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Evolutionary Dynamics&
 its Tendencies



A Talk in 2 Parts

• Part 1: What is Evolution, What has 
it generated & What are its limits?

• Part II: The Evolutionary dynamics 
of Minimal Forms - microbes 



Evolutionary questions?

• Why is there life-like dynamics on earth?

• Why are organisms so diverse?

• Why are organisms so complex?

• What is the relationship of genetic 
information to learned information?

• When does cultural evolution outpace 
genetic evolution?

• Is “self-awareness” inevitable?





What is Evolutionary Theory?

• A Physics like theory searching for Laws?

• A Statistical/Inferential Theory like Bayesian 
learning or approximate dynamic 
programming?

• An algorithmic/computational theory?
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Evolutionary Theory

• Population genetics/
neutral theory

• Quantitative genetics

• Quasispecies theory

• Game theory/adaptive 
dynamics

• Phylogenetic 
reconstruction/inference

• Niche Construction

• Gene-Culture 
Coevolution



Evolutionary Stoichiometry

replication

gi
ri−−−−−−−−−−−−−→

Energy + Resources
2gi



Evolutionary Stoichiometry

gi + gj
cij−−→ gj

competition



Evolutionary Stoichiometry

gi
mij−−−−−−→

Radiation
gj

mutation

mij = µH(i,j)(1− µ)L−H(i,j)



Evolutionary Stoichiometry
recombination

bijl = 1, if i = j = l

gj + gl
bijl−−→ gi
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(
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)H(j,l)

if H(i, j) + H(i, l) = H(j, l)
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)
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)H(j,l)

if i = j or i = l



Replicator Equation

gi + gj
cij−−→ gj

gi
ri−→ 2gi

n genomes

ġi = gi(ri − f̄)

where f̄ =
n∑

i

rigi and cij = 1



Evolutionary Game Theory: 
Frequency dependent Replicator Equation

gi
ri(g)−−−→ 2gi

gi + gj
cij−−→ gj

n genomes

ġi = gi(ri(g)− f̄)

where f̄ =
n∑

i

ri(g)gi and cij = 1



Evolutionary Game Theory: 
Frequency dependent Replicator Equation

Payoff Matrix P = [pij ]

ri(g) =
n∑

j

gjpij

ġi = gi(ri(g)− f̄)

with linear payoffs:



Evolutionary Game Theory: 
Frequency dependent Replicator Equation

ġi = gi(
n∑

j

gjpij −
n∑

j

gj

n∑

k

gkpjk)



Evolutionary Game Theory: 
Adaptive Dynamics for Continuous Traits

dx

dt
=

1
2
µσ2N̄(x)

δf(x′, x)
δx′
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x′=x



Freq-dep Replicator 
Equation & Bayesian 

Inference
An Insight by Cosma Shalizi



∆gi(t)
∆t

= gi(t− 1)(ri(g)− f̄)

P (X|Y ) = P (X)
P (Y |X)
P (Y )

L̄ = P (Y ) =
∑

x∈ω

P (Y |X)P (X)

P (X|Y ) = P (X)
LX

L̄

PX(t) = PX(t− 1)
LX

L̄

∆PX(t) = PX(t− 1)(
LX

L̄
− 1) = PX(t− 1)

1
L̄

(LX − L̄)

∆PX(t) = PX(t− 1)(ft − f̄), where ft = LX/L̄



Sequence Space
& Limits to Evolution
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FIG. 3. The iterative buildup of sequence space, starting with one position. Each additional position requires a doubling of the former diagram
and to connect corresponding points in both diagrams (which represent nearest neighbors). The final hypercube of dimension v contains as
subspaces ( )2,k hypercubes of dimension k.

space concept to evolution requires the introduction of a
value topography. Value landscapes have rugged fractal
structures, causing populations to accumulate on ridges and
peaks in the mountainous regions (12, 13), which is the deeper
reason for the metric nonuniformity commonly found in
comparative sequence analysis.

