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Abstract. Many quantum algorithms, including Shor’s celebrated fac-
toring and discrete log algorithms, proceed by reduction to a hidden

subgroup problem, in which a subgroup H of a group G must be deter-
mined from a quantum state ψ uniformly supported on a left coset of
H. These hidden subgroup problems are then solved by Fourier sam-

pling : the quantum Fourier transform of ψ is computed and measured.
When the underlying group is non-Abelian, two important variants of
the Fourier sampling paradigm have been identified: the weak standard

method, where only representation names are measured, and the strong

standard method, where full measurement occurs. It has remained open
whether the strong standard method is indeed stronger, that is, whether
there are hidden subgroups that can be reconstructed via the strong
method but not by the weak, or any other known, method.

In this article, we settle this question in the affirmative. We show that
hidden subgroups of semidirect products of the form Zq n Zp, where
q | (p − 1) and q = p/polylog(p), can be efficiently determined by the
strong standard method. Furthermore, the weak standard method and
the “forgetful” Abelian method are insufficient for these groups. We ex-
tend this to an information-theoretic solution for the hidden subgroup
problem over the groups Zq n Zp where q | (p− 1) and, in particular, the
Affine groups Ap. Finally, we prove a closure property for the class of
groups over which the hidden subgroup problem can be solved efficiently.

Submission Track: A

1 The Hidden Subgroup Problem

Simon’s algorithm for the “XOR-mask” oracle problem [19] and Shor’s factoring
algorithm [18] determine an unknown (“hidden”) subgroup H of a given group
G in the following way.

Step 1. Prepare two registers, the first in a uniform superposition over the
elements of a group G and the second with the value zero, yielding the state
ψ = cG · ∑g∈G |g〉 ⊗ |0〉, where cG = 1/

√

|G|.



Step 2. Calculate a (classical polynomial-time) function F defined on G and
XOR it with the second register. This entangles the two registers and results
in the state ψ = cG ·

∑

g∈G |g〉 ⊗ |F (g)〉.
Step 3. Measure the second register. This produces a uniform superposition

over one of F ’s level sets, i.e., the set of group elements g for which F (g)
takes a particular value F0. If the level sets of F are the cosets of H , this
puts the first register in a uniform distribution over superpositions on one
of those cosets, namely cH where F (c) = F0. Moreover, it disentangles the
two registers, resulting in the state ψ = (1/

√

|H |) ∑

h∈H |cH〉 ⊗ |F0〉.

Write the amplitudes of the basis states in the first register as the function

f(g) =

{

1/
√

|H | if g ∈ cH,

0 otherwise.
(1)

The approach taken by Simon and Shor is to perform Fourier Sampling [1]: carry
out a quantum Fourier transform on f , and measure the result.

In Simon’s case, the “ambient” group G, over which the Fourier transform is
performed, is Zn

2 and H is a subgroup of index 2. In Shor’s case (factoring), G is
the cyclic group Z∗

n where n is the number we wish to factor, F (x) = rx mod n
for a random r < n, H is the subgroup of Z∗

n of index order(r), and the Fourier
transform is the familiar Abelian one. (However since |Z∗

n| is unknown, the above
algorithm is actually performed over Zq where q is polynomially bounded by n;
see [18] or [7, 8].) To solve the elusive Graph Automorphism problem, on the
other hand, it would be sufficient to solve the HSP over the permutation group
Sn; see, e.g., Jozsa [12] for a review. It is partly for this reason that the non-
Abelian HSP has remained such an active area of quantum algorithms research.

In general, we will say that the HSP for a family of groups has a Fourier sam-

pling algorithm if a procedure similar to that outlined above works. Specifically,
the algorithm prepares a superposition of the form (1), computes its (quantum)
Fourier transform, and measures the result in a basis of its choice. After a poly-
nomial number of such trials, a polynomial amount of classical computation,
and, perhaps, a polynomial number of classical queries to the function F to con-
firm the result, the algorithm produces a set of generators for the subgroup H
with high probability.

