
deaths	10	2.39	880	0.6
injuries	35	2.48	618	0.0
casualties	46	2.43	588	0.9

WHAT DOES IT MEAN?

power-law is reasonable model for deaths, casualties

- big events not fundamentally different from small events
- power-law may accurately predict risk of future severe events (additional validation needed for this)
- can use power-law model for additional analysis
 - normally blunt tool
 - with a little care, can be delicate probe

VARIATIONS

How does frequency-severity distribution vary with

- time
- weapon type
- economic development

VARIATION BY TIME

Study events in each 24 month interval

MIPT TERRORISM KNOWLEDGE BASE™

incident profile

ABU HAFS AL-MASRI BRIGADE AND SECRET ORGANIZATION OF AL-QAEDA IN EUROPE ATTACKED TRANSPORTATION TARGET (JULY 7, 2005, UNITED KINGDOM)

Incident Date: July 7, 2005

Terrorist Organization(s): Abu Hafs al-Masri Brigade , Secret Organization of al-Qaeda in Europe

Target: Transportation

City: London

Country: United Kingdom

Region: Western Europe

Tactic: Bombing

Weapon: Explosives

Fatalities: 27

Injuries: 0

VARIATION BY TIME

- Ave. log-severity largely stable over 40 years
- Apparent periodicity in ave. log-severity at τ ≈ 13 years

VARIATION BY TIME

- Scaling exponent largely stable over 40 years
- Suggests severity distribution largely stable
- Main difference today: many more events

VARIATION BY WEAPON

Types:

- chem/bio
- explosives
- fire / arson
- firearms
- knives
- other / unconventional

MIPT TERRORISM KNOWLEDGE BASE™

🔰 incident profile

ABU HAFS AL-MASRI BRIGADE AND SECRET ORGANIZATION OF AL-QAEDA IN EUROPE ATTACKED TRANSPORTATION TARGET (JULY 7, 2005, UNITED KINGDOM)

Incident Date: July 7, 2005

Terrorist Organization(s): Abu Hafs al-Masri Brigade , Secret Organization of al-Qaeda in Europe

Target: Transportation

City: London

Country: United Kingdom

Region: Western Europe

Tactic: Bombing

Weapon: Explosives

Fatalities: 27

Injuries: 0

VARIATION BY WEAPON

- More apparent power-law behavior
- But different \hat{lpha} , \hat{x}_{\min}
- Not ubiquitous: no power laws by region
- Explosives most deadly, overall

VARIATION BY ECONOMY

Organization for **Economic Co-operation** and Development

- 30 countries (USA, Japan, France, UK, Turkey...)
- tracks economic statistics and data for these 30 + 70 others

ORGANISATION CO-OPERATION AND DEVELOPMENT

MIPT TERRORISM KNOWLEDGE BASE[™]

incident profile

ABU HAFS AL-MASRI BRIGADE AND SECRET ORGANIZATION OF AL-QAEDA IN EUROPE ATTACKED TRANSPORTATION TARGET (JULY 7, 2005, UNITED KINGDOM)

Incident Date: July 7, 2005

Terrorist Organization(s): Abu Hafs al-Masri Brigade , Secret Organization of al-Qaeda in Europe

Target: Transportation

City: London

Country: United Kingdom

Region: Western Europe

Tactic: Bombing

Weapon: Explosives

Fatalities: 27

Injuries: 0

VARIATION BY ECONOMY

non-OECD countries

- all events more frequent
- severe events less common

OECD countries

- all events less frequent
- severe events more common

ECONOMY ALONE?

	$x \ge x_{\min}$	of total	
Turkey	335	26.9%	
France	201	16.2%	
Spain	109	8.8%	
Germany	98	7.9%	other factors must
USA	93	7.5%	be involved
Greece	76	6.1%	
Italy	73	5.9%	
UK	62	5.0%	
total	1047	84.2%	

MODELING QUESTIONS

What causes power-law distribution?

• Hyp: partly state vs. terrorist competition What causes apparent $\tau \approx 13$ year periodicity? What factors account for OECD / non behavior?

• Hyp: territorial disputes?

What role for technology, population density?

• E.g., lethality of explosives varies dramatically with location of detonation

ON MODELING (REDUX)

DISCOVERY PHASE

data quality

- consistency, etc.
- select questions
 - scope of study

data analysis

• distributions, statistics, trends

MODELING PHASE

data models

- e.g., distributions **mechanistic models**
 - microscopic rules

predictive models

- falsifiable
- e.g., regression and machine learning models

CLOSING THOUGHTS

Discovery phase

- know your data
- what questions are reasonable, interesting?
- practice good statistics

Modeling phase

- why, how this structure and not other structure?
- falsifiable predictions ultimate goal
- good statistics necessary for validation step

FIN