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A (very) little history



Parallel goals of 
“natural” and “social” 

physics circa 1900

• Define and characterize equilibria

• Describe transformations

Points of rest
Equations of state

Work, heat flow

“Best” resource allocations
Discovery of price systems

Trade, allocation processes



The Walrasian Analogy

• Equilibrium as force 
balance in mechanics

• Equilibrium as 
balance of “marginal 
utility” in exchange

“demands”

Leon Walras (1909)



Analogies from mechanics
Position (x)

Potential Energy (V)

Force (F)

Holdings (x)

Utility (U)

Prices (p)

F = −∇V p = ∇U

“Ball settles in the bottom of 
the bowl to minimize energy”

(Utility is implicitly measurable)



Gibbs and thermodynamics

• Entropy is maximized in a 
closed system at equilibrium

• For “open” subsystem, excess 
entropy is maximized

• Helmholtz Free Energy is 
equivalently minimized

Ball settles in the bottom of the 
bowl to maximize excess entropy 

(by losing energy)

A = U − TS

S(U)

S(U)− βU

β =
∂Senv

∂Uenv
≡ 1

T

Distinction between particle and system



And yet Fisher...

• Particles and individuals are unpredictable

• State variables are only properties of 
thermodynamic systems at equilibrium

• Fisher mixes metaphors from 
thermodynamics and statistical mechanics

A particle

Space (x? V?)

Energy (U?, E?, V?)

Force (F)

An individual

Commodities (x)

Utility (U)

Marginal utility (p)

Irving Fisher (1926)



Analogy and confusion

• J. H. C. Lisman (1949)

• J. Bryant (1982)

A quasi-eq. system
Entropy
pV (ideal gas)

pV = NT

An individual
Utility (“analogon”)
px (value)

px = NT (productive content) 



Disgust
The formal mathematical analogy between classical 
thermodynamics and mathematic economic systems has now 
been explored.  This does not warrant the commonly met 
attempt to find more exact analogies of physical magnitudes -- 
such as entropy or energy -- in the economic realm.  Why 
should there be laws like the first or second laws of 
thermodynamics holding in the economic realm?  Why should 
``utility'' be literally identified with entropy, energy, or anything 
else?  Why should a failure to make such a successful 
identification lead anyone to overlook or deny the 
mathematical isomorphism that does exist between minimum 
systems that arise in different disciplines?  

Samuelson 1960



But duality survived

• Extensive quantities

• Intensive quantities

Energy, volume

Temperature, pressure

Goods

Prices



The marginalist 
revolution and modern 

“Neoclassical” 
mathematical 

economic theory



Indifference and utility

• Suppose more than one good

• Only try to capture the 
notion of indifference

• Relative prices = marginal 
rates of substitution of goods

• “Absolute” price undefined
∂u/∂xi

∂u/∂xi
= pi/pj

x = (x0, x1, . . . , xn)

u(x) = U
x1

x2

1 U

Utility is now explicitly only ordinal



The separating hyperplane

• “Edgeworth-Bowley” box: 
Conserve “endowments”: 
(allocation of resources under 
conditions of scarcity)

• Prices separate agent 
decisions from each other 
(trade and production)

• “Pareto Optimum” defines 
equilibrium as no-trade

• Trade to equilibrium must 
be irreversible

P.S.

x1

x2

1

No trade any agent can propose 
from an equilibrium will be 
voluntarily accepted by any other 
agent

(Tj. Koopmans, 1957)



Duality: prices and demands
x = (x0, x1, . . . , xn)

∂u

∂xi
∝ pi

δe = δp · x + p · ∂x

∂U

∣∣∣∣
p

δU

e (p,U) ≡ min
x

[p · x | u [x] ≥ U ]

x1

x2

1 U

u(x) = U

“Offer prices”

Expenditure 
function

∂e

∂pi

∣∣∣∣
U

= xi



Exchange economies and 
the Walrasian equilibrium

P.S.