Since we are typically interested in exponentially large groups, we will take
the size of our input to be n = log |G|. Thus “polynomial” means polylogarithmic
in the size of the group.

History and Context. Though a number of interesting results have been obtained
on the non-Abelian HSP, the groups for which efficient solutions are known re-
main woefully few and sporadic. On the positive side, Roetteler and Beth [15]
give an algorithm for the wreath product Zk

2 o Z2. Ivanyos, Magniez, and San-
tha [11] extend this to the more general case of semidirect products KnZk

2 where
K is of polynomial size, and also give an algorithm for groups whose commu-
tator subgroup is of polynomial size. Friedl, Ivanyos, Magniez, Santha and Sen



solve a problem they call Hidden Translation, and thus generalize this further
to what they call “smoothly solvable” groups: these are solvable groups whose
derived series is of constant length and whose Abelian factor groups are each the
direct product of an Abelian group of bounded exponent and one of polynomial
size [4].

In another vein, Ettinger and Høyer [2] show that the HSP is solvable for
the dihedral groups in an information-theoretic sense; namely, a finite number of
quantum queries to the function oracle gives enough information to reconstruct
the subgroup, but the best known reconstruction algorithm takes exponential
time. More generally, Ettinger, Høyer and Knill [3] show that for arbitrary groups
the HSP can be solved information-theoretically with a finite number of quantum
queries, but do not give an explicit set of measurements to do so.

Our current understanding, then, divides groups in three classes

I. Fully Reconstructible. Subgroups of a family of groups G = {Gi} are fully

reconstructible if the HSP can be solved with high probability by a quantum
circuit of size polynomial in log |Gi|.

II. Measurement Reconstructible. Subgroups of a family of groups G =
{Gi} are measurement reconstructible if the solution to the HSP for Gi is
determined information-theoretically by the fully measured result of a quan-
tum circuit of size polynomial in log |Gi|.

III. Query Reconstructible. Subgroups of a family of groups G = {Gi} are
query reconstructible if the solution to the HSP for Gi is determined by
the quantum state resulting from a quantum circuit of polynomial size in
log |Gi|, in the sense that there is a POVM that yields the subgroup H with
constant probability. (Note that there is no guarantee that this POVM can
be implemented by a small quantum circuit.)

In each case, the quantum circuit has oracle access to a function f : G → S, for
some set S, with the property that f is constant on each left coset of a subgroup
H , and distinct on distinct cosets.

In this language, then, the result of [3] shows that subgroups of arbitrary
groups are query reconstructible, whereas it is known that subgroups of Abelian
groups are in fact fully reconstructible. The other work cited above has labored
to place specific families of (non-Abelian) groups into the more algorithmically
meaningful classes I and II above.

All the above results use Abelian Fourier analysis, even in the cases in which
the groups of interest are non-Abelian; it turns out that each of these groups
are “close enough” to Abelian that a “forgetful” Abelian Fourier analysis, which
treats the groups as though their multiplication rule was commutative, suffices
to detect subgroups. Nevertheless, as we shall see, there are situations in which
Abelian Fourier analysis will not suffice and, instead, the full power of the non-
Abelian Fourier analysis associated with the group is required.

Fourier analysis over a finite Abelian group A proceeds by expressing a func-
tion f : A → C as a linear combination of special functions χ : A → C which
are homomorphisms of A into C. If A = Zp, for example, the homomorphisms
from A to C are exactly the familiar functions χt : z 7→ e2πitz/p ≡ ωtz

p and



any function f : A → C can be uniquely expressed as a linear combination of
these χt; this change of basis is precisely the Fourier transform. When G is a
non-Abelian group, however, this same procedure cannot work: in particular,
there are not enough homomorphisms of G into C to even span the space of all
C-valued functions on G. The representation theory of finite groups constructs
the objects which can be used in place of the C-valued homomorphisms above to
develop a satisfactory theory of Fourier analysis over general groups. See [17, 5]
for treatments of non-Abelian Fourier analysis and representation theory. In this
general setting Fourier transforms are matrix-valued and our Fourier sampling
algorithm might measure not just which representation we are in, but also the
row and column. See Appendix A for more discussion.

