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This paper proposes and investigates a method for reducing potential numerical instabil-
ity in the fast spherical harmonic transform algorithms proposed previously in [5,11]. The
key objective of this study is a numerically reliable fast algorithm for computing the discrete
Legendre transform (DLT); that is, the projection of sampled data onto the associated Legen-
dre functions within a specified range of degrees. A simple divide-and-conquer approach
derives from a factorization of high-degree Legendre functions into Legendre functions of
lower-degree, exploiting the fact that the complexity of projection onto Legendre functions
decreases with decreasing degree. Combining the resulting fast DLT algorithms for each rele-
vant order of associated Legendre function results in an O(N log2N) algorithm for computing
the spherical harmonic expansion of a function sampled at N points on the sphere. While fast
DLT algorithms of this form are exact in exact arithmetic, actual (finite precision) implemen-
tations of the earlier variants display instabilities which generally grow with the the order of
the associated Legendre function in the transform. Here we return to the basic algorithm,
present a slight modification of the general schema and examine the error mechanism for the
higher-order cases. This study suggests a new approach to the high-order DLTs achieved by
substitution of a simple alternative factorization of the associated Legendre functions in place
of that used previously. This technique improves stability significantly for a wide range of
useful problem sizes and may be used with any of the variants of the basic algorithm previ-
ously proposed. We present a description of the use of the new Legendre decomposition in
the basic fast algorithm along with numerical experiments demonstrating the large advances
in stability and efficiency of the new approach over the previous results.
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1. Introduction

For two centuries Fourier analysis has provided a tool of fundamental importance
in a wide variety of application areas, through its perspective of symmetry-adapted rep-
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resentations which simplify many interesting problems. The same basic mathematical
properties of the Fourier harmonic basis functions which provide a diagonalized rep-
resentation of translation and convolution operators also provide insights into efficient
numerical computation of Fourier transforms from sample data. This happy combination
has contributed to the enormous impact of Fourier methods on science and technology.

The key is that Fourier harmonics are natural with respect to symmetries of both
the time and frequency domain: The harmonic eibx scales under a translation as a simple
phase: eib(x+u) = eibueibx for the same reason that harmonics of high frequencies can be
decomposed as products of harmonics of lower frequencies: ei(b+c)x = eibxeicx . These
properties play a role in numerical harmonic analysis, in the now “classical” Fast Fourier
Transform (FFT), first discovered by Gauss and later rediscovered and popularized by
Cooley and Tukey (see [12] for a nice outline of much of the history). This family of
algorithms utilizes divide-and-conquer strategies, based on the above-mentioned alge-
braic properties of the harmonics, in order to efficiently compute Fourier coefficients of
a band-limited function on the circle, an Abelian group. Its effective implementation
has contributed to a wealth of advances in many fields, most noticeably digital signal
processing (see, e.g., [7,21]).

An interesting generalization of this line of inquiry is the development of efficient
and reliable algorithms to compute expansions of functions defined on non-Abelian
groups in terms of the irreducible representation matrix coefficients, the basis that re-
spects the symmetries of the accompanying symmetry group (see, e.g., [1,5,11,14–16,23,
and references therein]).

A natural first step is the development of efficient algorithms for the calculation of
Fourier expansions for the (non-Abelian) rotation group SO(3) and its familiar homoge-
neous space, the 2-sphere. This amounts to development of efficient algorithms for the
calculation of spherical harmonic expansions from sample data, an expansion in terms
of the basis which respects the rotational symmetries of the 2-sphere. This problem has
been identified as an important computational issue in many areas of applied science for
example, including astronomy, computer vision, medical imaging, biology, statistical
analysis of directional data, chemistry, and the fields of numerical weather prediction
and global circulation modeling (see references in [11]).

One approach to the efficient computation of spherical harmonic expansions is an
algebraic one, effectively relying on the Clebsch–Gordon relations (see, e.g., [30]) to
obtain recurrence relations expressing spherical harmonics as combinations of spheri-
cal harmonics of lower-degree. These play a role reminiscent of the decomposition of
Abelian harmonics in the classical FFT mentioned above, permitting the construction of
similar fast algorithms in the new setting of the sphere.

This is the method which we revisit here, one originally described in the papers
[5,11]. We begin by dissecting the two-dimensional spherical Fourier transform into a
collection of one-dimensional Discrete Legendre Transforms (DLTs). For a given “band-
width” B > 0 (cf. section 2) these are the sums of the form
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ŝ(�,m) =
2B−1∑
k=0

Pm
� (cos θk)[s]k, |m| � � = 0, 1, . . . , B − 1, (1)

where Pm
� is the associated Legendre function of degree � and orderm, θk = π(k+1/2)/

(2B) and s is a data vector with kth component [s]k , obtained from the samples of the
original function which we wish to transform.

The results in [5,11] provide basic tools for algorithms which improve the asymp-
totic complexity of the complete set of Legendre transforms from O(N3/2) (achieved
using a basic separation of variables) to O(N log2N) (N = B2). These fast algorithms
use a divide-and-conquer approach, akin to that used in many of the usual (Abelian) FFT
algorithms (see, e.g., [3,29]).

In the case of the DLT, the divide-and-conquer strategy derives from a factorization
of the Legendre functions obtained from certain of their recurrence relations. This per-
mits the problem of computing projections onto Legendre functions to be decomposed
into smaller subproblems of a similar form. The subproblems are solved recursively,
and their solutions are combined to solve the original problem. The advantage derives
from the more efficient solution of the smaller subproblems, combined with an aggre-
gate low splitting cost. Analysis and experimentation with numerical implementations
demonstrated considerable variability in the numerical stability of these various trans-
forms, which in general tails off asm increases. While them = 0 (Legendre polynomial)
transform admits a numerically benign fast implementation, significant difficulties arise
for transforms corresponding to larger values of m. Simple variations of the basic algo-
rithms allow a trade of computational speed for stability [11,22] resulting in stable FFTs
for the 2-sphere. While faster than naive approaches for a large range of useful problem
sizes, these approaches are constrained by the need to deal with the poor behavior of the
Legendre decomposition, and leave significant room for improvement.

In this paper, we examine the error mechanism in the basic algorithms. This study
suggests a way of employing the basic ideas of our original fast algorithm with new, sim-
ple, alternative factorizations of the associated Legendre functions. Over a wide range
of problem sizes this improves stability enormously without sacrificing computational
efficiency. We present a description of the requisite algorithmic modifications as well as
numerical experiments demonstrating the improved stability.

Algebraic approaches of this sort are but one way to approach the problem of fast
spherical harmonic expansions. Approximate and projection-based methods are also an-
other avenue of research being actively pursued. In [13], associated Legendre projection
algorithms based on the fast multipole method are developed. These methods are further
refined in [31]. In [17], local trigonometric expansions are used to derive efficient asso-
ciated Legendre transforms. Swarztrauber and Spotz [27] develop a projection algorithm
that reduces significantly memory requirements and number of operations, i.e. requir-
ing only half as many as compared with standard associated Legendre transforms. For a
comparison and analysis of actual implementations of a variety of projection algorithms,
including those mentioned here, the reader is strongly encouraged to read [25].
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The organization of the remainder of the paper is as follows. In section 2 we briefly
recall the notation and some necessary technical background material on Fourier analy-
sis for the 2-sphere and and the basic ideas of the fast algorithm proposed in [5,11] for
its computation. Section 3 describes the main features our fast Fourier transform for the
2-sphere. This algorithm has a natural formulation as a particular structured matrix fac-
torization of matrix containing sampled Legendre functions. Section 4 presents our new
ideas for dealing with numerical difficulties which can arise from a direct implementa-
tion of the algorithms in [5,11]. We present an alternative Legendre decomposition, in-
dicate how we can incorporate it into our fast algorithms, and show experimental results
which indicate that this new approach greatly reduces the numerical problems without
cutting into efficiency for a range of useful problem sizes. We conclude in section 5 with
a summary and brief discussion of future work.

2. Background on numerical Fourier analysis on the sphere

Here we summarize fundamental facts about Fourier analysis and synthesis on the
sphere, as well as the the basic idea behind our efficient numerical approaches to it. Key
steps are a discretization and subsequent fast transform for the discrete Legendre trans-
form (DLT). The Legendre functions are trigonometric polynomials doubly indexed by
increasing degree and order. The DLT takes spatial data to a transform domain indexed
by the degree, with one transform for each order.

Each DLT computes a collection of discrete inner products; when computed di-
rectly, each inner product requires a number of operations equal to the number of sam-
ple points. A first order more efficient approach uses a cosine representation effected by
the discrete cosine transform (DCT). In this setting the number of operations per inner
product is equal to the degree of the target Legendre function. A further reduction comes
from the use of a three-term recurrence which the Legendre functions satisfy. This per-
mits higher-degree transforms of a given order to be written as linear combinations of
lower-degree transforms which are more attractive computationally. Iteration of this idea
provides the heart of the efficient algorithm.

Details of this approach have already appeared [5,11]. For this reason we present
only those aspects necessary for the main purpose of this paper, which is to show that
certain numerical instabilities in this recurrence-based approach can be ameliorated. We
encourage the interested reader to consult the earlier papers for further details, and to
obtain a working software package [20].

2.1. Fourier analysis on the 2-sphere and numerical computation

As usual, S2 denotes the 2-sphere or unit sphere in R
3. In the standard coordinates

any ω ∈ S2 is described by an angle θ , 0 � θ � π measured down from the z-axis and an
angle φ, 0 � φ < 2π , measured counterclockwise off the x-axis, in the plane transverse
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to the z-axis. Let L2(S2) denote the Hilbert space of square integrable functions on S2.
In coordinates, the usual inner product is given by

〈f, h〉 =
∫ π

0

[∫ 2π

0
f (θ, φ)h(θ, φ) dφ

]
sin θ dθ.

The well-known (see, e.g., [30]), spherical harmonics provide an orthonormal basis for
L2(S2). For any nonnegative integer � and integer m with |m| � �, the (�,m)-spherical
harmonic Ym� is a harmonic homogeneous polynomial of degree �. The harmonics of
degree � span a subspace of L2(S2) of dimension 2� + 1 which is invariant under the
rotations of S2. This symmetry property is the key to the broad utility of the spherical
harmonic basis.

In the coordinates (θ, φ), Ym� has a factorization,

Ym� (θ, φ) = k�,mP
m
� (cos θ)eimφ (2)

where Pm
� is the associated Legendre function of degree � and order m and k�,m is a

normalization constant. The associated Legendre functions of fixed order m satisfy a
characteristic three-term recurrence with respect to the degree �,

(�−m+ 1)Pm
�+1(x)− (2�+ 1)xPm

� (x)+ (�+m)Pm
�−1(x) = 0 (3)

which may be used to generate Legendre functions of higher-degree from those of lower-
degree, starting from an initial condition at � = m:

Pm
m (cos θ) = sinm θ, Pm

m−1(cos θ) = 0.

This is a fundamental characterization which will be critical for the algorithms developed
in this paper.

