Fearful Symmetries: An Introduction to Quantum Algorithms

Cristopher Moore, University of New Mexico and the Santa Fe Institute

Physics

Fig. 1: Nature

Problems: come from Nature • have solutions that are as simple, symmetric, and beautiful as possible (far more so than we have any right to expect)

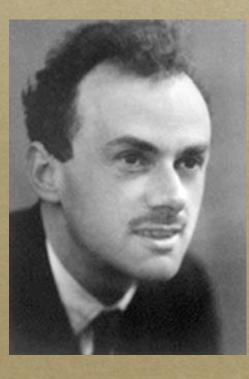
Computer Science

Problems: • are artificial • are maliciously designed to be the worst possible • may or may not have elegant solutions... • ... or proofs (cf. Erdős)

Fig. 2: The Adversary

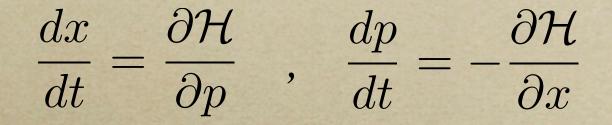
Beauty is Truth, Truth Beauty

In 1928, Dirac saw that the simplest, most beautiful equation for the electron has *two* solutions.



Four years later, the positron was found in the laboratory.

Conservation is Symmetry



perhaps you are more familiar with p = mvand F = ma; try with $\mathcal{H} = (1/2)mv^2 + V(x)$

Conservation of momentum follows from translation invariance: moving entire world by dx $\frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x} = 0$ doesn't change energy

Conservation is Symmetry

Noether's Theorem: symmetry implies conservation

$d\theta$	$\partial \mathcal{H}$		dJ _	$\partial \mathcal{H}$
\overline{dt} -	$=\overline{\partial J}$,	\overline{dt} =	$= -\frac{1}{\partial \theta}$

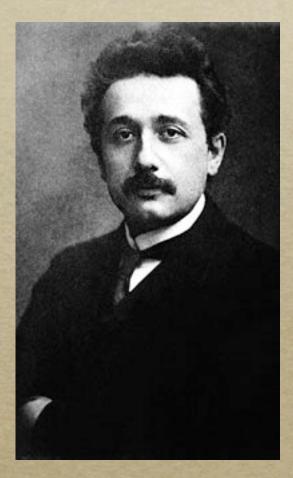
Conservation of angular momentum follows from symmetry under rotation! In classical and quantum mechanics, *all* conservation laws are of this form.

Relativity is Symmetry

Physics is invariant under changes of coordinates to a moving frame:

$$\begin{pmatrix} x \\ ct \end{pmatrix} \to \gamma \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} x \\ ct \end{pmatrix}$$

at small velocities, Galileo: $x \rightarrow x - vt$, $t \rightarrow t$



Groups

A group is a mathematical structure with: • associativity: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ • identity: $a \cdot 1 = 1 \cdot a = a$ • inverses: $a \cdot a^{-1} = a^{-1} \cdot a = 1$ • but not necessarily $a \cdot b \neq b \cdot a$ (these are *non-Abelian* groups)

Some Common Groups

cyclic: Z_n (addition mod n), Z^{*}_n (multiplication)
symmetric group (permutations): S_n
invertible matrices
rotations: O(3)
O(3) contains S₅ !

Symmetry Groups

Transformations that leave an object fixed:

When Symmetry is Periodicity

• Given a function $f : \mathbb{Z}_n \to S$ we can ask for which *h* we have

$$f(x) = f(x+h)$$

for all *x*.

These *h* are multiples of the periodicity *r*.
The set of all such *h* forms a *subgroup*.

Periodicity Gives Factoring!

• To factor n, let $f(x) = c^x \mod n$.

• Find smallest r such that f(x) = f(x + r)*i.e.*, $c^r \equiv 1 \mod n$. Suppose r is even:

$$c^{r} - 1 = kn = (c^{r/2} + 1)(c^{r/2} - 1)$$

Now take g.c.d. of *n* with both factors (easy).
Works at least 1/2 the time with random *c*!

Factoring: An Example

• Let's factor 15. Choose c=2:

Bad news: in general r could be as large as n, *i.e.*, exponentially big as a function of #digits.

Quantum Measurements

Measure f(x), and "collapse" to a superposition $x: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$ $2^{x}: 4 \ 4 \ 4$

This is a random *coset* of the subgroup *H*. But, if we simply measure *x*, all we see is a random value! This is the wrong measurement.