Along these lines, Hallgren, Russell, and Ta-Shma [9] showed that measuring
the names of representations alone — the weak standard method in the termi-
nology of [6] — can reconstruct normal subgroups (and thus solve the HSP for
Hamiltonian groups, all of whose subgroups are normal). More generally, they
show how to reconstruct the normal core of a subgroup, i.e. the intersection of
all its conjugates. On the other hand, they show that this is insufficient to solve
the Graph Automorphism problem, since even in an information-theoretic sense
this method cannot distinguish between the trivial subgroup of Sn and most
subgroups of order 2.

Grigni, Schulman, Vazirani and Vazirani [6] showed that trivial and non-
trivial subgroups are still information-theoretically indistinguishable, even if we
do measure the rows and columns of the representation, under the assumption
that a random basis is used for each representation. In other words, even the
strong standard method, in which rows and columns are measured, cannot solve
Graph Automorphism unless there exist bases for the representations of Sn with
very special computational properties. (They also point out that since we can
reconstruct normal subgroups, we can also solve the HSP for groups where the
intersection of all normalizers (the Baer norm) has small index.)

Contributions of this paper. An important open question, then, is whether there
are cases in which the strong standard method offers any advantage over a simple
Abelian transform or the weak standard method. In this paper, we settle this
question in the affirmative. Our results deal primarily with semidirect products
of the form Zq n Zp, the so-called q-hedral groups, including the affine group
Ap

∼= Z∗
p n Zp. We show the following:

Theorem 1. Let p and q be prime with q = (p− 1)/polylog(p). Then subgroups

of Zq n Zp are fully reconstructible.

More generally, we define the Hidden Conjugate Problem as follows: given a
group G, a non-normal subgroup H , and a function which is promised to be
constant on the cosets of some conjugate bHb−1 of H , identify b. We adopt the
above classification (fully/ measurement/ query) for this problem in the natural
way. Then we also show that

Theorem 2. Let p be prime and q a divisor of p−1. Then the hidden conjugates

of H in G = Zq n Zp are fully reconstructible if H has index polylog(p).



Moreover, our algorithms in Theorems 1 and 2 rely crucially on the high-
dimensional representations of Zq n Zp, and we show that Abelian methods (in
other words, treating the group as a direct product rather than a semidirect one)
do not suffice.

We also generalize the results of Ettinger and Høyer on the dihedral group
to the q-hedral groups:

Theorem 3. Let p be prime and q a divisor of p − 1. Then hidden conjugates

in Zq n Zp are measurement reconstructible.

We then reduce the general problem of hidden subgroup reconstruction in ZqnZp

(and Ap) to Theorem 3:

Theorem 4. Let p be prime and q a divisor of p − 1. The subgroups of the

q-hedral groups Zq n Zp are measurement reconstructible. In particular, the sub-

groups of the affine groups Ap = Z∗
p−1 n Zp are measurement reconstructible.

In Theorems 3 and 4 we give an explicit set of efficiently computable measure-
ments from which the subgroup can be reconstructed, with a (possibly exponen-
tial) amount of classical computation.

Finally, we show that the set of groups for which the HSP can be solved in
polynomial time has the following closure property:

Theorem 5. Let H be a group for which hidden subgroups are fully recon-

structible, and K a group of polynomial size in log |H |. Then hidden subgroups

in any extension of K by H, i.e. any group G with K CG and G/K ∼= H, are

fully reconstructible.

