## **Evolutionary Dynamics** & its Tendencies





David Krakauer, Santa Fe Institute.

## A Talk in 2 Parts

- Part 1: What is Evolution, What has
   it generated & What are its limits?
- Part II: The Evolutionary dynamics
   of Minimal Forms microbes

## Evolutionary questions?

- Why is there life-like dynamics on earth?
- Why are organisms so diverse?
- Why are organisms so complex?
- What is the relationship of genetic information to learned information?
- When does cultural evolution outpace genetic evolution?
- Is "self-awareness" inevitable?





## What is Evolutionary Theory?

- A Physics like theory searching for Laws?
- A Statistical/Inferential Theory like Bayesian learning or approximate dynamic programming?
- An algorithmic/computational theory?

#### The Darwinian Polynucleotide Machine





#### http://www.genomesize.com/statistics.php



Ciccarelli et al. Science, 311, 1283-1287 2006

#### Table 1. A summary of some common misconceptions about evolution and complexity, and contrasting views

| Myth                                                                                                                                                                                                                 | Reality                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Evolution is natural selection                                                                                                                                                                                    | Natural coloction is just one of four primary qualutionary forces                                                                                                                                                                                                                                                                                                                                                                             |
| <ol> <li>Evolution is natural selection.</li> <li>Characterization of interspecific differences at the molecular and/or<br/>cellular levels is tantamount to identifying the mechanisms of<br/>evolution.</li> </ol> | The resources deployed in evolutionary change reside at the molecular<br>level, but whereas the cataloging of such differences at the<br>interspecific level identifies the end products of evolution, it does not<br>reveal the population-genetic processes that promoted such change.                                                                                                                                                      |
| <ol><li>Microevolutionary theory based on gene-frequency change is<br/>incapable of explaining the evolution of complex phenotypes.</li></ol>                                                                        | No principle of population genetics has been overturned by an<br>observation in molecular, cellular, or developmental biology, nor has<br>any novel mechanism of evolution been revealed by such fields.                                                                                                                                                                                                                                      |
| <ol><li>Natural selection promotes the evolution of organismal complexity.</li></ol>                                                                                                                                 | There is no evidence at any level of biological organization that natural<br>selection is a directional force encouraging complexity. In contrast,<br>substantial evidence exists that a reduction in the efficiency of<br>selection drives the evolution of genomic complexity.                                                                                                                                                              |
| <ol><li>Natural selection is the only force capable of promoting directional<br/>evolution.</li></ol>                                                                                                                | Both mutation and gene conversion are nonrandom processes that can<br>drive the patterning of genomic evolution in populations with<br>sufficiently small effective sizes (common in multicellular lineages).                                                                                                                                                                                                                                 |
| <ol> <li>Genetic drift is a random process that leads to noise in the<br/>evolutionary process, but otherwise leaves expected evolutionary<br/>trajectories unaltered.</li> </ol>                                    | By reducing the efficiency of selection, random genetic drift imposes a<br>high degree of directionality on evolution by increasing the<br>likelihood of fixation of deleterious mutations and decreasing that of<br>beneficial mutations.                                                                                                                                                                                                    |
| <ol><li>Mutation merely creates variation, whereas natural selection<br/>promotes specific mutant alleles on the basis of their phenotypic<br/>effects.</li></ol>                                                    | Mutation operates as a weak selective force by differentially<br>eliminating alleles with structural features that magnify mutational<br>target sizes.                                                                                                                                                                                                                                                                                        |
| <ol> <li>Phenotypic and genetic modularity are direct products of natural selection.</li> </ol>                                                                                                                      | There is no evidence that the modular structure of gene regulatory<br>regions or genetic networks is directly advanced by selective<br>mechanisms. However, the processes of duplication, degenerative<br>mutation, and random genetic drift can lead to the passive<br>emergence of modularity in populations of with genetic effective<br>sizes of the magnitude found in multicellular species.                                            |
| 9. Natural selection promotes the ability to evolve.                                                                                                                                                                 | There is no evidence that phylogenetic variation in the pathways open<br>to evolutionary exploration is anything more than a by-product of<br>physical processes that passively arise with expansions in genome size<br>and generation length. There are no abrupt transitions in aspects of<br>genomic architecture or gene structure between unicellular and<br>multicellular species, nor between viruses, prokaryotes, and<br>eukaryotes. |

#### Lynch, PNAS, 104, 8597-8604 2007

## Evolutionary Theory

- Population genetics/ neutral theory
- Quantitative genetics
- Quasispecies theory
- Game theory/adaptive dynamics

- Phylogenetic
   reconstruction/inference
- Niche Construction
- Gene-Culture
   Coevolution

replication

 $r_i$  $\rightarrow 2g_i$ Energy + Resources  $g_i$ 

competition

 $g_i + g_j \xrightarrow{c_{ij}} g_j$ 

mutation

 $\begin{array}{c} g_i \xrightarrow{m_{ij}} & g_j \\ \hline \text{Radiation} \end{array} \end{array} g_j$ 

$$m_{ij} = \mu^{H(i,j)} (1-\mu)^{L-H(i,j)}$$

recombination

 $g_j + g_l \xrightarrow{b_{ijl}} g_i$ 

$$b_{ijl} = 1$$
, if  $i = j = l$ 

$$b_{ijl} = \left(\frac{1}{2}\right)(1-c) + c\left(\frac{1}{2}\right)^{H(j,l)} \text{ if } i = j \text{ or } i = l$$

$$b_{ijl} = c \left(\frac{1}{2}\right)^{H(j,l)}$$
 if  $H(i,j) + H(i,l) = H(j,l)$ 

