Unsupervised Learning in Complex Systems

Part A: Introduction
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Unsupervised learning in
complex systems

Part A: Introduction (this lecture)

Part B: Can you hear the shape of the market?
Part C: Ether dipsomania in complex systems
Part D: An introduction to the Vulcan economy



Goals:

® A basic introduction to pattern recognition

® See: Pattern Classification by Duda, Hart, and Stork and The Elements of
Statistical Learning by Hastie, Tibshirani, Friedman

® Some specific tools to use in the next couple of weeks!

e |n MATLAB: MDS, K-means,...

® Others: Random Matrix Null Models, Spectral Clustering, Partition
Decoupling Method, the Green’s Embedding, dimension reduction

techniques...

® Explore Concrete Examples

® U.S. Equities Market

® |09th Congress

® Wikipedia

® Collaborative Reconmendation Networks: Movie Rankings



Market as a Complex System

® |ong Term Goal

e is to form a model of the market with simple local behavior out of which emerges
the complex collective behavior of the market we see in the world.

® Role of Pattern Recognition

e is that in a realistic model one must understand how to articulate the local
behavior as well understand the emergent patterns that characterize the a
complex system.

® Data Collected

® 6000+ interacting tradable equities from NASDAQ and NYSE from
Yahoo!finance.

® Data collected for each equity was the Open, Close, High, and Low
price as well as the Volume traded on each trading day over |5 years.

® Annotation (partial) collected was the equity’s names, sector,
industry, and index membership.



An Equity’s Times Series
Xz _ St — St—
St—l

L =d(n(S)))

A well known rough approximation:

d(In(S.)) = o(t)dB, + c(t)dt



The Market as Complex System
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Correlation Metric
ﬂ X — (X)

Normalize: X =
X = (0)%)

Correlation: ,O(X, Y) — X.V

Metric: d(X,Y) = 2sin(6/2) = /2 (1 — p(X,Y))

L=103,680,000 Second Ticks
Examples: N=6,000 L=3,600 Daily Ticks



Correlation: S&P500

Correaltions Over Whole Market
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How much of this correlation is internal to our equities market and
how much due to external forces from the whole economy?



Confounding Factors
:Ll FFEHE}I’ Each day there is pressure on

the equities market to absorb
money. We can remove this
effect:

Equities




Network Structure

First step: Dimension Reduction

Our network is embedded in 1000+

dimensions. To see and work with our
network, it is useful to attempt to embedded
it a lower dimensional space.

One great simple tool for doing this is Multi
Dimensional Scaling,

With MDS: For each dimension, we can
produce an approximate lower dimensional

embedding, call it f(X).



MDS algorithm

Simply, attempt to minimize a positive loss
function that would be zero if for all X,Y

d(X,Y)=d(f(X).£(Y)).

Example Raw Stress: L = E(a’(X,Y) — a’(f(X),f(Y)))2

Minimization Techniques: Gradient Decent, Newton
Raphson, Iterative Majorization, Tabu Search,
Genetic Algorithms, Simulated Annealing....
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2-d Example

citlies =

{'Aatl’','Chi', 'Den', 'Hou', 'LA"', 'Mia', 'NYC', 'SF', 'Sea’, 'WDC'};

D = [ 0 587 1212 701 1936 604 748 2139 2182 543;
587 0 920 940 1745 1188 713 1858 1737 597;
1212 920 0 879 831 1726 1631 949 1021 1494;
701 940 879 0 1374 968 1420 1645 1891 1220;
1936 1745 831 1374 0 2339 2451 347 959 2300;
604 1188 1726 968 2339 0 1092 2594 2734 923;
748 713 1631 1420 2451 1092 0 2571 2408 205;
2139 1858 949 1645 347 2594 2571 0 678 2442;
2182 1737 1021 1891 959 2734 2408 678 0 2329;
543 597 1494 1220 2300 923 205 2442 2329 0]1;

Example taken from MatLab’s help
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For S&P500

Call the embedding f and use the Euclidean distance d(f(X),f(Y))
E\d(x Y)-d(f(X).f())

E\d(x Y)

ddddddddddd

Dimension



MATLAB code:

Here Closes is the 1000 by 500 matrix with columns
corresponding to each equity’s normalized daily Close.

Cor=corrcoef(Closes,'rows','pairwise’)
Dist=sqrt(2*(1-Cor));

opt=statset('MaxIter',5000);

Dim15= mdscale(Dist,15,'Options’,opt);

% Here Dim|5 is a fifteen dimension embedding of vertices.



Currency

Network Shape *

Commodities

® Re-scale network

® Clustering to find nodes at new scale.
® Unsupervised learning.

® Clustering techniques: kmeans, spectral
clustering, hierarchical clustering, *-Linkage
Clustering, Delaunay Complex Exploitation
Algorithms,...



K-means

Simplest clustering algorithm is k-means
To run requires fixing K=#(Clusters)

Requires an Euclidean type embedding (we
have one via the MDS)

Once again, we are essentially minimizing a
loss function:

L=§ z(xi_luk)

k=1 x. €Cy



K-means algorithm:

|. Randomly choose points in each cluster and
compute centroids.

