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Magnetism

• When cold enough, Iron will stay magnetized, 
and even magnetize spontaneously

• But above a critical temperature, it suddenly 
ceases to be magnetic 

• Interactions between atoms remain the same, 
but global behavior changes!

• Like water freezing, outbreaks becoming 
epidemics, opinions changing...



The Ising model
• Lattice (e.g. square) with    sites  

• Each has a “spin”              , “up” or “down”

• Energy is a sum over neighboring pairs:

• Lowest energy: all up or all down

• Highest energy: checkerboard

n

si = ±1

E = −
∑

ij

sisj



Boltzmann Distribution

• At thermodynamic equilibrium, temperature T 

• Higher-energy states are less likely:

• When            , only lowest energies appear

• When              , all states are equally likely

T → 0

T →∞

P (s) ∼ e−E(s)/T



What Happens

• Below critical temperature, the system 
“magnetizes”: mostly up or mostly down

• Small islands of the minority state; as T      
increases, these islands grow

• Above critical temperature, islands=sea;       
at large scales, equal numbers of up and down

• When T=Tc, islands of all scales: system is 
scale-invariant!



Mean Field

• Ignore topology: forget lattice structure

• If a of the sites are up and 1–a are down,  
energy is 

• At any T, most-likely states have a=0 or a=1

• But the number of such states is          , which 
is tightly peaked around a=1/2.

• Total probability(a) = #states(a) Boltzmann(a)

(
n

an

)

E = 2n2
(
2a(1− a)− a2 − (1− a)2

)



Energy vs. Entropy
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Energy vs. Entropy
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Correlations
• C(r) = correlation between two sites r apart

• If T > Tc, correlations decay exponentially: 

• Correlation length    decreases as T grows

• As we approach Tc, correlation length diverges

• At Tc, power-law correlations (scale-free):

C(r) ∼ e−r/!

C(r) ∼ !−α

!



Percolation
• Fill a fraction p of the sites in a lattice

• When p < pc, small islands, whose size is 
exponentially distributed:

• When p > pc, “giant cluster” appears

• At pc, power-law distribution of cluster sizes:

P (s) ∼ s−α

P (s) ∼ e−s/s



The 
Adversary

...designs problems that are as 
diabolically hard as possible, 

forcing us to solve them in the 
worst case.  (Hated and feared 

by computer scientists.)



La Dame 
Nature

...asks questions whose answers 
are simpler and more beautiful 

than we have any right to 
imagine.  (Worshipped by 

physicists.)



Random NP Problems
• A 3-SAT formula with    variables,     clauses

• Choose each clause randomly:       possible 
triplets, negate each one with probability 1/2

• Precedents:

• Random Graphs (Erdős-Rényi)

• Statistical Physics: ensembles of disordered 
systems, e.g. spin glasses

• Sparse Case:               for some densitym = αn α

(n
3

)
n m
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The Threshold Conjecture

• We believe that for each           , there is a 
critical clause density      such that

• So far, only known rigorously for 

lim
n→∞

Pr [Fk(n, m = αn) is satisfiable]

=
{

1 if α < αk

0 if α > αk

k = 2

k ≥ 3
αk



Search Times
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An Upper Bound
• The average number of solutions          is

• This is exponentially small whenever 

• But the transition is much lower, at               . 
What’s going on?

2n

(
7
8

)m

=
(

2
(

7
8

)α )n

α ≈ 4.27

α > log8/7 2 ≈ 5.19

E[X]



A Heavy Tail

• In the range                           , the average 
number of solutions is exponentially large.

• Occasionally, there are exponentially many...

• ...but most of the time there are none!

• A classic “heavy-tailed” distribution

• Large average doesn’t prove satisfiability!

4.27 < α < 5.19



Lower Bound #1

• Idea: track the progress of a simple algorithm!

• When we set variables, clauses disappear       
or get shorter:

• Unit Clauses propagate:

x ∧ (x ∨ y)⇒ y

x ∧ (x ∨ y ∨ z)⇒ (y ∨ z)



One Path Through the Tree
• If there is a unit clause, satisfy it.                    

Otherwise, choose a random variable    
and give it a random value!

• The remaining formula is random for all t:

s3(0) = α , s2(0) = 0

ds3

dt
= − 3s3

1− t
,

ds2

dt
=

(3/2)s3 − 2s2

1− t



One Path Through the Tree
• These differential equations give

s3(t) = α(1− t)3

s2(t) =
3
2
αt(1− t)2
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Branching Unit Clauses
• Each unit clause has on average    children, 

where

• When           , they proliferate and 
contradictions appear

• Maximized at 

• But if               , then           always, and the 
unit clauses stay manageable.

λ

λ > 1

λ < 1α < 8/3

λ =
1
2

2s2

1− t
=

3
4
αt(1− t)

t = 1/2



Constructive Methods Fail
• Fancier algorithms, harder math:               .

• But, for larger   , algorithmic methods are 
nowhere near the upper bound for   -SAT:

• To close this gap, we need to resort to     
non-constructive methods.

α < 3.52

k

O

(
2k

k

)
< α < O(2k)

k



Lower Bound #2
• Idea: bound the variance of the number of 

solutions.

• If     is a nonnegative random variable, 

•          is easy;            requires us to understand 
correlations between solutions.

Pr[X > 0] ≥
E[X]2

E[X2]

X

E[X] E[X2]



Correlations
• The second moment            is the expected 

number of pairs of satisfying assignments.

• If two assignments have overlap   , they satisfy a 
random k-SAT clause with probability 

• Note that 

as if the pair were independent.

E[X2]

q(z) = 1− 2 · 2−k + zk2−k

z

q(1/2) = (1− 2−k)2



Correlations
• Now             is the number of pairs with 

overlap   , times the probability each pair is 
satisfying, summed over   :

where

• Again, a tradeoff between entropy and “energy.”

E[X2]

z
z

h(z) = −z ln z − (1− z) ln(1− z)

E[X2] ≈
∑

z

2n

(
n

zn

)
q(z)αndz

≈ 2n

∫ 1

0
en

(
h(z)+α ln q(z)

)
dz



A Function of Distance
• When the expected number of pairs of 

solutions is peaked at 1/2, most pairs are 
“independent” and the variance is small.
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Determining the Threshold

• A series of results has narrowed the range for 
the transition in   -SAT to

• Prediction from statistical physics:

• Seems difficult to prove with current methods.

2k ln 2−O(1)

k

2k ln 2−O(k) < α < 2k ln 2−O(1)



Scaling and Universality
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α
n



Clustering
• Below the critical temperature, magnets have 

two macrostates (Gibbs measures)

• Glasses, and 3-SAT, have exponentially many!
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Clustering
• An idea from statistical physics: there is 

another transition, from a unified “cloud” of 
solutions to separate clusters.

• Is this why algorithms fail at                ?

3.9 4.27
α

α ∼ 2k/k



The Physicists’ Algorithm
• A “message-passing” algorithm:

ua→i

uj→a

“You’re the only one
who can satisfy me”

“I can’t give you
what you want”



Why Does It Work?
• Random formulas are locally treelike.

• Assume the neighbors are independent:

• Proving this will take some very deep work. 

T3

T1

T1



Shameless Plugs
The Nature of Computation

Mertens and Moore
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