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What we do...

• Introduce random walks on a network and 
describe Vagabond Clustering  

• We then “relax” Vagabond Clustering and 
describe Spectral Clustering

• Examine the topological properties of  
Spectral Clustering 

• Listen to the Spectrally Clustered Market 
and 109th congress. 



W=

Conductance 
(or similarity) 

Network. 



W=(1/sum(sum(W)))*W;
mu=sum(W,1);
T=diag(1./mu)*W;

normalize

probability vector

transition matrix

Useful 
Observations:

Form the Transition Matrix



E=repmat(1/36,36,36);
[seq,states] = hmmgenerate(N,T,E);

    ....26    32    26    19    25    32    26    21    28    21    28    22    28    33    
26    21    15    16    21    16    21    26    27    33    26    25    26    33   32    
33    27    26    32    33    26    20    14    20    15     9     4     9     8     9    

15    20    14     9    10    15     9    14     8    14    15     9     4     3     2     7    
13     7     2     9     8     9     8     9    15     9     4    11    18    17    23    16    

22    21    16.....

S(i)=[mod(i,6),floor(i/6)]

Interpret as Random
states=Snake(W,S,'No',N,K);

States

states=Snake(500,5,'No');

MatLab:



Question: Given I’m in state i what is the 
probability that I’m in state j after 2 steps?

€ 

P(Xt+N = j | Xt = i) = TN( )ij

Hey! that’s matrix multiplication! In general.... € 

P(Xt+2 = j | Xt = i) = P(Xt+2 = j | Xt+1 = k)P(Xt+1 = k | Xt = i)
k=1

|S |

∑

Called a Markov Chain



    ....26    32    26    19    25    32    26    21    28    21    28    22    28    33    26    21    15    16    21    
16    21    26    27    33    26    25    26    33   32    33    27    26    32    33    26    20    14    20    15     
9     4     9     8     9    15    20    14     9    10    15     9    14     8    14    15     9     4     3     2     7    

13     7     2     9     8     9     8     9    15     9     4    11    18    17    23    16    22    21    16.....

 

Law of Large
 Numbers

Equilibrium measure
is the average



A Wild Wiki Adventure!

Let us cluster idea space....



€ 

Vagabondliness = P(Xt +1 ∈ A k | Xt = Ak )
k
∑

Finding this partition is usually called “NCut” and it is NP hard.

states=Snake(W,S,'No',N,K);

states=Snake(500,5,'No');

“Vagabond Clustering”: find a partition            that 
minimizes 



Since finding this partition is NP Hard,  to find the solution 
we will need to “relax...”

Key Theorem:

states=Snake(500,10,'Vg');Partition



for A and B disjoint

€ 

f ,g = f (x)g(x)dVol(x)
M
∫Inspiration, L^2



...

Circe 1799

€ 

Δf = f (x) − avS(x )( f )

The Laplacian

€ 

= −
∂ 2 f
∂x 2

+
∂ 2 f
∂y 2

+
∂ 2 f
∂z2

 

 
 

 

 
 € 

Δf = lim
ε→0

1
ε2

f (x) − 1
4πε2

f (y)dA
S 2 (x,ε )
∫

 

 
  

 

 
  

€ 

Δf = (I −T) f



€ 

< f ,Δg >=< Δf ,g >

Key property 1

KEY: weights 
are

 symmetric

Q.E.D

proof:



€ 

< f ,Δg >=< Δf ,g >

Spectral Theorem (Real):  If  <,> is an inner product and 
<Av,w>=<v,Aw>, then there is an orthonormal basis of 
A eigenvectors.  



Find this basis with MatLab....