Statistical Geometry

Statistical geometry as such can be exemplified with mere
distance relationships. Two sequences define one distance;
three can always be fitted into a tripod diagram, because they
yield three explicit equations for the three unknown seg-
ments. The tripod, however, may be unrealistic, because the
precursor, the tripodal node, may not have existed. The truth
then emerges by adding a fourth sequence. Four sequences
define six distances and hence match a diagram that, in
general, has six segments, as shown in Fig. 4a. The three
types of segments can be obtained from

AB + CD = a + b + c + d + 2x = S (small)

AC + BD = a + b + c + d + 2y = M (medium)

AD + BC = a + b + c + d + 2x + 2y = L (large),

as 2x = L - M, 2y = L - S, and a + b + c + d = S + M
- L.
The diagram reduces to an ideal bundle if both x and y are

zero and to a tree-like dendrogram, with finite branching
distance y, if only x is zero. The general "net" form in Fig.
4a is due to the presence of reverse and parallel mutations,

By

with x being a measure of deviation from tree-likeness.
(Likewise, x and y together measure the deviation from ideal
bundle-likeness.) For partly randomized bundles, x and y are
nonzero and of similar magnitude, with x (by definition) being
the smaller of both parameters.
Why do we call this method statistical geometry? There are

(4) different quartets that can be formed from a set of n
sequences (e.g., 27,405 for n = 30 sequences). Hence, the
averages of x, y, and !14(a + b + c + d) for a set of n
sequences usually are statistically well-defined parameters.
If a tree is constructed by compromises that yield an optimal
fit, and x/y average values of -0.5 or higher are found, one
should be suspicious. Randomization then has proceeded so
far that a tree cannot be discriminated from a bundle. On the
other hand, one can prove mathematically (ref. 14; see also
ref. 15 and references therein) that, if in a set of more than
four sequences all x values are zero while 9 is nonzero, the
total set has an exact tree-like topology. Unfortunately,
statistical geometry based on distance only is not very
sensitive in differentiating topologies, the main shortcoming
being neglect of positional information. As explained above,
such information is available from order relationships in
sequence space.

In sequence space formally the procedure is analogous to
that in distance space: For each quartet of sequences, we
analyze the optimal network connecting the four sequences
in sequence space and try to reconstruct a geometry that is
representative for the whole family of sequences. We begin
with the case of binary (R, Y) sequences (Fig. 4b). There are
eight distinguishable classes of positions in three categories:
0, all four sequences having equal occupation; 1, one se-
quence differing from the three others (a, f3, 'y, 8); and 2, two
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B

FIG. 4. Representative geometries of quartet combinations of sequences in distance space (a), RY sequence space (b), and AUGC sequence
space (c).

Biophysics: Eigen et al.
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eight distinguishable classes of positions in three categories:
0, all four sequences having equal occupation; 1, one se-
quence differing from the three others (a, f3, 'y, 8); and 2, two
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FIG. 4. Representative geometries of quartet combinations of sequences in distance space (a), RY sequence space (b), and AUGC sequence
space (c).

Biophysics: Eigen et al.



Proc. Natl. Acad. Sci. USA 85 (1988) 5915

0

I Z 10 ol o

00 0 000

FIG. 3. The iterative buildup of sequence space, starting with one position. Each additional position requires a doubling of the former diagram
and to connect corresponding points in both diagrams (which represent nearest neighbors). The final hypercube of dimension v contains as
subspaces ( )2,k hypercubes of dimension k.

space concept to evolution requires the introduction of a
value topography. Value landscapes have rugged fractal
structures, causing populations to accumulate on ridges and
peaks in the mountainous regions (12, 13), which is the deeper
reason for the metric nonuniformity commonly found in
comparative sequence analysis.

Statistical Geometry

Statistical geometry as such can be exemplified with mere
distance relationships. Two sequences define one distance;
three can always be fitted into a tripod diagram, because they
yield three explicit equations for the three unknown seg-
ments. The tripod, however, may be unrealistic, because the
precursor, the tripodal node, may not have existed. The truth
then emerges by adding a fourth sequence. Four sequences
define six distances and hence match a diagram that, in
general, has six segments, as shown in Fig. 4a. The three
types of segments can be obtained from

AB + CD = a + b + c + d + 2x = S (small)

AC + BD = a + b + c + d + 2y = M (medium)

AD + BC = a + b + c + d + 2x + 2y = L (large),

as 2x = L - M, 2y = L - S, and a + b + c + d = S + M
- L.
The diagram reduces to an ideal bundle if both x and y are

zero and to a tree-like dendrogram, with finite branching
distance y, if only x is zero. The general "net" form in Fig.
4a is due to the presence of reverse and parallel mutations,
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with x being a measure of deviation from tree-likeness.
(Likewise, x and y together measure the deviation from ideal
bundle-likeness.) For partly randomized bundles, x and y are
nonzero and of similar magnitude, with x (by definition) being
the smaller of both parameters.
Why do we call this method statistical geometry? There are