x1

x2

1

x = (x0, x1, . . . , xn)

p = (p0, p1, . . . , pn)

L = u(x)− βp ·
(
x− x0

) 0

eq

“Wealth preservation” hoped to extract 
a single equilibrium from the Pareto set

Maximize:



Trading paths to equilibrium 
really aren’t determined

• The equilibrium price is a 
terminal property of real 
trade

• Need not restrict prior 
paths of trading

• The equilibrium price can 
be quite unrelated to the 
Walrasian price

P.S.

x1

x2

F. Hahn and T. Negishi (1962)

“and you may ask yourself  ‘how did I get here?’ ”



The mathematical 
structure of 

thermodynamics



State relations
• General statistical systems 

have E, S, not predictable

• Only for equilibrium 
systems is E also a 
constraint U

• S(V,U) = max(S)|V,U defines 
the “surface of state”

• Equation of state is not 
dependent on the path by 
which a point is reached

Open-system,
            reversible

Closed-system,
       irreversible

S = S(V,E)

S

V

E

U

U

Reversible and irreversible 
transformations result in the 
same final state relation



Duality and Gibbs potential
S(U, V )

dS ≡ 1
T

dU +
p

T
dV

δ

(
1
T

U +
p

T
V − S

)
= U δ

(
1
T

)
+ V δ

( p

T

)

∂S

∂V

∣∣∣∣
U

=
p

T

∂ (G/T )
∂ (p/T )

∣∣∣∣
1/T

=
∂G

∂p

∣∣∣∣
T

= VG

T
=

U + pV − TS

T

S

V

U

State:



Connecting thermodynamics 
to mechanics

V F = p*area

S(U, V )

dS ≡ 1
T

dU +
p

T
dV dA = −pdV − SdT

∂S

∂V

∣∣∣∣
U

=
p

T
−∂A

∂V

∣∣∣∣
T

= p

A(T, V ) = U − TS



Reversible transformations 
and work

V1

p1 p2

V2

Load

reservoir (T)

piston

∆W =
∫ (

p1 − p2
)
dV 1

=
∫
−

(
dA1 + dA2

)

= −∆A

−∂A

∂V

∣∣∣∣
T

= p

A

Helmholtz “free energy”



Analogies suggested by duality
Surface of state

Increase of entropy

Intensive state variables

Gibbs potential

Indifference surface

Increase of utility

Offer prices

Expenditure function

u(x) = US(V,U) = max(S)|V,U

G = U + pV − TS
e (p,U) ≡ min

x
[p · x | u [x] ≥ U ]

δS ≥ 0 δU ≥ 0

∂u

∂xi
∝ pi

∂S

∂V

∣∣∣∣
U

=
p

T



Problems (1): counting

x = (x0, x1, . . . , xn)

p̂ ≡ (p0, p1, . . . , pn) /p0

(U, V )
(

1
T

,
p

T

)

• Different numbers of intensive and extensive 
state variables (incomplete duality)

• Entropy is measurable, utility is not

• Total entropy increases; individual utility does

G(p, T ) e(p,U)

δS ≥ 0 δU ≥ 0



Problems (II): meaning
T

−pdV = dW = dU − TdS
p

A

P.S.

x1

x2



Essence of the mismatch

• In physics, duality of state constrains transformations

• In economics, conservation of endowments forces 
irreversible transformations

The “price” of this power is that we must limit 
ourselves to reversible transformations, and cannot 
conserve all extensive state variable quantities

The result is that dual properties of state become 
irrelevant to analysis of transformations



Finding the right 
correspondence



Three laws in both systems
• Encapsulation 

The state of a thermodynamic 
system at equilibrium is completely 
determined by a set of pairs of 
dual state variables

Economic agents are characterized 
by their holdings of commodity 
bundles and dual offer price systems 
to each bundle

