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Physics
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Problems:
e come from Nature

° have solutions that are as
simple, symmetric, and
beautiful as possible
(far more so than we
have any right to expect)

Fig. 1: Nature



Computer Science
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Problems:
¢ are artificial

¢ are maliciously designed
to be the worst possible

° may or may not have
elegant solutions...

2 ...or proofs (cf. ErdGs (A s

Fig. 2: The Adv
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Beauty 1s Truth, Truth Beauty
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In 1928, Dirac saw that the
simplest, most beautitul equation
for the electron has two solutions.
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Four years later, the positron
was found in the laboratory.




Conservation 1s Symmetry
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perhaps you are more familiar with p = muv
and F = ma; try with H = (1/2)mv* 4+ V(z)

Conservation of momentum follows from
translation invariance:

moving entire world by dx @ — i =0
doesn’t change energy dt 0x




Conservation 1s Symmetry

NS Nb  h Tot GBS Pl DA YA A ety S0 BT I v s T R AP P

Noether’s Theorem:
symmetry implies conservation
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Conservation of angular momentum
follows from symmetry under rotation!
In classical and quantum mechanics,
all conservation laws are of this form.



Relat1v1ty 1S Symmetry
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Physics 1s invariant under
changes of coordinates
to a moving frame:

(@) =2 Y

at small velocities, Galileo:
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Groups
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A group 1s a mathematical structure with:
e associativity: a - (b-c) = (a-b) - c
cidentity: a-1=1-a=a

¢ Inverses: a - a,_1 — a_l ca=1

2 but not necessarily a - b # b - a

(these are non-Abelian groups)




Some Common Groups
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2 cyclic: Z,, (addition mod n), Z;, (multiplication)
e symmetric group (permutations): Sy,

¢ invertible matrices
e rotations: O(3)

> O(3) contains S5 !




Symmetry Groups
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Transformations that leave an object fixed:

TEgpp.




When Symmetry 1S Perlodlclty

RN Sl Tt G T Prvmelig i A A Pty S0 A it o S R T

e Given a function f : Z,, — S we can ask
for which 4 we have

f(z) = f(z +h)
for all x.
e These h are multiples of the periodicity .

e The set of all such 4 forms a subgroup.



Perlodlclty Gives Factormg'
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e To factor n, let f(x) = ¢ mod n .

2 Find smallest » such that f(x) = f(x + r)
i.e., ¢ =1 modn. Suppose r is even:

e —1=kn= (/2 +1)(c"/? - 1)

e Now take g.c.d. of n with both factors (easy).

¢ Works at least 1/2 the time with random c!



Factoring: An Example
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¢ Let’s factor 15. Choose c=2:
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¢ Bad news: 1n general r could be as large as n,
i.e., exponentially big as a function of #digits.



Quantum Measurements
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Measure f(x), and “collapse” to a superposition
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This 1s a random coset of the subgroup H.

But, if we simply measure x, all we see 1s a
random value! This 1s the wrong measurement.



The Fourier Transform
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Periodicities are peaks in f, where (w = e
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Change of basis (0 = L L

/n
from x to k. This transformation
1S unitary:




Shor’s Algorlthm

PRI IR e i A Tt QS P LA A Py S5 LT AL R v A T Rt 00 s Py B R AR

¢ Quantum mechanics allows us to perform
unitary transtformations.

¢ We can “do’” the Fourier transform

mod n with only O(log® n) 5 &
elementary quantum operations. &
¢ We then measure the frequency, A2 /r\ ¥

this gives us the periodicity of f{x). %\ =1 | /



Etfficient Circuits for the QFT
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> We can break down the QFT recursively
(like the FFT) into elementary gates:
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¢ Quadratic 1n the number of qubits

e Thus n can be exponentially large!



Graph Isomorphism
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¢ Factoring appears to be outside P, but not

NP-complete. (Indeed, we believe that
BQP does not contain all of NP.)

° Another candidate problem 1n this range:
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Solvmg with Symmetry
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¢ Take the union of the two graphs. Permuting
the 2n vertices defines a function f on Sy, .
What 1s its symmetry subgroup H?

¢ Assume no internal symmetries. Then either
fisl-l1and H = {1}, orfis 2-1 and

B o}

for some m that exchanges the two graphs.



The Permutation Group
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e The set of n/ permutations of n things forms
the permutation group .5, :
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7K

2 A richly non-Abelian group (ab # ba .)




The Hidden Subgroup Problem

AR Sk Tt g

i Pty P P L :ﬂ_g ke 1-4*-:: e
& L=

e We have a function f : G — X
> We want to know its symmetries H C ¢

c Essentially all quantum algorithms that are
exponentially faster than classical are of this form:

o 7. = factoring
¢ S, = Graph Isomorphism

> D, = some cryptographic lattice problems



Non-Abelian Fourier Transtorms
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e For non-Abelian G, we need representations:

e Geometric pictures of G in d-dimensional space

> S5 has a three-dimensional representation:
permute the colors by rotating.



Non-Abelian Fourier Transtforms
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 S3 has 1 (trivial), m = +£1 (parity), and rotations
of three points 1n the plane:

0((12)) = ((1) _01> p((123)) = (__%?2 f@

e G1ves 1+1+4 = 6 “frequencies,”
just enough. Coincidence?




Heartbreakmg Beauty
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e For any group, there 1s a finite
number of irreducible (“prime”)
representations

e These allow us to define a Fourier
transform over that group.

¢ Everything beautiful 1s true...




The Story S0 Far...
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e [t turns out that this naive generalization of
Shor’s algorithm doesn’t work: the
permutation group .5,,1s “too non-Abelian.”

¢ Tantalizingly, we know a measurement exists,
but we don’t know 1f we can do it efficiently.

e How much can quantum computing really do?
How “‘special” 1s factoring?