(4) different quartets that can be formed from a set of n
sequences (e.g., 27,405 for n = 30 sequences). Hence, the
averages of x, y, and !14(a + b + c + d) for a set of n
sequences usually are statistically well-defined parameters.
If a tree is constructed by compromises that yield an optimal
fit, and x/y average values of -0.5 or higher are found, one
should be suspicious. Randomization then has proceeded so
far that a tree cannot be discriminated from a bundle. On the
other hand, one can prove mathematically (ref. 14; see also
ref. 15 and references therein) that, if in a set of more than
four sequences all x values are zero while 9 is nonzero, the
total set has an exact tree-like topology. Unfortunately,
statistical geometry based on distance only is not very
sensitive in differentiating topologies, the main shortcoming
being neglect of positional information. As explained above,
such information is available from order relationships in
sequence space.

In sequence space formally the procedure is analogous to
that in distance space: For each quartet of sequences, we
analyze the optimal network connecting the four sequences
in sequence space and try to reconstruct a geometry that is
representative for the whole family of sequences. We begin
with the case of binary (R, Y) sequences (Fig. 4b). There are
eight distinguishable classes of positions in three categories:
0, all four sequences having equal occupation; 1, one se-
quence differing from the three others (a, f3, 'y, 8); and 2, two
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FIG. 4. Representative geometries of quartet combinations of sequences in distance space (a), RY sequence space (b), and AUGC sequence
space (c).

Biophysics: Eigen et al.



Error Threshold

gi

µ



Fitness Landscape

Delta function:

Multiplicative function:

µ <
s

L
=

1
L

µ < s



Kimura’s 
Neutrality Inequality
Expectation of Mutation

Probability of Fixation

Condition for Neutrality

sN < 1

Nµ

1
N



Evolutionary Information Storage

Information Conserved

Information Lost

s <
µL

N

s ≥ µL

N

Environmental 
regularity

organismal 
regularity



Evolution, Localization 
& Information

(with a 4 letter alphabet)



Information as Selective Uniformity

ACGTC...T
ATGTG...T
ATCTG...A
1 2 3 4 5...lAligned genomes

Ii = Hmax −Hi

Information
in Population

C = L−
∑

i

Hi

Hi = −
∑

j

p(i)
j log4p

(i)
j



ACGTC...T
ATGTG...T
ATCTG...A
1 2 3 4 5...l

 Information-Selection as a Compression Ratio

Aligned genomes

Hi = −
∑

j

p(i)
j log4p

(i)
j

C =
LHmax∑L

i Hi

=
L

∑L
i Hi



The Tendency to 
Population Multiplicity 
& Individual Minimality

sN > µL



The Space God versus the andromeda strain



www.genomeknowledge.org

http://www.genomeknowledge.org
http://www.genomeknowledge.org


KEY

virus catalyzed

host A catalyzed

host B catalyzed



vi hisi

vi hi vi hisi

N = |E|

AutonomyMinimality

|v ∪ h| = N
|v ∩ h| = 0 |v ∩ h| ≈ N

|v ∪ h| = N



w =
∏

i∈E

f(gi)
∑

j∈NE

h(gj)

wE =
∏

i∈E

f(gi)

vi hi

gi



vi hi

gi

Prob(hi = 1) = q Prob(vi = 1) = p

gi = hi ∨ vi

Lv =
∑

i

vi, < Lv >= pN

w =
∏

i∈N gi

(1 + Lv)
< w >=

(q + p− qp)N

1 + pN



host genome vir
us

 ge
no
me

N=4 N=8

N=16 N=32



Evolution & Minimality
• Evolutionary theory is 

concerned largely with the 
frequency, variety & relationships 
among chemically improbable 
sequences

• Replicator/Mutator Dynamics 
tends to favor small sequences 
which can be preserved

• Neutral theory requires large 
populations for effective 
selection of target sequences -- 
more likely with small sequences

• Evolution can be thought of as an 
inferential, model fitting process 
(Bayesian) and selection as a 
mechanism for injecting 
information into sequences

• Genomes tend to “neutralize” 
and/or eliminate redundant 
sequences - genomes need not 
encode perfectly predictable 
resources

• Increasing autonomy (often size) 
reflects greater inferential 
uncertainty

• Genetic dissipation in co-
evolutionary contexts requires a 
consideration of rates of gene 
inactivation in all interacting 
agents

• Genome growth beyond 
competitive persistence is driven 
by, e.g. robustness & control



Whence 
Complexity?