This subsumes the results of [9] on Hamiltonian groups, and also those of [11]
on groups with commutator subgroups of polynomial size.

The Non-Abelian Fourier Transform. To solve the HSP for the non-Abelian
groups discussed above, we shall consider the more general setting of non-Abelian
Fourier analysis. Briefly, we treat a representation as a homomorphism ρ : G→
U(d), where U(d) denotes the group of unitary operators on Cd. We call dρ = d
the dimension of ρ. For a function f : G → C and an irreducible representation
ρ, we let f̂(ρ) denote the Fourier transform of f at ρ, given by

f̂(ρ) =

√

dρ

|G|
∑

g

f(g)ρ(g).

A more complete description of the representations of a group G and the asso-
ciated transform appear in Appendix A. The Fourier transform of a function of
the form (1) is then

f̂(ρ) =

√

dρ

|G||H | ρ(c) ·
∑

h∈H

ρ(h).



As H is a subgroup,
∑

h ρ(h) is |H | times a projection operator (see, e.g., [9]);
we write

∑

h ρ(h) = |H |πH . (Its rank is determined by the number of copies of

the trivial representation in the representation IndG
H1.) With this notation, we

write f̂(ρ) =
√
nρ ρ(c) · πH where nρ = dρ|H |/|G|. For a d× d matrix M , we let

‖M‖ denote the matrix norm given by ‖M‖2
=

∑

ij |Mij |2. Then the probability
that we observe the representation ρ is

∥

∥

∥
f̂(ρ)

∥

∥

∥

2

=
∥

∥

√
nρ ρ(c)πH

∥

∥

2
= nρ ‖ρ(c)‖2 ‖πH‖2

= nρ rk πH ,

where rk πH is the rank of the projection operator πH . See [9] for discussion.

2 The Affine Group Ap

Let Ap be the affine group of size p(p − 1) for p prime, consisting of functions
(a, b) : x 7→ ax+ b on Zp acting by composition, where a ∈ Z∗

p and b ∈ Zp. Thus
Ap is a semidirect product Z∗

p n Zp where (a1, b1) · (a2, b2) = (a1a2, b1 + a1b2)
(we adopt the convention that functions compose on the right). We enumerate
the subgroups below:

– Let N ∼= Zp be the normal subgroup of size p consisting of elements of the
form (1, b).

– Let H be the non-normal subgroup of size p − 1 consisting of the elements
of the form (a, 0). Its conjugates Hb = (1, b) ·H · (1,−b) consist of elements
of the form (a, (1 − a)b). (In the action on Zp, H

b is the stabilizer of b).
– More generally, if a ∈ Z∗

p has order q, let Na
∼= Zq n Zp be the normal

subgroup consisting of all elements of the form (at, b), and let Ha be the non-
normal subgroup Ha = 〈(a, 0)〉 of size q. Then Ha consists of the elements
of the form (at, 0) and its conjugates Hb

a = (1, b) ·Ha · (1,−b) consist of the
elements of the form (at, (1 − at)b).

To discuss Ap’s representations, fix a generator γ of Z∗
p and let φ : Z∗

p → Zp−1

be the isomorphism φ(γt) = t. Let ωp denote the p’th root of unity e2πi/p. Then
G has p− 1 one-dimensional representations σs which are simply the represen-

tations of Z∗
p
∼= Zp−1 given by σt((a, b)) = ω

tφ(a)
p−1 and one (p − 1)-dimensional

representation ρ. In the multiplicative basis whose indices j, k are elements of
Z∗

p, we have:

ρ((a, b))j,k =

{

ωbj
p k = aj mod p

0 otherwise
, 1 ≤ j, k < p .

We review the construction of these representations in Appendix B.
The affine group — and more generally, the q-hedral groups we discuss below

— are metacyclic groups, i.e. extensions of a cyclic group Zp by a cyclic group Zq .
In [10], Høyer showed how to perform the non-Abelian Fourier transform over
such groups in a polynomial (i.e. polylog(p)) number of elementary quantum
operations. (In fact, he does this only up to an overall phase factor, but this is
sufficient for our purposes.)