The Fourier transform of a function on the 2-sphere amounts to its L2-projection
onto spherical harmonics. The expansion of any function f ∈ L2(S2) in terms of spher-
ical harmonics is written

f =
∑
��0

∑
|m|��

f̂ (�,m)Ym�

and f̂ (�,m) denotes the (�,m)-Fourier coefficient, equal to 〈f, Ym� 〉.
The separation of variables according to (2) shows that the computation of the

spherical harmonic transform can be reduced to a regular (i.e., Abelian) Fourier trans-
form in the azimuth coordinate φ followed by a projection onto the associated Legendre
functions

f̂ (�,m) = 〈f, Ym� 〉 = k�,m

∫ π

0

[∫ 2π

0
e−imφf (θ, φ) dφ

]
Pm
� (cos θ) sin θ dθ. (4)

In analogy with the case of functions on the circle, we say that f ∈ L2(S2) is
band-limited with band-limit or bandwidth B � 0 if f̂ (�,m) = 0 for all � � B. For
band-limited functions we have a simple quadrature (sampling) result which reduces
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the integrals (4) to finite weighted sums of a sampled data vector obtained from the
integrand.

Theorem 1 (Cf. [5, theorem 3]). Let f ∈ L2(S2) have bandwidth B. Then for each
|m| � � < B,

f̂ (�,m) =
√

2π

2B

2B−1∑
j=0

2B−1∑
k=0

a
(B)
j f (θj , φk)e

−imφkPm
� (cos θj ) (5)

where the sample points are chosen from the equiangular grid: θj = π(2j + 1)/4B,
φk = 2πk/2B; and the weights a(B)j play a role analogous to the sin θ factor in the
integrals (cf. figure 1).

Remark. There are several such sampling schemes available. For instance, it is actually
possible to give a sampling theorem which uses only B samples in the θ coordinate.

The Fourier transform of a function f of bandwidth B is the collection of its
Fourier coefficients, {

f̂ (�,m) | 0 � |m| � � < B
}
.

Our objective is fast, numerically reliable computation of these coefficients from the
samples of f .

2.2. Complexity of the discrete Legendre transform

The preceding shows that the Fourier transform of f ∈ L2(S2) of bandwidth B
may be computed by the sums (5) for all 0 � |m| � � < B which we call the discrete
Fourier transform, or DFT of f . Notice that direct computation of each f̂ (�,m) uses
4B2 operations so that computation of all Fourier coefficients in this way would require
O(B4) operations.

More efficient algorithms begin with a separation of variables approach. First sum-
ming over the k index gives the inner exponential sums which depend only the indices
j and m. This may be done efficiently for all m between −B and B via the FFT (see,

Figure 1. Quadrature nodes (at grid vertices) and sample weights from theorem 1.
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e.g., [7]). The computation is completed by performing the requisite discrete Legendre
transforms (DLTs), which for a data vector f and each given orderm, |m| � B, is defined
as the set of sums

2B−1∑
k=0

[f]kPm
� (cos θk) = 〈f,Pm�

〉; � = |m|, |m+ 1|, . . . , B − 1, (6)

for an arbitrary input vector f with kth component [f]k . Here we have introduced a dis-
crete inner product notation and the convention that Pm� denotes the vector comprised of
the appropriate samples of the function Pm

� (cos θ):

Pm� =



Pm
� (cos θ0)

...

Pm
� (cos θ2B−1)


 .

We may also say that (6) computes the projection of f onto Pm� .
This approach thus reduces the problem of a fast spherical harmonic transform to

the efficient calculation of these DLTs. An obvious approach to evaluating the sums
in (6) is to compute them successively for the various degrees and orders. Computed in
this way, each of these sums requires 2B multiplications and 2B − 1 additions. Since
there are N = B2 of these sums required to compute the full Fourier transform, this
implies a total direct computational complexity of at most 4N3/2 = 4B3 operations.1

Note that even without a faster algorithm for the DLTs, the separation of variables has
already produced a savings. We refer to this as the direct algorithm.

To do better requires a faster approach for the DLTs. In [5,11] we explain an
efficient algorithm for effecting this computation, reducing the O(N2) complexity to
O(N log2N). In brief, the basic idea has two main components: one is the use of the
three-term recurrence (3) as a means to decompose a high-degree Legendre function as
a linear combination of lower-degree Legendre functions. This permits us to write the
projection of data onto a high-degree Legendre function in terms of projections onto
low-degree Legendre functions. To derive computational advantage from this we make
use of a second concept: the cosine domain representation of the Legendre functions.
A polynomial in cosine has nonzero coefficients only up to its degree. Thus, in the co-
sine domain (i.e., data and Legendre samples both transformed via a discrete cosine
transform (DCT), itself effected by an efficient algorithm) a DLT of degree m only re-
quires m operations, instead of the original N . The overhead accrues slowly enough that
overall savings are obtained.

For the sake of completeness we present a brief outline here for the important
special case of the Legendre polynomial transform, order m = 0; the higher-order cases
are similar. The order m = 0 version of the Legendre recurrence (3),

(�+ 1)P�+1(cos θ)− (2�+ 1) cos θP�(cos θ)+ (�)P�−1(cos θ) = 0 (7)

1 We use the standard arithmetic complexity model which defines a single operation as a complex multi-
plication followed by a complex addition.
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starting with P−1 = 0 and P0 = 1 implies that P�(cos θ) is a trigonometric polynomial
of degree �. We exploit this by using cosine transform representations, as follows.

Let CN denote the N-dimensional orthogonal DCT matrix (see, e.g., [7, p. 386]) of
normalized samples of cosine functions:

(CN)j,k = b(j) cos(jθk), 0 � j, k � N − 1,

where, as usual, θk = π(2k+ 1)/(2N), and the normalization factors are b(0) = √
1/N

and b(j) = √
2/N for j = 1, . . . , N . Applying this to a data N-vector s yields the

product CN s, a vector whose entries provide the coefficients in a cosine series expan-
sion (of degree at most N − 1) whose uniformly spaced samples give s. The coeffi-
cients {[CNs]n | n = 0, . . . , N − 1} of the cosine transform can be obtained efficiently
(in at most 3

2N logN operations for N a power of 2) by a fast DCT algorithm, which
amounts to a clever factorization of the matrix CN (see [26, and the references contained
therein]).

The orthogonality of C (= CN) implies 〈Cs, CQ〉 = 〈s,Q〉 for any vectors Q and s.
The computational advantage provided by computing the inner product using the DCT
comes from the fact that a trigonometric polynomial has only as many cosine coefficients
as its degree. Thus, ifQ is a trigonometric polynomial of degree n < N , then [CQ]n = 0
for n > deg(Q), implying that at most deg(Q) + 1 < N operations are needed to
compute 〈Cs, CQ〉 assuming Cs and CQ are given.

Define the critically sampled lowpass operator (of bandwidth p), denoted LNp (for
p < N), by

LNp = C−1
p T N

p CN
where T N

p is the truncation operator that only keeps the first p coordinates of a given
input vector.

Lemma 1 [11, lemma 2]. Let Q be a trigonometric polynomial of degree p,

Q(cos θ) =
p∑

m=0

γm cosmθ,

and let s be any sequence of length N with N � p. Then

〈s,Q〉 =
N−1∑
k=0

[s]kQ(cos θk) =
p−1∑
j=0

[
LNp s
]
j
Q

(
cos

Nθj

p

)
= 〈LNp s,LNp Q

〉
.

Note LNp Q is simply Q sampled on the coarser p sample grid. If p is a power of 2 and
these values of Q are prestored, the computation of the inner product thus requires p
operations after the overhead of computing s �→ LNp s in at most 3

2N logN + 3
2p logp

operations.

In particular, lemma 1 applies to the various Legendre functions. To illustrate, the
Legendre polynomial Q = P� is a trigonometric polynomial of degree �, as is eas-
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ily verified using the recurrence relation (7) with the initial conditions P0(cos θ) = 1,
P1(cos θ) = cos θ . Consequently, for � < n, [CP�]n = 0 and the inner product sum
〈CP�, Cs〉 = 〈P�, s〉 can be computed as a sum of only �+ 1 terms (instead of N).

If the cosine coefficients of the sampled Legendre polynomials ([CPj ]k) are pre-
stored, this cosine domain approach is a simple alternative to the direct computation of
the Legendre transform. It has the same asymptotic complexity, but is faster for even
moderate sized transforms, assuming the use of a fast DCT routine. This idea is origi-
nally due to Dilts [4]. A general formulation of this observation now follows:

Lemma 2 [11, lemma 3]. Let N be a power of 2 and s a vector of length N . Suppose
p�(cos θ) (� = 0, . . . , N−1) satisfies a recurrence a�p�+1(cos θ)−b� cos(θ)p�(cos θ)+
c�p�−1(cos θ)with initial conditions p−1 = 0 and p0 = 1. Then assuming the prestorage
of the DCT of the p�, for an arbitrary input s, the collection of inner products 〈p�, s〉 can
be computed in at most 3

2N logN+N(N+1)/2 operations, versus N2 required by direct
computation.

Lemma 2 applied to the Legendre functions provides a semi-naive method for com-
puting the DLT faster than the direct approach for even moderate problem sizes, although
still requiring quadratic complexity.

In order to help turn this into a divide-and-conquer algorithm we need a way to
make the “high-degree” Legendre transform coefficients (of degree at least N/2) as ef-
ficient as the low-degree (of degree less than N/2), for after application of the DCT
the former all require at least N/2 operations, while the latter at most this many. This
imbalance is illustrated schematically in figure 2.

The main point of our work towards a fast algorithm is to address this imbalance,
reducing the set of high-degree projections to an equivalent set of low-degree projec-
tions. Lemma 2 suggests that it makes sense to use the recurrence to compute high-
degree transforms in terms of lower-degree transforms since: (1) the lower-degree trans-
forms are more efficient and (2) the overhead seems manageable.

2.3. Legendre function decompositions from the Legendre recurrence

The (one-step) recurrence (3) implies that Pm
� (cos θ) can be written as a linear com-

bination of Pm
�−1 and Pm

�−2. When iterated, this provides an expression of Pm
� in terms of a

linear combination of other pairs of lower-degree associated Legendre functions. Taken
together with lemma 1, this decomposition provides a divide and conquer approach to
the DLT. A closer analysis demonstrates that, for certain orders m, this basic decompo-
sition also yields a source of numerical instability. In order to see this and address the
problem, we revisit the basic decomposition of Legendre functions and recast it with an
eye to the analysis of section 4.

For each given order m, and r � m, the three-term recurrence satisfied by the
associated Legendre functions may be cast in matrix form:
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Figure 2. Semi-naive calculation transforms input to the cosine transform domain, where it is projected
onto the cosine transformed Legendre vectors. The low-degree inner products each require less than N/2

operations, but the high-degree inner products each require greater than N/2 operations.