## Replicator Equation

 $g_i \xrightarrow{r_i} 2g_i$  $g_i + g_j \xrightarrow{c_{ij}} g_j$ 

n genomes

$$\dot{g}_i = g_i(r_i - \bar{f})$$

nwhere  $\bar{f} = \sum r_i g_i$  and  $c_{ij} = 1$ i

Evolutionary Game Theory: Frequency dependent Replicator Equation



$$g_i + g_j \xrightarrow{c_{ij}} g_j$$

n genomes

$$\dot{g}_i = g_i(r_i(\mathbf{g}) - \bar{f})$$
  
where  $\bar{f} = \sum_{i=1}^{n} r_i(\mathbf{g})g_i$  and  $c_{ij} = 1$ 

Evolutionary Game Theory: Frequency dependent Replicator Equation

$$\dot{g}_i = g_i(r_i(\mathbf{g}) - \bar{f})$$

Payoff Matrix 
$$P = [p_{ij}]$$

with linear payoffs:

$$r_i(\mathbf{g}) = \sum_{j}^{n} g_j p_{ij}$$

#### Evolutionary Game Theory: Frequency dependent Replicator Equation

$$\dot{g}_i = g_i \left(\sum_{j=1}^n g_j p_{ij} - \sum_{j=1}^n g_j \sum_{k=1}^n g_k p_{jk}\right)$$

#### Evolutionary Game Theory: Adaptive Dynamics for Continuous Traits



 $\frac{dx}{dt} = \frac{1}{2}\mu\sigma^2 \bar{N}(x) \frac{\delta f(x',x)}{\delta x'} \bigg|$ 

## Freq-dep Replicator Equation & Bayesian Inference

An Insight by Cosma Shalizi

$$\frac{\Delta g_i(t)}{\Delta t} = g_i(t-1)(r_i(\mathbf{g}) - \bar{f})$$
$$P(X|Y) = P(X)\frac{P(Y|X)}{P(Y)}$$
$$P(X|Y) = P(X)\frac{L_X}{\bar{L}}$$

$$\bar{L} = P(Y) = \sum_{x \in \omega} P(Y|X)P(X)$$
$$P_X(t) = P_X(t-1)\frac{L_X}{\bar{L}}$$

$$\Delta P_X(t) = P_X(t-1)(\frac{L_X}{\bar{L}} - 1) = P_X(t-1)\frac{1}{\bar{L}}(L_X - \bar{L})$$

 $\Delta P_X(t) = P_X(t-1)(f_t - \bar{f}), \quad \text{where} \quad f_t = L_X/\bar{L}$ 

## Sequence Space & Limits to Evolution



## Replicator-Mutator Equation

$$\dot{g}_i = \sum_{j}^{2^n} g_j r_j(\mathbf{g}) m_{ij} - g_i \bar{f})$$

$$m_{ij} = \mu^{H(i,j)} (1-\mu)^{L-H(i,j)}$$















## Error Threshold



Fitness Landscape

Delta function:

 $\mu < \frac{s}{L} = \frac{1}{L}$ 

Multiplicative function:  $\mu < s$ 

### Kimura's Neutrality Inequality





 $N\mu$ 

Condition for Neutrality

sN < 1

Evolutionary Information Storage

Information Conserved





Information Lost

 $s < \frac{\mu L}{N}$ 



# Evolution, Localization & Information

(with a 4 letter alphabet)

Information as Selective Uniformity

ACGTC...T ATGTG...T ATCTG...A Aligned genomes 4

 $H_i = -\sum_i p_j^{(i)} \log_4 p_j^{(i)}$ 

$$I_i = H_{max} - H_i$$

Information



Information-Selection as a Compression Ratio

ACGTC...T ATGTG...T ATCTG...A Aligned genomes 4

$$H_i = -\sum_j p_j^{(i)} \log_4 p_j^{(i)}$$

$$C = \frac{LH_{max}}{\sum_{i}^{L} H_{i}} = \frac{L}{\sum_{i}^{L} H_{i}}$$

## $sN > \mu L$ The Tendency to Population Multiplicity & Individual Minimality

#### THE SPACE GOD VERSUS THE ANDROMEDA STRAIN





www.genomeknowledge.org

#### KEY

virus catalyzed

host A catalyzed

host B catalyzed





$$w = \prod_{i \in E} f(g_i) \sum_{j \in NE} h(g_j)$$

$$w_E = \prod_{i \in E} f(g_i)$$





$$g_i = h_i \vee v_i$$

$$Prob(h_i = 1) = q \quad Prob(v_i = 1) = p$$
$$L_v = \sum_i v_i, \quad \langle L_v \rangle = pN$$

$$w = \frac{\prod_{i \in N} g_i}{(1 + L_v)} \quad < w > = \frac{(q + p - qp)^N}{1 + pN}$$



## **Evolution & Minimality**

- Evolutionary theory is concerned largely with the frequency, variety & relationships among chemically improbable sequences
- Replicator/Mutator Dynamics tends to favor small sequences which can be preserved
- Neutral theory requires large populations for effective selection of target sequences -more likely with small sequences
- Evolution can be thought of as an inferential, model fitting process (Bayesian) and selection as a mechanism for injecting information into sequences

- Genomes tend to "neutralize" and/or eliminate redundant sequences - genomes need not encode perfectly predictable resources
- Increasing autonomy (often size) reflects greater inferential uncertainty
- Genetic dissipation in coevolutionary contexts requires a consideration of rates of gene inactivation in all interacting agents
- Genome growth beyond competitive persistence is driven by, e.g. <u>robustness & control</u>