= Lloyd clustering/k-means clustering

P Clear
Se s .
. |
S °®
........ P
............... poins !
.. oy ‘ Associat
?.” ® ‘-..q Cluste
' . Maove to centroid
o
Do both in a
single step!

Example from: http://en.wikipedia.org/wiki/K-means_algorithm




2. Organize points by distance to the centroids.
3. Update centroids

= Lloyd clustering/k-means clustering

Add random
points

Associate
Cluster

Do bothiin a
single step!




4. Repeat...

= Lloyd clustering/k-means clustering

l'lﬁi
Clear |

Add random
points

Maove to centroid

Do both in a
single step!




...until stable.

= Lloyd clustering/k-means clustering

I'Iﬁi
Clear

Add random
points

Associate
Cluster

Do both in a
zingle step!




MATLAB

Recall Dim|5 was the |5 dimensional Euclidean
realization of of correlation information.

Clusters = kmeans(Dim15,20);

Clusters is a list of 500 labels between | and 20, one
for each point in Dim 15, indicating the cluster that
each sample has been associated with.



Hardest part is choosing K=#(Clusters)

Elbowlogy:
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#(Clusters)=2
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Take a guess!
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The Recent “‘Battle”
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More importantly, generative
models will allow us to
deal with structured time series.

Correlation by Sector

Market Wisdom
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Mean correlation, Unnormalized
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Even the static picture is interesting...

0.3

0-3 e e e e e e e e e e 7 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
/7K\\\\ 4
6 0.2
6 s 4 ‘ 0.1
oy & 3 ‘]/ | | //44{/v 45
B 1= I /,//Q | A= °
O // —
1 1;4/' - — =01
a4 /%,
0.1 8‘!g§?gg%===ii..--—'
~0.2
~0.2—
$J
5 -0.3
-0.3— ;
/ﬁ ~0.4
~04 | | | | | | o -
0.4 0.3 0.2 0.1 0 0.1 0.2 a.3

7>
4-€)
(=2
7-9
6 39 4= 5
78
=12 4=
-1-© 94
1-©
g 3
8o6%
5
59
\ \ \ \ \ \ \
0.3 0.2 0.1 0 -0.1 0.2

Notice the circle: A manifold, not a “ball”’ cluster.



The Cycle
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Classical K-means

Classical K-means Solution
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Key Questions

How much information has been captured!?

Requires developing Models and
statisitics to compare them....



Random model: pretend our stocks are all

independent and random
(better models described in Lecture 2, Part B!)

d(In(S.)) = 0dB, + ¢

Compare to actual model via
certain statisitics. In this case UNIVERSAL properties
related to Eigenvlaues....

(Leture |,Part B we will see why this is a good coice!)



Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series

Vasiliki Plerou,'? Parameswaran Gopikrishnan,! Bernd Rosenow,’ Luis A. Nunes Amaral,' and H. Eugene Stanley’
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Statistical properties of random matrices such as R are
known [26,27]. Particularly, in the limit N—ce, L—c, such
that Q=L/N (>1) is fixed, it was shown analytically [27]
that the probability density function P_,(A) of eigenvalues A
of the random correlation matrix R is given by

(ns—=A) (A=A _
Prnh)= . YWATMATA) (6)

for A within the bounds A _=X,=k_., where A _ and A , are
the minimum and maximum eigenvalues of H, respectively,

given by
—l+—*2\/— (7)

Histogram,
| runs,
N=500,
L=1000



Statistical properties of random matrices such as R are
known [26,27]. Particularly, in the limit N—ce, L—c, such
that Q=L/N (>1) is fixed, it was shown analytically [27]
that the probability density function P_,(A) of eigenvalues A
of the random correlation matrix R is given by

(ns—=A) (A=A _
— Prnh)= . YWATMATA) (6)

for A within the bounds A _=X,=k_., where A _ and A , are
the minimum and maximum eigenvalues of H, respectively,

given by
—l+—*2\/— (7)

Histogram,
200 runs,

LN=500,
L=1000



Simulate a Market
(Will discuss CAREFULLY in Lecture 2)
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Partition Scrubbing

139
_ . &
X, =6+ ¢V
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o

where we identify the V; as the mean series of the stocks in the k™" cluster.

Now we can measure how much our model
explains with the residuals....



Constructing a model
to explain what you
see, here we remove

20 clusters....
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Model Comparison:
How do we quantify
how close we are!
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Random matrix approach to cross correlations in financial data

Vasiliki Plemuﬂl‘* Parameswaran anikrishnan,l Bernd RDSEIII:}W,]S Luis A. Nunes Amaral,’ Thomas w!fi‘n;lhrf"'5
and H. Eugene Stanley'
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Big Issues:
What are the eigenvalues trying to tell us?

Can they help us get a glipmse into
sytems’ the underlying geometry?!...

..... the dimension, the number of clusters,
the topology, the geometry...