(
Pm
r+1(cos θ), Pm

r (cos θ)
)= (Pm

r (cos θ), Pm
r−1(cos θ)

)



2r + 1

r −m+ 1
cos θ 1

− r +m

r −m+ 1
0




= (Pm
r (cos θ), Pm

r−1(cos θ)
)
r$m

1 (cos θ) (8)

with the initial condition at r = m: (Pm
m (cos θ), Pm

m−1(cos θ)) = (sinm θ, 0), and where
we have introduced the concise notation r$m

1 (cos θ) for the matrix (actually a matrix-
valued trigonometric polynomial) which advances the degree of the Legendre functions
one step, starting from degree r.

Repeating this process n times produces the matrix effecting an n-step advance
starting at r:(

Pm
r+n(cos θ), Pm

r+n−1(cos θ)
) = (Pm

r (cos θ), Pm
r−1(cos θ)

)
r$m

n (cos θ) (9)
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with recursive definition

r$m
n+1 = r$m

n
r+n$m

1 . (10)

From this it follows that for any choice of �, r, the function r$m
� generalizes in a useful

way the �th degree associated Legendre functions. In particular, (10) expresses the fact
that r$m

n is a matrix trigonometric polynomial satisfying the same recurrence as the
order m associated Legendre functions themselves. Introducing notation for the matrix
entries:

r$m
n (cos θ) =

(
rP

m

n (cos θ) rP
m

n−1(cos θ)
rPm

n(cos θ) rPm
n−1(cos θ)

)

an explicit rewriting of the recurrence (10)
 rP m

n+1(cos θ) rP
m

n (cos θ)

rPm
n+1(cos θ) rPm

n(cos θ)


=

 rP m

n (cos θ) rP
m

n−1(cos θ)

rPm
n(cos θ) rPm

n−1(cos θ)




×




2(r + n)+ 1

(n+ r)−m+ 1
cos θ 1

− (n+ r)+m

(n+ r)−m+ 1
0




shows that rP
m

n+1(cos θ) and rP m
n+1(cos θ) are (at most) nth order trigonometric polyno-

mials, both of which are solutions of an r-lagged form of the Legendre function recur-
rence ([n+ r] −m+ 1

)
pn+1(cos θ)− (2[n+ r] + 1

)
cos θpn(cos θ)

+ ([n+ r] +m
)
pn−1(cos θ) = 0 (11)

and are determined by the initial conditions rP
m

0 = 1, rP
m

−1 = 0, and rP m
0 = 0,

rPm
−1 = 1, respectively. These initial conditions come from the fact that r$m

0 (cos θ)
is the identity matrix, as seen by setting n = 0 in the recurrence (9).

For this reason we call these functions lagged Legendre functions. In the special
case of r = m (which is the minimal possible lag for order m Legendre functions), we
have mP

m

� (cos θ) sinm θ = Pm
m+�(cos θ) so that the lagged Legendre functions coincide

with the associated Legendre functions up to a weighting factor, for � � 0. In this case,
(10) captures the usual Legendre recurrence for Pm

k , k � m:(
Pm
k+1(cos θ) Pm

k (cos θ)

∗ ∗
)

= m$m
k−m+1(cos θ) sinm θ

= [m$m
k−m(cos θ) k$m

1 (cos θ)
]

sinm θ

=
(
Pm
k (cos θ) Pm

k−1(cos θ)

∗ ∗
)
k$m

1 (cos θ),
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subsuming (8). This demonstrates that the associated Legendre functions and their re-
currence are special cases of the lagged Legendre functions and recurrence.

It is easy to generalize (10) and obtain the general decomposition of high-degree
lagged Legendre functions into products of those of lower-degree

r$m
n+�(cos θ) = r$m

n (cos θ) r+n$m
� (cos θ). (12)

In particular, for the minimal possible lag r = m the matrix entries of this decompo-
sition give a decomposition of associated Legendre functions in terms of lower-degree
Legendre functions:

Pm
m+n+k = Pm

m+n
m+nPm

k + Pm
m+n−1

m+nPm
k. (13)

This plays a fundamental role in obtaining a divide-and-conquer fast DLT, analogous to
the role of the familiar decomposition ei(m+n)x = eimxeinx for the usual Fourier transform
on the circle.

2.4. Balanced split of the DLT using the Legendre decomposition

Our goal is efficient computation of the DLT (6), a collection of projections of
data of bandwidth B onto the sampled order m Legendre functions 〈f,Pm� 〉 with degrees
� = |m|, |m + 1|, . . . , B − 1. We have seen previously that the high-degree projec-
tions account for most of the computational effort. The decomposition (13) can now
be used to effect a decomposition or splitting in order to “demodulate” all of the high-
degree Legendre functions in these projections down to low-degree (lagged) Legendre
functions. This is compensated in the inner product computations by providing the corre-
sponding “up modulation” to the input data vector. The resulting low-degree projections
may be computed at a reduced cost, as we will now see. Again, for concreteness we
focus on the Legendre polynomial case, so m = 0 in the various definitions of lagged
Legendre functions.

Let 0 � � < N/2. For input vector f, application of (13) gives the decomposition

〈f,PN/2+�〉 = 〈f, (PN/2 N/2P� + PN/2−1
N/2P �

)〉
= 〈f PN/2, N/2P�

〉+ 〈f PN/2−1,
N/2P �

〉
. (14)

Here f PN/2 and and f PN/2−1 denote the modulation of the input vector by Legendre
vectors, effected by multiplication using the componentwise or Hadamard product. We
also continue our convention and use boldface to denote the vectors of sample values for
the rP � and rP �

rP� =



rP �(cos θ0)
...

rP �(cos θN−1),


 , rP � =




rP �(cos θ0)
...

rP �(cos θN−1)


 , θk = π(2k + 1)

2N
. (15)

Equation (14) shows that any higher-degree inner product in the DLT can instead
be computed as an inner product of modulated data against (precomputed) sampled val-
ues of the trig polynomials N/2P � and N/2P�. Each of these lagged Legendre functions
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Figure 3. The balanced splitting approach replaces (cosine domain) projections of input data onto high-
degree Legendre functions with projections of a modulated form of the data onto low-degree Legendre

functions.

has degree at most �, which is necessarily less than the degree N/2. Therefore, each
of the higher-degree inner products in the original DLT can instead be computed with
fewer than N/2 computations using stored DCT’s of the low-degree lagged Legendre
functions and of the modulated data. This contrasts favorably with the straight semi-
naive algorithm, in which each of the higher-degree inner products requires more than
N/2 computations. For N large enough, this advantage outweighs the added overhead
of forming the modulates f PN/2, f PN/2−1 and then applying the DCT to each (with a
total cost 2N + 3N logN).

This new approach balances the complexity of the high-degree and low-degree
inner product computations of the DLT, as indicated schematically in figure 3. This con-
trasts to the imbalance in the standard semi-naive method as depicted in figure 2.

At this point we have seen that we can split the DLT into two half-sized prob-
lems and obtain a computational savings thereby. Because N/2P� and N/2P � also satisfy
a Legendre recurrence, this procedure can be repeated. Following this through yields a
fast divide-and-conquer scheme for performing a DLT. We put the whole thing together
in the next section.
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3. Fast Legendre transforms: theory and experiment

The decomposition of the Legendre functions (12), can be applied recursively to
provide a full divide and conquer fast discrete Legendre transform algorithm. We begin
this section by showing how this is done. Combining fast Legendre transforms for the
various orders m enables fast algorithms for Fourier analysis, synthesis, and convolu-
tion on the two-sphere. We next summarize experimental timing and numerical stability
results obtained from implementation of these algorithms, as reported in [11]. The re-
sults demonstrate a real efficiency advantage over previous algorithms, but nevertheless
represent mixed success, as we find that the discrete Legendre transforms for the higher-
order associated Legendre functions exhibit stability difficulties when implemented with
the baseline fast algorithm. We briefly recall how these problems with higher-order
Legendre transforms have in past been mitigated by modifications of the basic algorithm
at some cost in speed. While the resulting spherical Fourier transform is reliable and
and faster than previous implementations, the problems with the higher-order Legendre
transforms motivate further study aimed at needed stability improvements. Significant
progress in this direction will be reported in the section 4 of this paper.

3.1. A divide-and-conquer discrete Legendre transform

We begin by formalizing and generalizing the description of the “divide” portion of
our algorithm: the process of splitting a discrete Legendre transform into two transforms,
each involving half as many projections as the original transform. We then show how
this process can be repeated on the resulting subtransforms, ultimately resulting in an
efficient algorithm for the original DLT problem. We continue to illustrate this approach
with the order m = 0 case.

To keep the notation under control it is helpful to work with the matrix versions of
the sampled Legendre functions

r�n =
(
rPn rPn−1
rP n

rP n−1

)
,

whose matrix entries are vectors of sampled Legendre functions (cf. equation (15)). This
matrix valued function satisfies the fundamental decomposition property given by a sam-
pled version of (12):

r�n+k = r�n
r+n�k. (16)

Here we define the product of matrix-valued functions (matrices whose entries are sam-
pled function vectors) as the usual multiplication of the 2 × 2 matrices, with the en-
tries combined by pointwise or Hadamard product. For example, the (1,1) entry of the
right-hand side of (16) is rPn r+nPk + rPn−1

r+nP k, and a particular case is illustrated in
figure 4.
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Figure 4. The vector of samples of the Legendre polynomial 0P32 (bottom) decomposed as 0P16
16P16 +

0P15
16P 16, with products (and sums) computed componentwise. The Legendre polynomials have been

scaled by the quadrature weights.

We begin by writing the DLT calculation in terms of the matrix valued sampled
Legendre functions: given sampled data f to be transformed, the DLT is{〈f,P�〉 | 0 � � < N

} = {〈F, 0�k

〉 | 0 � k < N
}
. (17)

Here F = (f, 0), 0 is the N-vector of zeroes, and the inner product of matrix-valued
functions is performed by taking the regular matrix product and performing the multipli-
cations of matrix entries as inner products. For example, given two vectors of samples,
s1, s0:〈

S, r�n

〉 = 〈(s1, s0),
r�n

〉 = (〈s1,
rPn
〉+ 〈s0,

rP n

〉
,
〈
s1,

rPn−1
〉+ 〈s0,

rP n−1

〉)
.
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In particular, with S = F = (f, 0), and r = 0, the matrix inner product computes the pair
of DLT coefficients: 〈F, 0�n〉 = (〈f,Pn〉, 〈f,Pn−1〉).

We split the discrete Legendre transform (17) into the evaluation of the low-degree
Legendre coefficients {〈

F, 0��

〉 ∣∣ 1 � � <
N

2

}

and the evaluation of the high-degree Legendre coefficients{〈
F, 0�N/2+�

〉 ∣∣ 1 � � <
N

2

}
.

In the previous section we saw that the high-degree projections accounted for the
bulk of the computational cost. The Legendre decomposition (16) now provides for the
reduction of high-degree inner products to low-degree:〈

F, 0�N/2+�
〉 = 〈F, 0�N/2

N/2��

〉 = 〈F 0�N/2,
N/2��

〉
with the last step easily verified from the definitions of the pointwise and inner products
of the appropriately sized matrix-valued functions.

