
Computational Complexity

Cristopher Moore
University of New Mexico
and the Santa Fe Institute

Computational Complexity
• Why are some problems qualitatively

harder than others?

Computational Complexity
• A simple insight: at most 2 vertices can have

odd degree, so no tour is possible!

C

D

B

A
e

f

g

a

b

c

d

Computational Complexity
• What if we want to visit every vertex,

instead of every edge?

Computational Complexity
• As far as we know, the only way to solve this

problem is (essentially) exhaustive search!

Needles in Haystacks
• P: we can find a solution efficiently

• NP: we can check a solution efficiently

Complexity Classes

P

NP

Multiplication
Eulerian Path

Hamiltonian Path

An Infinite Hierarchy

P

NP

PSPACE

EXPTIME

COMPUTABLE

“Computers play the
same role in complexity
that clocks, trains and
elevators play in relativity.”

– Scott Aaronson

Games

Turing’s Halting Problem

The Hardest of Them All

P

NP

NP-complete

Some problems in NP capture the entire class!
If we can solve any of them efficiently, then P=NP.

Hamiltonian Path

Factoring

Eulerian Path

Primality

Primality

Satisfying a Circuit

AND

OR

NOT

AND

x1 x2

z

Any program that tests
solutions (e.g. paths) can
be “compiled” into a
Boolean circuit

The circuit outputs “true”
if an input solution works

Is there a set of values for
the inputs that makes the
output true?

From Circuits to Formulas
The condition that each
AND or OR gate works,
and the output is “true,”
can be written as a
Boolean formula:

AND

OR

NOT

AND

x1 x2

z

y1

y2

y3
(x1 ∨ y1) ∧ (x2 ∨ y1) ∧ (x1 ∨ x2 ∨ y1)

∧ · · · ∧ z .

3-SAT

• Our first NP-complete problem!

• Given a set of clauses with 3 variables each,

does a set of truth values for the exist
such that all the clauses are satisfied?

• -SAT (variables per clause) is NP-
complete for .

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x17 ∨ x293) ∧ · · ·

xi

k k
k ≥ 3

If 3-SAT Were Easy...

• ...we could convert any problem in NP to a
circuit that tests solutions

• ...and convert that circuit to a 3-SAT formula
which is satisfiable if a solution exists

• ...and use our efficient algorithm for 3-SAT to
solve it!

• So, if 3-SAT is in P, then all of NP is too,
and P=NP!

Graph Coloring

Given a set of countries
and borders between
them, what is the
smallest number of
colors we need?

From SAT to Coloring
• “Gadgets” enforce constraints:

• Graph 3-Coloring is NP-complete

• Graph 2-Coloring is in P (why?)

(x, y, z) (x, y, z)

x x y zzy

Traveling Salespeople
• True=left, false=right

• Have to visit clause vertices in
order to satisfy them

• A path from top to bottom
= solution to 3-SAT problem!

x

y

z

x ∨ y ∨ z

And so on...

Witness Existence

Circuit SAT

3-SAT

NAE-3-SAT

Graph 3-Coloring

Independent Set

Vertex Cover Max Clique

Max Cut

Planar SAT

Tiling

Subset Sum

Integer Partitioning MAX-2-SAT

3-Matching

Hamiltonian Path

Deep Questions
• Is finding solutions harder than checking them?

When can we avoid exhaustive search?

• What happens if we only need good answers,
instead of the best ones? Are there problems
where even finding good answers is hard?

• How much does it help to do many things at
once (parallelism)?

• How much does randomness help? Can we foil
the adversary by being unpredictable?

• How much does quantum physics help?

How to make $1,000,000
(and maybe $7,000,000)

Clay Mathematics Institute
Dedicated to increasing and disseminating mathematical knowledge

Millennium Problems
• P=NP?

• Poincaré Conjecture

• Riemann Hypothesis

• Yang-Mills Theory

• Navier-Stokes Equations

• Birch and Swinnerton-Dyer Conjecture

• Hodge Conjecture

Millennium Problems
• P=NP?

Millennium Problems
• P=NP?

• Is it harder to find solutions than to check them?

• Question about the nature of mathematical truth

• ...and whether finding it requires as much
creativity as we think.

What if P=NP?
• Better Traveling Salesmen, can pack luggage

• No Cryptography

• The entire polynomial hierarchy collapses,
NEXP=EXP, etc.

• We can find (up to any reasonable length)

• Proofs

• Theories

• Anything we can recognize.

Gödel to Von Neumann
Let ϕ(n) be the time it takes to decide whether a proof of length n exists.

Gödel writes:

The question is, how fast does ϕ(n) grow for an optimal machine.
If there actually were a machine with, say, ϕ(n) ∼ n2, this would
have consequences of the greatest magnitude. That is to say, it
would clearly indicate that, despite the unsolvability of the Entschei-
dungsproblem, the mental effort of the mathematician in the
case of yes-or-no questions could be completely replaced
by machines. One would simply have to select an n large enough
that, if the machine yields no result, there would then be no reason
to think further about the problem.

P≠NP if understanding matters.P≠NP if we can’t just “turn the crank”

Upper Bounds are Easy;
Lower Bounds are Hard
• Why is the P vs. NP question so hard?

• Algorithms are upper bounds on complexity...

• ...but how do you know if you have the best
algorithm?

Algorithmic Surprises
• Grade school multiplication takes time:

• Can we do better?

n

︷
︸
︸

︷

1
2

3

n

︷ ︸︸ ︷

1 2 31 2 3

× 3 2 1

1 2 3

2 4 6

3 6 9

3 9 4 8 3

n
2

O(n2)

Algorithmic Surprises
• Divide and conquer:

Looks like we need . But

so we only need three products. Running time:

so . How low can we go?

x = 2n/2a + b, y = 2n/2c + d

xy = 2nac + 2n/2(ad + bc) + bd

(a + b)(c + d)− ac− bd = ad + bc

ac, ad, bc, bd

T (n) ≈ 3T (n/2)

T (n) ∼ nlog2 3 = n1.58

The Undecidable
• Suppose we could tell whether a program p,

given an input x, will ever halt.

• Will trouble(trouble) halt or not?

• Undecidable problems ⇒ unprovable truths!

trouble(p):
 if halt(p,p) loop forever
 else halt

Worse Than Chaos
• Will an initial

point x ever halt?

• Is x periodic?

• Undecidable,
even if initial
conditions are
known exactly!

Parallelization
• What if we can do many things at once?

• NC is the subset of P consisting of problems
that can be efficiently parallelized:

• With poly(n) processors, we can solve
problems in polylogarithmic time:
for some constant

• Example: matrix multiplication

(log n)k

k

Deep vs. Shallow
• Parallel computers are like

circuits: time = depth,
#processors = width

• The P vs. NC problem: can
every circuit be compressed to
depth and poly width?

• We believe that P-complete
problems are “inherently
sequential,” so that NC ≠ P

(log n)k

AND

OR

NOT

AND

x1 x2

z

Randomness
• Randomized algorithms: use random numbers, and

guarantee the right answer with probability 2/3

• BPP (Bounded Probability Polynomial time) is
the class of problems that can be solved this way

• The P vs. BPP problem: are there deterministic
pseudorandom number generators that are “good
enough”?

• We think so, but this is hard to prove...

Beyond NP
• Does Black have a winning strategy?

If so, how could we prove it?

• Black has a move such that,
no matter what White does,
Black has a move such that...

• Deep logical structure!

∀x:∃y:∀z:∃w: ...

• But even P ≠ PSPACE isn’t known.

Shameless Plug
The Nature of Computation

Mertens and Moore