The Fourier Transform

Periodicities are peaks in \hat{f} , where $(\omega = e^{2\pi i/n})$

$$f(x) = \frac{1}{\sqrt{n}} \sum_{k} \hat{f}(k) \,\omega^{kx} \,, \ \hat{f}(k) = \frac{1}{\sqrt{n}} \sum_{x} f(x) \,\omega^{-kx}$$

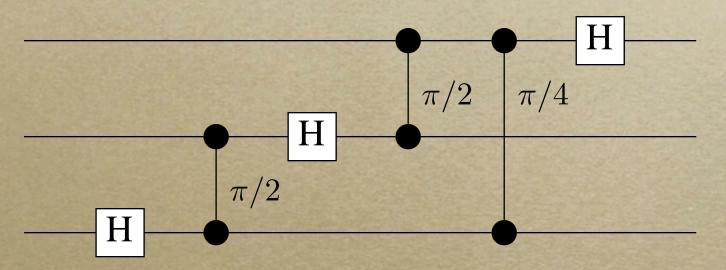
Change of basis $Q_{x,k} = \frac{1}{\sqrt{n}} \omega^{kx}$ from x to k. This transformation is *unitary*: $Q^{-1} = Q^{\dagger}$

Shor's Algorithm

- Quantum mechanics allows us to perform unitary transformations.
- We can "do" the Fourier transform mod *n* with only O(log² n) elementary quantum operations.
- We then measure the frequency, this gives us the periodicity of f(x).

Efficient Circuits for the QFT

• We can break down the QFT recursively (like the FFT) into elementary gates:



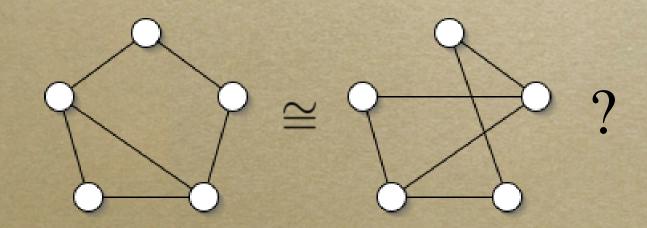
• Quadratic in the number of qubits

• Thus *n* can be exponentially large!

Graph Isomorphism

 Factoring appears to be outside P, but not NP-complete. (Indeed, we believe that BQP does not contain all of NP.)

• Another candidate problem in this range:



Solving with Symmetry

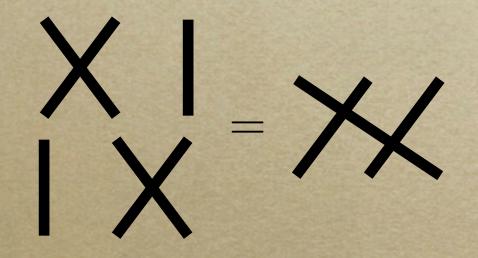
- Take the union of the two graphs. Permuting the 2n vertices defines a function f on S_{2n}.
 What is its symmetry subgroup H?
- Assume no internal symmetries. Then either f is 1-1 and $H = \{1\}$, or f is 2-1 and

 $H = \{1, m\}$

for some *m* that exchanges the two graphs.

The Permutation Group

• The set of *n*! permutations of *n* things forms the permutation group S_n :



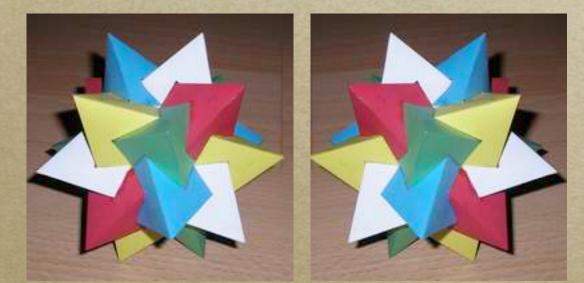
• A richly non-Abelian group $(ab \neq ba.)$

The Hidden Subgroup Problem

- We have a function $f: G \to X$
- We want to know its symmetries $H \subseteq G$
- Essentially all quantum algorithms that are exponentially faster than classical are of this form:
 - $\mathbb{Z}_n^* = \text{factoring}$
 - $S_n =$ Graph Isomorphism
 - D_n = some cryptographic lattice problems

Non-Abelian Fourier Transforms

For non-Abelian G, we need representations: Geometric pictures of G in d-dimensional space



• S_5 has a three-dimensional representation: permute the colors by rotating.

Non-Abelian Fourier Transforms

• S_3 has 1 (trivial), $\pi = \pm 1$ (parity), and rotations of three points in the plane:

$$\rho((12)) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ \rho((123)) = \begin{pmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{pmatrix}$$

Gives 1+1+4 = 6 "frequencies." 2

3

just enough. Coincidence?

Heartbreaking Beauty

- For any group, there is a finite number of *irreducible* ("prime") representations
- These allow us to define a Fourier transform over that group.
- Everything beautiful is true...

The Story So Far...

- It turns out that this naïve generalization of Shor's algorithm doesn't work: the permutation group S_n is "too non-Abelian."
- Tantalizingly, we know a *measurement* exists, but we don't know if we can do it efficiently.
- How much can quantum computing really do? How "special" is factoring?