Applying this result and using M0
N/2 to denote the modulation operator in the last

inner product: M0
N/2F = F 0�N/2, the DLT computation may be rewritten as two sets

of low-degree projections:

Low-degree coefficients
of F

{〈
F, 0�k

〉 ∣∣ k = 1, . . . ,
N

2
− 1

}
,

Low-degree coefficients

of F 0�N/2 = M0
N/2F

{〈
M0

N/2F, N/2�k

〉 ∣∣ k = 1, . . . ,
N

2
− 1

}
.

(18)

Although we have now split the original problem into two collections of N/2 pro-
jections, we have yet to gain any speed-up; the individual projections still involve vectors
of the original input size N. However, because of the reduced bandwidth of the Legen-
dre functions involved we may use lemma 1 to make the desired reduction. This lemma
shows that projection onto an N-sample trigonometric polynomial of degree � N/2 can
be computed instead as a sum of length N/2 by smoothing and subsampling with the
operator LNN/2. Extending this operator to matrix-valued sampled functions by applying
it to each matrix entry, we are in position to reduce the complexity of the DLT of size N
by splitting into two sets of projections of size N/2:

Lemma 3. The N2 cost of directly evaluating the DLT coefficients of a length N input
vector f: {〈f,P�〉 | 0 � � < N

} = {〈F, 0�k

〉 | 0 � k < N
}
, F = (f, 0),
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may be reduced (for big enough N) to less than (3/4)N2 + (27/4)N logN by:

(i) forming modified half-sized input vectors �1 = LNN/2F, �2 = LNN/2M0
N/2F, and

then

(ii) directly evaluating of the two sets of projections:{〈
�1,

0�k

〉 | k = 1, . . . ,
N

2
− 1

}
,{〈

�2,
N/2�k

〉 | k = 1, . . . ,
N

2
− 1

}
;

with half-length sampled Legendre functions lN/2�k assembled from the N/2 sam-
ples lN/2$k(cosπ(2j + 1)/N), j = 0, . . . , N/2 − 1.

Proof. We have seen that the inner products in equation (18) compute the coefficients
of the original DLT problem. By lemma 1, the value of any of these inner products is
unchanged when we apply the lowpass and subsampling operator LNN/2 to its factors
because the Legendre function in each inner product has band-limit less than or equal
to N/2. In fact, applying LNN/2 to any of these N-sample Legendre functions has no
effect other than to resample them on the regular grid of size N/2. This requires no
computation, as we will simply prestore the appropriate function samples. Therefore,
the DLT calculation is rewritten as two sets of inner products involving size N/2 vectors:

{〈f,P�〉 | 0 � � < N
} =



{〈
LF, 0�k

〉 = 〈�1,
0�k

〉 ∣∣ k = 1, . . . ,
N

2
− 1

}
,{〈

LMF, N/2�k

〉 = 〈�2,
N/2�k

〉 ∣∣ k = 1, . . . ,
N

2
− 1

}
;

with the number of samples of the Legendre functions determined by the size of the
inner product in which they appear (here N/2), and for notational simplicity we have
written L = LNN/2 and M = M0

N/2.
After forming the modified inputs �i , the computation of the first group ofN/2 in-

ner products requires (N/2)2 operations and the evaluation of the second group requires
twice that, as each of its N/2 lagged Legendre functions must be projected onto the two
N/2-vectors comprising �2 = LMF.

To this we must add the overhead of computing the modified inputs. Creating �1

requires applying the lowpass operator to f at cost (3/2)(N logN+(N/2) log(N/2)). In
building �2 = LMF, the modulation requires 2N operations, and then applying the low-
pass operator twice (once for each of the two components of MF) requires an additional
2[(3/2)(N logN+(N/2) log(N/2))] = (9/2)N logN−(3/2)N operations. Combining
the costs of the modulation and the smoothing, we see that the total overhead is bounded
by (27/4)N logN . �
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Remark. The above result implies that computing a sufficiently large Legendre trans-
form by splitting into two half-sized sets of projections and directly evaluating them
reduces the cost relative to drect evaluation of the original full-sized problem. One can
even do a bit better than this by proceeding as in lemma 2 and performing the requisite
inner products in the cosine transform domain, assuming that the cosine transforms of
the lagged Legendre polynomials were prestored. The overhead is reduced to the cost
of modulating the input and applying the DCT to the resulting vectors as well as to
the original input vector, costing at most 3 · (3/2)N logN + 2N . The total cost of all
of the inner products with the prestored DCT’s of Legendre functions costs no more
than 1/2(N/2)(N/2 + 1) for the first group of inner products, and twice that for the
second group. Thus a total of no more than (3/8)N2 + (9/2)N logN + (11/4)N oper-
ations would be needed to compute in this manner. This is opposed to (N/2)(N + 1)+
(3/2)N logN = (1/2)N2+(3/2)N logN+(1/2)N for a complete semi-naive approach
to the original full-sized problem. Hence we obtain an advantage for N � 256.

Of course, the real algorithmic advantage is obtained by performing this split re-
cursively, subdividing the original problem into smaller and smaller subproblems. Here
we briefly sketch the particulars; more details may be found in [11]. In order to see
how the pieces fit together, we need a uniform description of the computational “unit”
encountered at each division. This motivates the following definition.

Definition 1. For integers N > 0 a power of 2, and R � 0, and given input data
S = (s1, s0), comprised of two rowN-vectors, the size N, lag R Legendre transform of S,
LTRN(S) is the vector of coefficients obtained by the inner product of matrix functions:
〈S, R�N :1〉, using the 2N ×N matrix of lagged Legendre functions

R�N :1 = (R�N−1
R�N−3 . . . R�1

)
(19)

=
(
RPN−1

RPN−2 . . . RP0
RPN−1

RPN−2 . . . RP 0

)
(20)

where RPk and RP k are appropriately sampled lagged Legendre functions defined in
section 2.4:

RP� =



RP �(cos θ0)
...

RP �(cos θN−1)


 , rP � =




RP �(cos θ0)
...

RP �(cos θN−1)


 ,

with θk = π(2k + 1)/(2N). Note direct evaluation of LTRN costs no more than 2N2

operations

For example, the original Legendre polynomial transform of a data vector f of
length N may be written using definition 1 as LT0

N(F) with F = (f, 0). Moreover, the
two transforms obtained after splitting the Legendre polynomial transform also have the
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form described in this definition, as would the four transforms resulting from splitting
these, etc.

The naive complexity of computing a Legendre transform of size M and lag L is
at most 2M2 operations. In the special case of L = 0, section 2.2 presented a “semi-
naive” approach which slightly improved upon this. Likewise, for general L there is a
semi-naive approach offering a slight complexity advantage for the general transform in
definition 1, as noted in the following lemma.

Lemma 4. Assuming that the cosine transforms CLPr and CLP r are prestored (0 �
r < M), then the LT of size M and lag L, LTLM(S), can be computed in at most M2 +
3M logM +M operations by the semi-naive approach.

Proof. Using fast DCTs [26], at most 2 · ( 3
2M logM) operations are needed to com-

pute the DCTs of the components of the input data, s0 and s1.Having done that, an
additional 2 · M(M + 1)/2 are needed to compute all of the pairs of inner prod-
ucts {〈CLPr , Cs1〉, 〈CLP r , Cs0〉 | r = 0, . . . ,M − 1} and to add together each of the
pairs. �

Previously we showed a way to split the Legendre polynomial transform into two
smaller transforms which enabled its evaluation with even lower complexity than semi-
naive. This result may also be generalized to the Legendre transforms of definition 1. In
the special case of the Legendre polynomial transform, lemma 3 demonstrated that the
low- and high-degree projections of the original transform LT0

N(F) could be computed
instead as LT0

N/2(LF) and LTN/2N/2(LM0
N/2F), respectively. We saw that the total cost of

direct evaluation of all the inner products in these two half-sized problems is half the
cost of the direct evaluation of the original full sized problem. We also showed that the
input vectors for the two smaller DLTs could be calculated efficiently from the data for
the original full-sized problem. The latter point is critical, so as not to “eat all the profits”
gained by the split.

To generalize this key step we construct a splitting operator ) and character-
ize its complexity. Starting with the first split of the Legendre polynomial transform,
let

)(F) = (LM0
N/2F,LF

) = (LM0
N/2F,LM0

0F
)
. (21)

The second equality follows since M0
0F is the modulation F0�0 and using (12)

0�0 =
(

1 0
0 1

)
,

where 1 and 0 are column vectors of 1’s and of 0’s, respectively. This is just the matrix
form of the initial condition for the lagged Legendre functions.

With this notation the first divide and conquer step in the Legendre polynomial
transform takes the form:
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L
M0

N/2 → [)F]1 → LTN/2N/2
↗

F
↘
M0

0 → [)F]0 → LT0
N/2

L
with the Legendre transform now computed as two half-sized Legendre transforms of
data modified by the splitting operator.

For a complete recursive subdivision we must likewise efficiently split the leaves
of this tree, and so on. This requires a splitting operator appropriate for the lagged
Legendre transforms, as described in the following lemma.

Lemma 5 (Splitting lemma). Let M be a positive integer divisible by two.

(i) A Legendre transform of size M can be computed as two Legendre transforms of
size M/2. Specifically, for any lag L the operator LTLM applied to a given input
can instead be computed as the separate operations of LTLM/2 and LTL+M/2

M/2 on new
inputs obtained from the original input.

(ii) Let S = (s1, s0) be the M + M row vector of initial data for a LT of size M and
lag L. Then at most 9M logM +M operations are needed to transform this to the
pair of half-sized inputs for the pair of LT’s of size M/2 which together compute
the original LT . The required inputs for the half-sized DLTs can be computed by
the splitting operator )L

M :

)L
MS = (LML

1·M/2S,LML
0·M/2S
) = ([)L

MS
]

1,
[
)L
MS
]

0

)
(22)

where the modulation operator is ML
n·M/2S = S L�n·M/2 and the lowpass operator

is LS = (LMM/2s1,LMM/2s0).

(iii) The operator LTLM has the decomposition

LTLM = (LTL+M/2
M/2 ⊕ LTLM/2

) ◦)L
M; (23)

that is,

LTLM(S) =
(

LTL+M/2
M/2

([
)L
MS
]

1

)
,LTLM/2

([
)L
MS
]

0

))
.

If the component transforms are applied directly, the total complexity of evaluation
by splitting is at most M2 + 9M logM +M.

Proof. The low-degree projections in the original size M problem, 〈S, L�k〉, 0 �
k < M/2 only involve lagged Legendre polynomials of degree less than M/2. Conse-
quently, according to lemma 1 these inner products may be computed as inner products
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of the lowpassed data with subsampled versions of the shifted Legendre polynomials,
thereby reducing it to a LT of size M/2.