    %Create Laplacian and find eigenbasis 
Lap=diag(ones(length(T),1)) - T;
[B Eig]=eig(Lap);
    % (Check: Lap=B*Eig*B^(-1))
    %Note: better algorithms for symmetric matrix

O=[];
for i=1:length(Lap)
    norm=sqrt((B(:,i))'.*mu*B(:,i));
    O=[O B(:,i)/norm ];
end
    % (Check:  O'*diag(mu)*O)



Key Property 2: Non-negative, with swanky formula!

row sum is one is equillbrium measure

Proof:

>=0



Approximate  the Vagabond Clustering

Key Theorem:

By the Spectral Theorem and positivity, to 
solve this problem we are searching for the N 
eigenvectors of the Laplacian with the N 
smallest eigenvalues. 
€ 

min
{vi | vi ,v j =δ j

i }
vi,Δvi

i
∑

by “relaxing” and solving



Q.E.D.

Proof:

Swanky formula

definition 
conditional
probability

Do not imagine that mathematics is hard and crabbed, and repulsive to 
common sense. It is merely the etherialisation of common sense.” 
                ~Lord Kelvin



First three (non-trivial) 
Eigenfunctions

The Vagabond 
functions

Notice, they are not 
localized



Can you
 hear the 
shape of
 a  drum?



Alex Barnett

Eigenvalues are the
 “frequency of oscillation”

of the eigenfunctions.



Eigenvalues are the
 frequency of oscillation

€ 

λ2

€ 

λ30



Now we can use K means!

Can use our eigenfunctions to embed 
our states in Euclidean space



Spectral Clustering 
Algorithm

1. Find the M>=K orthonormal eigenvectors 
corresponding to the M smallest eigenvalues. 

2.  Using these eigenfunctions, embed our states 
into Euclidean space and then apply K-means.

See:On spectral clustering: Analysis and an algorithm. A. Y. Ng, M. I. Jordan, and Y. Weiss. In T. 
Dietterich, S. Becker and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 

(NIPS) 14, 2002.

Many Variations...



Typically M should
 be GREATER than K

Here we see describe he 
vagabond clustering for 
both N=2 and N=3 
requires the span of 4 
Vagabond functions.

 The Laplacian is trying to do 
MANY things at once (in 
particular it is the solution 
to a variety of discrete 
relaxations.) 



In Mat Lab.

    %Sort by eigenvalue the eigenbasis [Eig,O]
Eig=diag(Eig);
[Eig Srt]=sort(Eig);
O=O(:,Srt);
    %Now apply K-means 'Rep' times
Emb=O(:,2:N);
[IDX,C,sumd,D] = kmeans(Emb,K,'emptyaction','drop');
for i=1:Rep
    [IDX0,C,sumd0,D] = kmeans(Emb,K,'emptyaction','drop');
    if (sum(sumd0)<sum(sumd))
        IDX=IDX0;
        sumd=sumd0;
    end;
end;



Spectral Clustering
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Manifold
Learning

€ 

L = d(xi,µk ) ≈ 488
xi ∈Ck

∑
k=1

N

∑



Himalayas
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Watch Out! 100 convergent 
runs of the k-means algorithm 
were performed. 
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€ 

L = d(xi,µk ) ≈ 536
xi ∈Ck

∑
k=1

N

∑

€ 

L = d(xi,µk ) ≈ 538
xi ∈Ck

∑
k=1

N

∑

€ 

L = d(xi,µk ) ≈ 534
xi ∈Ck

∑
k=1

N

∑



Can you hear the shape of the market?

Candidate 
Weights ...and zero on 

diagonal, 
force a move.



Eigenvalues>0

Major clusters correspond to the
 “outlier’’ eigenvalues....
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...though this localization is “lucky”



The Spectral Market
1 Basic Materials  
2 Conglomerates

3 Consumer Goods  
4 Financial       

5 Healthcare      
6 Industrial Goods

7 Services        
8 Technology      

9 Utilities       
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Guess who that is?



The Whole Market....





The Spectral Market

Greg Leibon, Scott D. Pauls, Daniel N. Rockmore, Robert Savell 
Topological structures in the equities market network
http://arXiv.org/abs/0805.3470



Remove unanimous votes, 
create similarity matrix using
percent of votes in common.

Example 2: 109th Congress

Spectral cluster with
three clusters   



 Validates well and
Looks like

 “usual view” 
(Poole-Rosenthal)