Energy is conserved under arbitrary 
transformations of a closed system

Commodities are neither created nor 
destroyed by the process of exchange

A partial order on states is defined 
by the entropy; transformations that 
decrease the entropy of a closed 
system do not occur

A partial order on commodity 
bundles is defined by utility; agents 
never voluntarily accept utility-
decreasing trades

• Constraint 

• Preference 



The construction

• Relate the surface of state to indifference 
surfaces correctly

• Study economics of reversible 
transformations

• Associate quantities by homology, not by 
analogy



Quasilinear economies: 
introduce an irrelevant good 
• Indifference surfaces are 

translations of a single 
surface in x0 (hence so are 
all equilibria of an economy)

• All prices on the Pareto Set 
are equal

• Differences among equilibria 
have no consequences for 
future trading behavior

u(x) = x0 + ū(x̄)

x ≡ (x0, x̄)



Duality on equivalence classes

∀i > 0

SQL = ū(x̄) dSQL = dx̄ · p̄

p0

Independent of distribution 
of x0 among agents

Equivalence class of expenditures corresponds to Gibbs

eQL(p,U) = p0 [U − ū (x̄)] + p̄ · x̄ p0 ↔ T

eQL − p0U ↔ G = −TS + (U + pV )

Resulting economic entropy gradient is normalized prices

∂ū

∂xi
=

pi

p0



Reversible trading in a closed 
economy

x

P.S.

δS

1

2

x0

Ext. speculator’s profit = −
∫

p0

(
dx1

0 + dx2
0

)

=
∫ (

p̄1 − p̄2
)

· dx̄1

= p0∆
(
S1

QL + S2
QL

)

But SQL is a state variable!
Same for rev. and irrev. trade

Money-metric value of trade is the amount agents 
could keep an external speculator from extracting



Profit extraction potentials in 
partially open systems

P.S.

−δA

1

2

x1+(p0/p1)x0

x~

x ≡ (x0, x1, x̃)

Economic “Helmholtz” potential

AQL = x1 −
p0

p1
ū(x1, x̃)

dAQL = − p̃

p1
· dx̃

−∂A

∂V

∣∣∣∣
T

= p

V1

p1 p2

V2

Load

reservoir (T)

piston

e− p0U
p1

= x1 +
p̃ · x̃
p1

− p0

p1
ū(x1, x̃)



Aggregatability and 
“social welfare” functions
• QL economies are the most general 

aggregatable economies independent of 
composition or endowments

• For these, a “social welfare” function is the 
sum of economic entropies

• Such economies are mathematically identical 
to classical thermodynamic systems

(Obvious reason: dual offer prices are now 
meaningful constraints on trading behavior)



A small worked 
example



The dividend-discount 
model of finance

δM = −pNδN +
1

rδt
δD

Contract Energy Conservation

δU = −p δV + δQ

Constant Absolute Risk Aversion (CARA) utility model

(x0, x1, x2) ≡ (−D,M,N)
(p0, p1, p2) ≡ (1/rδt, 1, pN ) (T, 1, p)think

U ≡ Nd̄

(
1− Nd̄

2ν
σ2

)
−D + φ(M)



The state-variable description
Economic entropy and basis for the social welfare function

G = M + pNN − 1
rδt

S

Economic “Gibbs” part of the expenditure function

A = M − 1
rδt

S

Economic “Helmholtz” potential for trade at fixed interest

S ≡ U + D = Nd̄

(
1− Nd̄

2ν
σ2

)
+ φ (M) rδt =

dφ

dM
=

∂S

∂M

∣∣∣∣
N

∂G
∂pN

∣∣∣∣
rδt

= N

∂A
∂N

∣∣∣∣
rδt

= −pN



Summary comments

• Irreversible transformations are not generally 
predictable in either physics or economics by 
theories of equilibrium

• They require a theory of dynamics

• The domain in which equilibrium theory has 
consequences is the domain of reversible 
transformations

• In this domain the natural interpretation of 
neoclassical prices may be different
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