To reduce the set of high-order projections to a LT of half the size, we apply the
recurrence formula (16) to obtain

〈
S, L�M/2+k

〉 = 〈SL�M/2,
L+M/2�k

〉
for k in the range 0 � k < M/2. Since the Legendre functions L+M/2�k have degree
less than M/2 we can lowpass both sides of each inner product in the preceding and
obtain the half-sized inner product

〈
LML

M/2S, L+M/2�k

〉
. (24)

This completes the proof of (i). The proof of (ii) follows immediately. The stated form of
the splitting operator follows from the fact that L$0 is the identity matrix (from the initial
conditions of lagged Legendre recurrence). The complexity result follows from the fact
that application of the modulation operator ML

M/2 requires at most 4M operations and

application of L to the result costs an additional 2 · 3
2(M logM + (M/2) log(M/2)) =

3M(logM + 1
2 [logM − 1]) = 9

2M logM − 3
2M. In the low-degree problem, the mod-

ulation is trivial, and the lowpass operation costs the same (of course) as it does in the
high-degree subproblem, leading to the total stated.

Finally, (iii) is simply a restatement of (i) and (ii) in the setting of matrix arithmetic.
Adding the complexity of direct evaluation of two sizedM/2 Legendre transforms to the
complexity of splitting yields the final accounting. �

Using lemma 5 we can now describe the full algorithm in a succinct way. Starting
with the original Legendre transform written as LT0

N, part (iii) implies that this matrix
factors as

LT0
N = (LTN/2N/2 ⊕ LT0

N/2

) ◦)0
N.

Now we apply lemma 5 to the half-sized LT matrices, LT0
N/2 and LTN/2N/2 producing

the factorization of LT0
N as

LT0
N = {[(LT3N/4

N/4 ⊕ LTN/2N/4

) ◦)N/2
N/2

]⊕ [(LTN/4N/4 ⊕ LT0
N/4

) ◦)0
N/2

]} ◦)0
N

= (LT3N/4
N/4 ⊕ LTN/2N/4 ⊕ LTN/4N/4 ⊕ LT0

N/4

) ◦ ()N/2
N/2 ⊕)0

N/2

) ◦)0
N.

We may continue with this process of splitting Legendre transforms as often as
desired. Using the notation we have introduced and lemma 5 we now have following.
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Theorem 2. Let N = 2r and let f be any input vector of length N .

(i) The Legendre transform of f may be computed from LT0
N ·(f, 0) via the factorization:

LT0
N = TtSt−1 · · ·S0, for any t � r − 1, where

Sk =
2k−1⊕
j=0

)
jN/2k

N/2k (25)

with the 2k splitting matrices )jN/2k

N/2k defined as in lemma 5, and

Tt =
2t−1⊕
j=0

LTjN/2
t

N/2t . (26)

For a full decomposition, this reduces the size N transform LT0
N to N/2 4 × 2

Legendre transforms
LTN−2

2 ⊕ LTN−4
2 ⊕ · · · ⊕ LT0

2,

applied to data modified by the splitting operators.

(ii) The Legendre transform of s may be computed in O(N log2N). Specifically, assum-
ing that the computation is performed with the full r stage splitting described in (i)
with precomputed and stored Legendre functions lN/2k�N/2k used in the splitting
operators, and precomputed and stored lagged Legendre functions occurring in the
Legendre transforms LT2l

2 , then at most

8 · N
2

+
r−2∑
a=0

2a ·
[

9
N

2a
log

N

2a
+ N

2a

]
= 9

2
N log2N +N logN − 10N

operations are needed to compute the Legendre transform of f.

Proof. Part (i) follows directly from a recursive application of lemma 5. As for (ii), the
first term in the complexity computation follows from the fact that Tr−1 is block diagonal
with N/2 (4 × 2) matrices LT2l

2 on the diagonal, each requiring 8 operations to multiply
by a vector of length 4. The summation which is the second term is the complexity of
the successive multiplications of the Sa, each consisting of 2a splitting operators of size
N/2a . The cost of each of these was obtained in lemma 5. Summing the complexities at
each level gives (ii). �

The inductive nature of theorem 2 shows that the algorithm is simply given by the
successive application of the splitting operators to an input vector resulting from previ-
ous stages. In practice, this splitting is applied as long as it offers computational advan-
tage. At this point the calculation may be concluded by applying the shifted Legendre
matrices according to the semi-naive algorithm (cf. lemma 4). The choices of how far
to continue splitting before evaluating Legendre transforms gives rise to many variants
of the basic algorithm, which can be optimized for particular situations. We will discuss
this a bit more later on.
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Figure 5. Schematic illustration of the computation of the Legendre transform by recursive splitting. At
any level one can take the input vectors and evaluate the Legendre transforms, or elect to apply a splitting

operator to produce input for the next level.

Several stages of the Legendre splitting are show schematically in figure 5.
In our discussion of Legendre transforms, we have primarily used the case of

m = 0 for simplicity of illustration. The case of m �= 0 is treated essentially identi-
cally. The approach we have used to date is to apply the splitting procedures already
described in the case of order m associated Legendre transforms by using the recurrence

m$m
�+k(cos θ) sinm θ = (m$m

� (cos θ) �+m$m
k (cos θ)

)
sinm θ

= m$m
� (cos θ) sinm θ �+m$m

k (cos θ).

We will see later that this particular choice can lead to numerical difficulties and that
a new choice which we will introduce will be very helpful. However, up to now we
have used this basic recurrence to permit a reduction of complexity for the computa-
tion of associated Legendre coefficients of high-degree. As before, we consider these to
correspond to projections onto associated Legendre functions of degree above a split-
ting level S (say about half the bandwidth, B/2), which are reduced to projections onto
low-degree lagged Legendre functions:〈

F, m�m
S+�sinm

〉 = 〈Fsinm, m�m
S+�
〉 = 〈Fm�m

S sinm, S+m�m
�

〉
.

Here we have introduced the notation sinm for the vector obtained by sampling sinm θ
on our sampling grid, and it is multiplied pointwise onto the components of the matrix-
valued functions with which it appears.

These inner products involve reduced bandwidth trigonometric polynomials, and
can be computed with reduced vectors after low pass filtering as before. One minor
difference from the m = 0 case is that for the bandwidth B problem we need only to
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compute the inner products 〈F, m�m
k sinm〉 for k in the reduced range of degrees 0 � k <

B − m. For simplicity we can, for example, extend to a problem with a full range of
degrees 0 � k < B by simply defining the lagged Legendre functions to be 0 in the
range k > B −m. The recursive splitting then proceeds just as in the m = 0 case.

We summarize the results reviewed in this section:

Theorem 3. For bandwidth B, a fixed power of 2, and for each m, |m| � B, the order
m discrete Legendre transform of a data vector f{〈

f,Pm�
〉 = 2B−1∑

k=0

[f]kPm
� (cos θk) | � = |m|, |m+ 1|, . . . , B − 1

}

may be computed in O(B log2 B) operations.

Remark. With a fast DLT for each order m, we can assemble an FFT for S2 through a
simple combination of DLTs and regular Abelian FFTs (see [5,11] for the simple proof).
In this section, we sketched a fast algorithm which takes a direct DLT cast as a ma-
trix/vector multiply, and rewrites it as a succession of applications of structured matrices
corresponding to a matrix factorization of the DLT, whose structure permits an efficient
computation. This gives the full spherical FFT as a matrix factorization as well. Inver-
sion of this transform (i.e., the computation of sample data from Fourier coefficients)
amounts to the transposition of the spherical FFT algorithm which in turn reorders the
fast factorization and transposes the individual matrices. The resulting algorithm has a
complexity of similar order as the fast forward transform, and hence is itself a fast inver-
sion routine. Finally, a fast convolution algorithm for the sphere is obtained in analogy
to the familiar result for the circle. There the Fourier transform of the convolution is the
pointwise product of the Fourier transforms. For the sphere we simply replace pointwise
product with a particular matrix product of Fourier coefficients of a given order. Thus
a fast algorithm for convolution is given by first transforming (efficiently) both factors
to the Fourier domain, computing the new coefficients by by a low complexity matrix
product, and then computing an efficient inverse transform back to sample data. For
details see [5,11].

3.2. Speed and stability of previous implementations of the fast Legendre transform

We have seen that the discrete Legendre transform (DLT) of length N may be per-
formed in O(N log2N) operations, with an algorithm that is exact, in exact arithmetic,
for band-limited functions. Moreover, a careful error analysis of the effect of finite pre-
cision arithmetic on the algorithm and various computational experiments confirmed the
stability of an order m = 0 DLT [5].

However, further computational experiments revealed that instabilities of growing
severity occur as the order m of the associated Legendre transform increases [11]. A key
to this is the behavior of the lagged Legendre functions appearing in the higher-order
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Legendre decompositions, the core of our fast algorithm. In particular, if we split the
Legendre transform at degree S, we use the decomposition:(

Pm
S+�(cos θ) Pm

S+�−1(cos θ)

∗ ∗
)

=
(
Pm
S (cos θ) Pm

S−1(cos θ)

∗ ∗
)

×
(
SP

m

� (cos θ) SP
m

�−1(cos θ)
SPm

� (cos θ) SPm
�−1(cos θ)

)

to reduce the effective degree, and hence complexity, of a high-degree Legendre coeffi-
cient computation: 〈

f, Pm
S+�
〉 = 〈fPm

S ,
SP

m

�

〉+ 〈f Pm
S−1,

SPm
�

〉
.

The decomposition used here is the obvious candidate, but its use causes severe
stability problems for even moderate orders m. This is correlated with the behavior of
the lagged Legendre functions which accompany its use. Specifically, the lag-S Legen-
dre functions SP

m

� (cos θ), SPm
� (cos θ) grow increasingly large with increasing � when

the argument θ approaches the ends of the domain interval, i.e. at θ = 0, and at π ,
corresponding to the poles of the sphere. At these very same positions, the associated
Legendre function Pm

S (cos θ), Pm
S−1(cos θ) become very small. See figure 6 for an ex-

ample of this behavior of the factors in the Legendre decomposition for an order m = 64
problem.

While it has been evident for some time that this large dynamic range among the
factors in the Legendre decomposition is related to the numerical problems, the particular
mechanism was not explored in previous work as far as we know. In section 4 of this
paper we examine this more closely and propose a new approach to this difficulty using
a simple but effective modification of the Legendre decomposition.

In the past we have seen two methods proposed for dealing with these instabilities.
First, one may apply stabilization procedures to certain portions of the original, basic
algorithm at the cost of some runtime efficiency [18,22]. Alternatively, one may develop
variants of the original algorithm that constrain the process of recursive splitting in order
to avoid or minimize the deleterious influences of the dynamic range difficulties with
certain of the lagged Legendre functions. We have pursued this course in [11]. While
these variants have asymptotic complexity greater than the basic algorithm presented
previously, implementations nevertheless yield numerically results at runtime speeds
faster than both naive and seminaive algorithms for problem sizes of interest.

The most promising variants, the “simple split” and “hybrid” algorithms of [11],
exploit the fact that certain lagged Legendre functions behave (numerically) better than
others. The rate at which the maximum values of the lagged Legendre functions
|rP m

l (x)|, |rP m
l (x)| grow as l → ∞ is slower for larger values of the lag r than for

small. For example, we have max |768P
512
10 (x)| ≈ 3600 while max |512P

512
10 (x)| ≈ 1011.

Recalling the structure of recursive splitting for the fast Legendre transform from theo-
rem 2 we find that the large lag Legendre functions occur in the splitting operators for
the computations corresponding to the higher-degree subproblems. We find there are
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Figure 6. Order m = 64 Legendre function P64
212 (top) pictured with the factors in its decomposition as

P64
164

164P
64
48 + P64

163
164P64

48. Note the large values of lagged Legendre functions 164P
64
48 , 164P64

48 near the
endpoints of the interval.

portions of these computations which are numerically well behaved and others which
are not. We observe these as constraints in the construction of the algorithm variants
under discussion.

The idea behind the simple split algorithm is to immediately split the problem of
size N into C many subproblems and apply a semi-naive approach on each subproblem.
For the hybrid algorithm, one uses the semi-naive algorithm to compute, without in-
volving any lagged Legendre polynomials, the lower-degree Legendre coefficients up to
some previously determined bound, and then use the simple-split algorithm to compute
the remaining, higher-degree coefficients.

We have run extensive numerical experiments on a wide variety of platforms, in-
cluding a DEC Alpha 500/200, an HP Exemplar X-Class SPP2000/64, a SGI Origin
2000, and a 700 MHz Pentium 4 Linux workstation. To give some idea, results obtained
on the Pentium 4 and plotted in figure 7 are qualitatively similar to those obtained on
the other platforms. For an order m = 0 DLT, the hybrid and simple split algorithms
are both significantly faster than the semi-naive by band-limit bw = 512, while offering
numerically reliable results. See [11] for extensive details.

These are encouraging results, but for higher-order cases, the choice of algorithms
is heavily constrained by the numerical problems and can suffer in runtime as a conse-
quence. In the next section we show how to lift many of these constraints while retaining
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Figure 7. 700 MHz Pentium: DLT runtime ratios vs. semi-naive.

the same basic algorithmic structure through the use of a modified Legendre decompo-
sition.

4. Towards stable, fast high-order Legendre transforms

The numerical results of [11], briefly reviewed in the previous section, indicate
numerical difficulties in our baseline fast Legendre transforms for the higher-order cases,
and motivate some of the algorithmic variants we mentioned. Most of the difficulties
come from instabilities of the lagged Legendre transforms for the higher-orders. Work-
arounds attempt to avoid the use of certain higher-order lagged transforms, and constrain
the splitting of the original problem to do this. Often stability is purchased at a cost in
increased complexity, particularly for large problems. Once again, see [11] for details.

The general situation is in marked contrast to the m = 0 case where theoretical
bounds and experiment demonstrate numerical reliability of that algorithm. The sched-
ule of splittings can be organized entirely on the grounds of speed without worrying
about numerical problems. It would obviously be most desirable to have this freedom
for the higher-order Legendre transforms; we would require the higher-order lagged
Legendre functions to behave more like the m = 0 case in terms of numerical stability.
In this section, we present a mechanism for obtaining this, through a new decomposition
of the Legendre functions. This new decomposition dramatically improves the numer-
ical properties of the basic fast DLT algorithms we have discussed. Our discussion is
accompanied by experimental results.

We begin with an experimental description of the propagation of numerical errors
arising from the use of the Legendre decomposition in its basic form. We find a some-
what surprising result that the decomposition itself does not cause the trouble until we
introduce the lowpass operation in the fast algorithm. This suggests that simple modifi-
cations of the approach we have considered will be effective in the higher-order cases.
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We continue by presenting a slight variation of the decomposition (12). This will
prove to be an equally valid Legendre decomposition in the sense that the components
still satisfy the basic Legendre recurrence, but with modified initial conditions. We show
that we can take the same basic divide-and-conquer strategy presented in the last section
and substitute the modified Legendre decomposition for (12). This makes an enormous
difference in the numerical reliability at no extra cost in arithmetic operation. This will
be demonstrated with some examples from large-size problems where we would other-
wise be unable to apply the basic fast algorithm and obtain meaningful results.

4.1. Error mechanisms for high-order Legendre decompositions

The basic Legendre decomposition:(
Pm
S+�(cos θ), Pm

S+�−1(cos θ)
) = (Pm

S (cos θ), Pm
S−1(cos θ)

)
S$m

� (cos θ)

plays an essential role in the fast algorithm we have presented, allowing us to to rewrite
projections of input data onto associated Legendre functions of higher degree, S + �, as
projections onto the lower-degree lagged Legendre functions, S$m

�(cos θ). Thus, the
behavior of this lagged Legendre function has direct bearing on the numerical stability
of the algorithm. As previously noted, for m even slightly different from zero this func-
tion can take on extremely large values near the endpoints of its interval of definition, i.e.
for θ near 0 or π . Furthermore, these values grow rapidly as the degree � increases. Such
functions certainly do occur when we split a large bandwidth problem, and so can pose
a serious numerical difficulty. For illustration, note this behavior depicted in figure 6,
in which an order m = 64 associated Legendre function of fairly high-degree, P 64

212, is
split into a product of the associated Legendre functions at the splitting degree S = 164,
and the lagged Legendre functions in 164$64

48(cos θ). The graphs of these functions
were generated by means of the Legendre recurrence (10) implemented in Mathematica
routines with controllable precision and accuracy. The figure gives an accurate impres-
sion of the behavior of lagged Legendre functions near the domain boundary when the
order m is nonzero. Note that the degree in this case is a moderate 48; the behavior only
gets worse with increasing degree.

In contrast, when m = 0, explicit bounds as well as computational experiments
show that the lagged Legendre functions arising in the Legendre decomposition are
much better behaved. In [5], these bounds have been used to demonstrate good a priori
stability for the computation of the Legendre polynomial transform using the Legendre
decomposition which we have described in section 3. Computational experiments in
[5,11] confirm this result. For m �= 0, similar computational experiments reveal that our
basic algorithm for the fast Legendre transform is numerically unreliable in its compu-
tation of the high-degree coefficients, and that this problem correlates with the growth
of the lagged Legendre functions with increasing degree at the endpoints of the inter-
val of definition. This is consistent also with analytic estimates on their growth which
can be obtained by techniques similar to those discussed in [5] for Legendre polynomial
case. Given this, it is tempting to dismiss the use of the basic splitting approach entirely
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in the high-order cases, on the grounds that its numerical difficulties are unavoidable
consequences of imbalance in the size scale of the functions appearing in the Legendre
decomposition, such as that illustrated in figure 6. After all, this decomposition attempts
to express reasonably behaved Legendre functions near the endpoints of their domain
in terms of products of very large and very small numbers. While such a decomposi-
tion may be true and valid in exact arithmetic, it becomes somewhat suspect in finite
precision.

So it may be surprising that this last conclusion proves to be an oversimplification
of the difficulties, and the dismissal of splitting algorithms for reasons which are based
purely on misgivings about the Legendre recurrences appears to be premature. In fact,
in figure 8 we illustrate that the Legendre decomposition can be computed reliably in
fixed precision, and furthermore, it can be applied to compute inner products of input
data reliably. Figure 8 derives from a Matlab implementation used to evaluate the finite
precision matrix multiplications prescribed in the Legendre decomposition of PmS+�, i.e.,
we compute

f l
(
PmS

SP
m

� + PmS−1
SPm�
)
,

where f l denotes that the expression is evaluated in floating point double precision. The
error

PmS+� − f l
(
PmS

SP
m

� + PmS−1
SPm�
)

is computed and displayed for each sample of this difference function, with no error
bigger than 10−14. These computational experiments experiments begin with precom-

Figure 8. Errors (left) in finite precision computation of samples of the high-degree, high-order
Legendre function P 64

410 (right) from lower-degree Legendre functions and lagged Legendre functions:

PmS+� − f l(PmS
SP

m
� + Pm

S−1
SPm� ) for the case m = 64, S = 288, � = 122. The lagged Legendre

functions in this decomposition have maximum values greater than 1010. Despite wide dynamic range in
the factors of the Legendre decomposition, finite precision multiplication of the factors in the decomposition

of a high-degree associated Legendre function produces good agreement with that function.
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putation (in Mathematica extended precision) of the appropriately sampled associated
Legendre functions and lagged Legendre functions, which are then stored and ultimately
input into Matlab (presumably) correct to the full double precision. All of the required
multiplications and additions then are done in double precision in Matlab. These (and
many other) experiments show that there is little difference between the high-degree
Legendre function and the finite precision combination of lower-degree Legendre func-
tions mandated by the decomposition.

We have applied this decomposition to the computation of Legendre coefficients.
These can be computed either directly: 〈f,Pm

S+�〉 or by means of the splitting trick:

〈f Pm
S ,

SP
m

� 〉 + 〈f Pm
S−1,

SPm
� 〉 with identical results in exact arithmetic. In fact, this is

still quite a good approximation in finite precision arithmetic. Figure 9 shows an exam-
ple of experimental computations done in Matlab demonstrating that the difference is
quite small when the computations are done in double precision. We show the highest-
degree coefficients, as these typically exhibit the largest errors. In this example, we find
no coefficient has relative error bigger than 10−12. Many similar numerical experiments
strongly suggest that the inner products can be computed by the splitting without exces-
sive numerical problems, provided the various prestored Legendre functions are correct.

However, in order to reap a speed-up from the reduced-degree inner products, we
have seen in the previous section that we need to lowpass and subsample the modulated
data before computing the reduced inner product. When the inner products are computed
in finite precision with lowpassed and subsampled modulated data, i.e. as

f l
(〈
L
(
f PmS
)
, SP

m

�

〉+ 〈L(f Pm
S−1

)
, SPm

�

〉

Figure 9. Despite wide dynamic range in Legendre decomposition, we obtain accurate calculation of DLT
coefficients 〈f,Pm

S+�〉 as f l(〈f Pm
S
, SP

m
� 〉+〈f Pm

S−1,
SPm

�
〉). In this example, m = 64, S = 288, and shown

here are the relative errors in the highest 32 Legendre coefficients of a random bandwidth 512 function,
corresponding to degrees S + � = 480, . . . , 511.
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Figure 10. Finite precision computation of lowpass filter of modulated data L(f Pm
S
) results in errors which

ruin the finite precision computation of the coefficients in figure 9: 〈(f PmS ),
SP

m
� 〉 + 〈(f Pm

S−1),
SPm� 〉.

Shown here are the log10 of the relative errors in the highest-degree coefficients.

things fall apart, as demonstrated in figure 10 which shows the errors in computing in
this manner the same projections as done before in figure 9.

In fact, numerical experiments demonstrate that a small error is indeed made in
computing the lowpassed modulated data, L(f PmS ). Beyond this, the operation of low-
passing tends to blur the modulated data into the region where the lagged Legendre
functions grow rapidly. Any errors here are magnified enormously when the result is
projected onto the lagged Legendre functions, due to their large values at the endpoints.
This can contribute significant errors in evaluating Legendre transforms by the methods
we have described.

4.2. Modified Legendre decompositions and stable splitting algorithms

We have seen that the standard associated Legendre recurrence leads to difficul-
ties in our fast algorithm for even moderate orders m as the degree of the computation
becomes large. This appears to be related to the rapid growth with degree of the val-
ues of the lagged Legendre functions near the endpoints of their domain interval. The
large values in this region contribute to large errors when multiplied against the part of
the modulated data which blurs into this region by the lowpass operation. The inner
products are corrupted beyond recovery.

The bad behavior of the lagged Legendre functions near the endpoints is not shared
by the associated Legendre functions despite the fact that they satisfy similar recur-
rence. A critical difference lies in the initial conditions used to start that recurrence.
The associated Legendre recurrence begins with initial condition Pm

m (cos θ) = sinm θ ;
the higher-degree associated Legendre functions look like a product of this factor with
the trigonometric polynomials in cos θ which are generated by subsequent steps of the
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recurrence. We can view this sinm θ as a weighting factor applied to the minimal lag
Legendre functions, i.e. Pm

m+l (cos θ) = mP
m

l (cos θ) sinm θ , imposing a high-order zero
at the endpoints of the domain interval and zeroing out what would otherwise be very
large values there with only the lagged Legendre function.

This disparity causes real difficulties when we use the conventional decomposi-
tion of order m �= 0 associated Legendre functions in the basic splitting step of the fast
Legendre transform algorithm described in section 3. For the associated Legendre func-
tions of high-degree (above some splitting degree S > m), the Legendre decomposition
looks like:(

Pm
S+�(cos θ) Pm

S+�−1(cos θ)

∗ ∗
)

= m$m
S−m+�(cos θ) sinm θ

= (m$m
S−m(cos θ) S$m

� (cos θ)
)

sinm θ

= m$m
S−m(cos θ) sinm θ S$m

� (cos θ)

=
(
Pm
S (cos θ) Pm

S−1(cos θ)

∗ ∗
)
S$m

� (cos θ).

We see that none of the powers of the sine weighting function are allocated to the lagged
Legendre functions. When these are used in inner products, we can expect their large
values to contribute errors, as discussed above.

Based on these observations, we describe and test a modification of the associated
Legendre decomposition for the casesm �= 0, in which the sine power weight is allocated
more equitably among the various factors in the Legendre decomposition. That is, we
replace the decomposition above with one of the form:

m$m
S−m+�(cos θ) sinm θ = (m$m

S−m(cos θ) S$m
� (cos θ)

)
sinm θ

= m$m
S−m(cos θ) sinµ1 θ S$m

� (cos θ) sinµ2 θ

where µ1 + µ2 = m.
A sample decomposition of this form is illustrated in figure 11. It is evident that

these new decompositions can be chosen so as to moderate the imbalance of behavior be-
tween the factors in the basic Legendre decomposition, which was illustrated in figure 6.
The idea here is that this will result in a decreased sensitivity to lowpass filter errors in
computing the reduced inner products and which we saw illustrated in figure 10. As a
matter of fact, with this simple modification the crippling numerical instability of our
baseline algorithm is reduced enormously. Indeed when we perform a similar numerical
experiment with the new decompositions we see an encouraging reduction in error, as
shown in many examples in the next subsection.

This positive seeming development does indeed translate into significant improve-
ments in the numerical reliability of higher-order Legendre transforms computed by
means of the splitting trick and hence, in our fast algorithms for a wide range of problem
sizes. We briefly describe the straightforward incorporation of the new decompositions
into our algorithm.
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Figure 11. Factors in a modified decomposition (definition 2 with µ2 = 8) of Legendre function P64
212.

Compare to its baseline decomposition (corresponding to µ2 = 0), presented in figure 6. Note the signifi-
cant reduction in the imbalance between the factors in this modified decomposition.

We begin by extending our existing notation for the lagged Legendre matrix valued
functions to include the possibility of including a weighting factor given by an appropri-
ate power of sine.

Definition 2. For fixed order m we define the sine power-weighted Legendre functions
r�m,µ

n as the matrix-valued function obtained by sampling r$m
n (cos θ) sinµθ on our reg-

ular sampling grid, i.e.

r�m,µ
n = r�m

n sinµ =
(
rP

m

n sinµ rP
m

n−1sinµ

rPmnsinµ rPmn−1sinµ

)

with our usual pointwise product convention

rP�sinµ =



rP �(cos θ0) sinµ θ0
...

rP �(cos θN−1) sinµ θN−1


 , rP �sinµ =




rP �(cos θ0) sinµ θ0
...

rP �(cos θN−1) sinµ θN−1


 .

These functions clearly satisfy generalized decomposition:

r�
m,µ

n+k = r�m,µ1
n

r+n�m,µ2
k (27)

for any non-negative µi adding to µ.
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This extends our previous notation in the sense that l�m,0
k = l�m

k and the sampled
associated Legendre functions appear in this notation as (the first row of) the lag-m
weighted Legendre functions:

m�m,m
k =
(

Pmk+m Pmk+m−1

mPmk sinm mPmk−1sinm

)
.

We now apply this sort of decomposition instead of the usual one with our usual
splitting approach to fast Legendre transforms. Consider the computation of a band-
width B order m associated Legendre transform of a vector f by splitting the problem
at some degree S. We take S ≈ B/2 + m/2, this being the degree which would divide
the original problem into two equal sized subproblems with (B−m)/2 projections each.
This allows us to decompose the Legendre projections into two sets of projections of
roughly the same size:{〈

f,Pm�
〉 | m � � < B

}
= {〈f,Pmm+k

〉 | 0 � k < B −m
}

= {〈F, m�m,m
k

〉 | 0 � k < B −m
}
, F = (f, 0),

=
{

Low-degree Legendre coefficients
{〈

F, m�m,m
�

〉 | 0 � � < S −m
}

High-degree Legendre coefficients
{〈

F, m�m,m
S−m+�
〉 | 0 � � < B − S

}
.

We now rewrite this as two low-degree Legendre transforms by means of the mod-
ified Legendre recurrence in definition 2:{

Low-degree coefficients of F
{〈

F, m�m,m
�

〉 | 0 � � < S −m
}
,

Low-degree coefficients of F m�
m,m−m1
S−m

{〈
F m�

m,m−m1
S−m , S�

m,m1
�

〉 | 0 � � < B − S
}
.

As usual, the point of this is to obtain a speed-up by computing high-degree asso-
ciated Legendre coefficients as low-degree projections onto lagged Legendre functions,
but the parameters of splitting degree S and sine power m1 must be taken appropriately.
The choice requires the balancing of numerical reliability against computational effi-
ciency. On the one hand, m1 needs to be large enough to compress the dynamic range
of the lagged Legendre functions S�

m,m1
� which are used in computing the high-degree

inner products: 〈
mMm,m−m1

S−m F, S�m,m1
�

〉
, � = 0, . . . , B − S − 1, (28)

where we have introduced the generalized notation mMm,m−m1
S−m F for F m�

m,m−m1
S−m in

order to emphasize the role of modulation.
At the same time, in order to derive benefit from the split, we need to be able to

compute all of the inner products in (28) with a reduced complexity concomitant with the
reduced bandwidths. Our usual approach is to halve the bandwidth and the complexity,
so we would like the highest bandwidth Legendre function computed, S�m,m1

B−S−1, to have
half the original bandwidth B/2. The bandwidth of this function is m1 + B − S − 1, so
m1 � S − B/2. Therefore, increasing m1 drives up S, the splitting degree.
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In practice this will constrain m1, as other constraints on S prevent us from taking
it to be too large. For example, we need to keep to keep the subproblems roughly equal
with respect to the number of projections in order to derive benefit from divide and
conquer, with each accounting for half the total projections, or (B − m)/2 ≈ S −m ≈
B − S, or S ≈ B/2 + m/2. In fact, there are even tighter constraints on S to be met.
We will soon show how to choose these various parameters. First we demonstrate our
motivation for investigating these decompositions.

4.3. Stabilized Legendre transforms through modified Legendre decomposition

We have conducted numerous experiments to determine the numerical accuracy
of fast computation of Legendre transforms by means of the modified Legendre de-
compositions (27) and the modulation concepts (28) introduced in the previous subsec-
tion. We find that choosing S and m1 appropriately enables us to compute the high-
degree Legendre coefficients with halved complexity by using a lowpassed version of
modulated data and a subsampled version of the degree k lagged Legendre function:
〈L(mMm,m−m1

S−m F), S�m,m1
k 〉. This produces the desired reduction in complexity for com-

puting the high-degree Legendre transform coefficients if the bandwidths of the various
Legendre functions are within certain bounds. If this can done while choosing m1 suffi-
ciently large, the computation of high-degree high-order Legendre transform coefficients
will also be numerically reliable. We now demonstrate this for several problem sizes of
large bandwidth B, and various orders m.

Prototyping libraries were constructed in the Mathematica 4.1 and Matlab 6.1 en-
vironments for the purpose of implementing and testing the Legendre transform via the
splitting approach based on various choices of the decomposition for order m �= 0
Legendre functions. While the resulting variety of fast DLT algorithms are certainly
all equivalent in exact arithmetic, the results of our tests show that the numerical reli-
ability of higher-order transforms in finite precision computation is strongly dependent
on the particular choice of decomposition.

In all experiments presented in this section, Matlab was used exclusively to imple-
ment the fixed precision computations of the splitting algorithm described previously.
These algorithms draw upon prestored data structures comprised of the appropriate sam-
pled Legendre functions. These latter were synthesized using the recurrence relations
(27) in Mathematica, taking advantage of its extended precision capability. This was
done so that the prestored data structures would be accurate to the limits of double pre-
cision used in the actual computations. These data structures were next imported into
Matlab as files of double precision data floating point numbers, presumed correct to that
precision. In a like fashion, the sampling weights were computed in Mathematica and
imported into Matlab for use in the finite precision computations.

We also made use of Mathematica to create the test data for the various routines,
again with the aim of providing inputs to Matlab accurate at double precision. We gen-
erated these test signals together with their Legendre transform coefficients as follows.
For fixed bandwidth B and order m we used Mathematica to generate a list of B − m
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(pseudo) random Gaussian coefficients {rk | m � k < B} = r, computed and stored in
double precision. These were used as coefficients in the synthesis formula:

f =
B−1∑
k=m

rkPk
m (29)

where Pmk is the associated Legendre function, correctly sampled (and normalized), and
the computation of the functions and of the sum was done in extended precision. The
resulting input vector f was imported as input for the Matlab Legendre transform rou-
tines, along with the corresponding coefficients rk for use as the “ground truth” values
of the Legendre transform coefficients. Both f and r are presumed correct and consistent
to double precision.

The input data f and prestored data structures of Legendre functions were next used
in finite precision implementations of the various operations of the splitting algorithms
described in the last subsection. All of these operations: i.e. modulation by Legendre
functions, DCT-based low pass operations, and inner products against lagged Legen-
dre functions, were evaluated using Matlab double precision implementations. Taken
together, these routines implemented the splitting algorithms for the order m and band-
width B Legendre transforms. The resulting computed Legendre transform coefficients
were then compared to the ground truth coefficients, and the results measured by com-
puting the base 10 logarithm of the relative error for each coefficient.

These Matlab implementations were used to perform many numerical experiments;
some illustrative examples are presented in the several figures which follow. Each of
these depicts the results of computing DLTs with one or two levels of splitting and all
demonstrate the extremely useful effects of employing the modified Legendre decompo-
sitions. As we have a family of these modified Legendre decompositions parameterized
by the sine power m1, we present results for various values of this parameter to demon-
strate the variation in numerical stability.

For each given DLT implementation, its performance is indicated by presenting the
relative errors incurred when it is used to compute the Legendre transform coefficients
for a randomized test input, described previously. We generally display the results of this
error computation for the highest-degree Legendre transform coefficients occuring in the
problem of interest, as these incur the most error in the fixed precision implementations.

Each figure presents results for a given bandwidth, order, and choice of splitting
strategy. With these parameters fixed, the variation in performance with m1 is indicated
by including several subfigures indexed by the value of m1 used in the DLT whose per-
formance it indicates.

In figure 12 we show the results for a single split of a bandwidth B = 512
order m = 64 Legendre transform as we vary the Legendre decomposition indexed
by m1. In this particular example we compute the Legendre coefficients in the high-
degree range using a single split at degree S = 270, resulting in the computation of the
242 = 512 − 270 Legendre transform coefficients by the inner products
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Figure 12. Errors in high-degree coefficients of m = 64 DLT, computed using a single split at S = 270
and several different Legendre decompositions. Shown here are log10 relative errors in the coefficients of

degree 416–511.

{〈
L
(
F64�

64,64−m1
206

)
, 270�

64,m1
�

〉 | 0 � � < 242
}
.

Each one of these involves projection onto a function of bandwidth no more than 256
provided m1 � 14. This justifies our use of the lowpass operator L to reduce the band-
width (hence complexity) of the inner product computations from 512 to 256. The point
to notice is that increasing m1 within its allowable range has the effect of going from a
situation in which the high-degree computations of Legendre transform coefficients are
useless to one in which we have between 6–8 digits of precision, i.e. the relative error is
of the order of 10−6 or less.

In figures 13–15 we give more examples of bandwidth B = 512 transforms for
order m = 128 and m = 256, contrasting the relative errors incurred with the baseline
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Figure 13. Similar to previous figure but for DLTs with m = 128. Split at S = 300.

Legendre decomposition to those obtained with the best Legendre decomposition. Once
again, the new approach makes an enormous difference.

In figure 16 we present a bandwidth B = 1024, order m = 64 example, showing
high-degree coefficients computed by two levels of splitting. The situation is similar
to the previous examples, except that we now have to determine the allocation of sine
powers for two levels of splitting. As figure 16 indicates, this can be accomplished by a
search over the two parameters within a (small) range of candidates.

These experiments are indicative of the sort of results we have obtained. Thus,
we conclude that the modified Legendre decompositions may be used to dramatically
improve the numerical reliability of the fast computation of the high-degree Legendre
coefficients. In the next subsection we give a few more details on how the various para-
meters for the split are chosen.
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Figure 14. Similar to previous figure. DLTs with m = 128, but now split at S = 320.

4.4. Some details for fast divide-and-conquer with modified Legendre decompositions

It is quite simple to use the modified decompositions to obtain fast Legendre trans-
forms by divide-and-conquer in essentially the same way as devised previously. This
results in significant improvements in stability for a wide range of problem sizes with-
out increased computational cost or structural complexity of the algorithm. Here we
make a few necessary points on what must be done and illustrate with computational
examples.

The fast algorithm takes the computation of a bandwidth B and order m associated
Legendre transform of a vector f and splits it at some degree S, allowing us to write the
set of Legendre projections as two smaller sets of projections:
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Figure 15. Similar to previous figure but for DLTs with m = 256. Split at S = 380.
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Figure 16. Double split computation of m = 64 DLT coefficients, computed with a split at degree 530
and then at 770, with corresponding sine powers of 52 and 8. Results shown for degrees 770–1023. Left:
Legendre coefficients in this range. Computed (top) and actual (bottom). Right: finite precision effects in

computing coefficients. Errors (top) and log10 of relative errors (bottom) in computing the coefficients.{〈
f,Pm� 〉 | m � � < B

}
= {〈F, m�m,m

k

〉 | 0 � k < B −m
}

=
{

Low-degree Legendre coefficients
{〈

F, m�m,m
�

〉 | 0 � � < S −m
}
, (L)

High-degree Legendre coefficients
{〈

F, m�m,m
S−m+�
〉 | 0 � � < B − S

}
(H)

where F = (f, 0).
Balancing the number of projections in the two subproblems created by the split

requires S −m = (B −m)/2, i.e. S should be close to B/2 +m/2. On the other hand,
notice that S is the bandwidth of the highest-degree projection in the low-degree sub-
problem, which suggests that S should be B/2, as we desire to reduce both subproblems
to projections onto functions of bandwidth no more than B/2. We will see that in prac-
tice, S must be chosen somewhere in between to permit a balance between the need to
reduce the bandwidth and hence complexity of the subproblems, and the need to modify
the Legendre decomposition to obtain greater numerical reliability.

Following our general approach from section 3, the next step is to use the modified
Legendre recurrence in definition 2 to reduce the high-degree subproblem to low-degree
projections:
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Low-degree coefficients
of F
{〈

F, m�m,m
�

〉 | 0 � � < S −m
}
, (L)

Low-degree coefficients
of F m�

m,m−mH
�

{〈
F m�

m,m−mH
S−m , S�

m,mH
�

〉 | 0 � � < B − S
}
. (H)

We now have two parameters to specify: S and mH . These must be chosen jointly
to enable the stable computation of high-degree Legendre transform coefficients as low-
degree projections, thus providing both computational speedup and numerical reliability.
This, in fact, requires a trade-off of the need for numerical reliability against compu-
tational efficiency. On the one hand, mH needs to be large enough to compress the
dynamic range of the lagged Legendre functions S�

m,mH
� in subproblem (H). On the

other hand, it is also necessary to obtain reduced complexity by reducing the highest
bandwidth present in that subproblem. To halve the bandwidth and hence the complex-
ity of the projections in (H), the highest bandwidth Legendre function, S�m,mH

B−S−1, must
have no more than half the original bandwidth B/2. The bandwidth of this function is
B − S − 1 +mH so that requires mH � S − B/2 + 1.

What constraint is there on S? Consideration of the low-degree subproblem (L)
shows that S − B/2 can not be overly large. Specifically, the maximum bandwidth
in (L) is encountered in its last projection, onto m�m,m

S−m−1. This function has bandwidth
(S −m− 1)+m = S − 1. For S > B/2 this is too high to permit computation without
aliasing errors after lowpassing and subsampling to bandwidth B/2. Yet we have already
seen that S − B/2 + 1 � mH , and mH must often be larger than 0 in order to permit
stabilization of the high-degree subproblem.

We address this by applying the modified Legendre decomposition to the low-
degree subproblem, an option always available but not previously exercised. The sim-
plest form of this creates an equivalent set of low-degree projections by modulating the
data with some of the powers of the sine, which permits corresponding demodulation of
the Legendre functions, reducing their bandwidth. Specifically we have the following
breakdown of the original problem:


{〈

F m�
m,mL
0 , m�

m,m−mL
�

〉 | 0 � � < S −m
}
, (L){〈

F m�m,m−mH
S−m , S�m,mH

�

〉 | 0 � � < B − S
}
. (H)

The band-limits of these two subproblems must each be less than or equal to B/2 to
obtain the usual reduction in complexity through lowpassing without introducing alias-
ing error. That is

Bandlimit of L: S −m+ (m−mL) <
B

2
,

Bandlimit of H: B − S +mH <
B

2
.

This implies that 0 � mH � S − B/2 + 1 and S − (B/2)− 1 � mL � m.
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Moving now to stability requirements, we have seen previously that for large prob-
lems mH should be strictly bigger than 0. Increasing mH from 0 initially leads to a
net reduction in dynamic range among the factors of the Legendre decomposition and a
corresponding increase in accuracy of the high-degree Legendre transform coefficients
in (H). This holds up to a point, beyond which performance decays.

On the other hand, increasing mL increases the dynamic range of the lagged Legen-
dre functions in subproblem (L) and is only done to squeeze that problem within the
desired B/2 bandlimit. It should be as small as possible therefore.

This situation leads to one simple and reasonable choice of parameters. By ex-
periment (or through the use of bounds) a good value mH is determined, as small as
is practical. Then simply take mL = mH = µ, which makes S = B/2 + µ. This
permits the lowpass operation without aliasing in both subproblems, and results in the
desired split of the original B × B associated Legendre transform into two B/2 × B/2
transforms: {〈

L
(
Fm�m,µ

0

)
, m�

m,m−µ
�

〉 ∣∣ 0 � � <
B

2
+ µ−m

}
,

{〈
L
(
Fm�

m,m−µ
B/2+µ−m

)
, B/2+µ�m,µ

�

〉 ∣∣ 0 � � <
B

2
− µ

}
.

We have verified experimentally the efficacy of this procedure. This is illustrated
for some problem sizes of interest in figures 17 and 18. The computational complexity of
this is as before, and this splitting procedure can be iterated to whatever depth is required
for fast algorithms.

5. Summary and future directions

We have presented a divide-and-conquer algorithm for the efficient and exact com-
putation of the discrete Legendre transform of arbitrary order. This algorithm is an
extension of those presented previously in [5,11], and takes a step towards addressing
constraints which can arise in the application of these earlier approaches. The fast dis-
crete Legendre transforms enable the construction of fast forward and inverse Fourier
transforms of a band-limited function on the 2-sphere. Taken together, these latter algo-
rithms provide a fast algorithm to compute the exact convolution of two such functions.
These algorithms have a wide range of potential applicability in a great range of scien-
tific disciplines.

The approach presented in this paper provides several new parameters which can be
adjusted in the process of constructing fast Legendre transforms. This provides a new ap-
proach to dealing with the numerical difficulties in the high-order Legendre transforms.
This method differs from previous ones that we know of by modifying the Legendre de-
composition itself. We presented experimental results for one and two levels of splitting
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Figure 17. Computation of DLT by splitting a BW = 512, m = 64, DLT at degree S = 270 into (L) (left
column) and (H) (right) subproblems. Here µ = 14. Top row: computed coefficients. Middle row: actual

coefficients. Bottom row: log10 of relative error for each coefficient in the range.

that suggest our new approach will make a significant improvement in the performance
of our algorithms.

This approach has its limits as well, although these are much less constraining
than our previous approach. We are currently considering further decompositions of the
Legendre functions which decouple the behavior at the poles from that in the middle of
the interval.
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Figure 18. Computation of DLT by splitting into (L) (left column) and (H) (right) subproblems for
BW = 512, m = 128. Top row: computed coefficients, middle row: actual coefficients. Bottom row:

log10 of relative error. Here the splitting degree is 296 and mL = 38, mH = 36.
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