Conjugates of the Largest Non-Normal Subgroup. In this section we solve the
Hidden Conjugate Problem, in which we are promised that f is a superposition
over some coset of one of the conjugates Hb of the largest non-normal subgroup
H , and our job is to identify which conjugate, i.e. to identify b. First note that
nρ = dρ|H |/|G| = (p − 1)/p = 1 − 1/p. Then a little calculation shows that,

in the multiplicative basis, π(Hb)j,k = (1/p − 1) ω
b(j−k)
p , 1 ≤ j, k < p. This

is a circulant matrix of rank 1. More specifically, every column is some root
of unity times the vector (ub)j = (1/p − 1) ωbj

p , 1 ≤ j < p. This is also true

of ρ(c) · π(Hb); since ρ(c) has one nonzero entry per column, left multiplying
by ρ(c) simply multiplies each column of π(Hb) by a phase. Therefore, we can
first carry out a partial measurement on the columns, and then transform the
rows by left-multiplying ρ(cH) by the quantum Fourier transform over Zp−1,

Q`,j = (1/p − 1) ω−`j
p−1. We can now infer b by measuring the frequency `. We

observe a given value of ` with probability

P (`) =

∣

∣

∣

∣

∣

∣

1

p− 1

p−1
∑

j=1

ωbj
p ω

−`j
p−1

∣

∣

∣

∣

∣

∣

2

=
1

(p− 1)2

∣

∣

∣

∣

∣

∣

p−1
∑

j=1

e2iθj

∣

∣

∣

∣

∣

∣

2

=
1

(p− 1)2
sin2(p− 1)θ

sin2 θ

where θ =
(

b
p − `

p−1

)

π. Now note that for any b there is an ` such that |θ| ≤
π/(2(p−1)). Since (2x/π)2 ≤ sin2 x ≤ x2 for |x| ≤ π/2, this gives P (`) ≥ (2/π)2.

Finally, the probability that we observed the (p− 1)-dimensional representa-
tion ρ in the first place is nρ = 1 − 1/p. Thus if we measure ρ, the column, and
then ` and then guess that b minimizes |θ|, we will be right Ω(1) of the time.
We boost this to high probability by repeating a polynomial number of times.

Subgroups with Large Index. We focus next on the Hidden Conjugate Problem
for the subgroups Ha where a’s order q is a proper divisor of p−1. Recall that a
given conjugate of Ha consists of the elements of the form (at, (1 − at)b). Then
in the multiplicative basis we have

π(Hb
a)j,k =

1

q

{

ω
b(j−k)
p k = atj mod p for some t

0 otherwise
, 1 ≤ j, k < p .

In other words, the nonzero entries are those for which j and k are in the same
coset of 〈a〉 ⊂ Z∗

p. The rank of this projection operator is thus the number of
cosets, which is the index (p − 1)/q of 〈a〉 in Z∗

p. Since nρ is now q/p, we again
observe ρ with probability nρ rk π(H) = (p− 1)/p = 1 − 1/p.

We will show that we can reconstruct the conjugates of Ha in polynomial
time if a has large order, in particular when the index of 〈a〉 is polylog(p). If
q is prime then Ha is the only non-normal subgroup of Zq n Zp, so we can
completely solve the Hidden Subgroup Problem for these groups. For instance,
if q is a Sophie Germain prime, i.e. one for which 2q+ 1 is also a prime, we can
solve the HSP for Zq n Z2q+1. This establishes Theorem 1.

Following the same procedure as before, we do a partial measurement on the
columns of ρ, and then Fourier transform the rows. After changing the variable



of summation from t to −t and adding a phase shift of e−iθ(p−1) inside the | · |2,
the probability we observe a frequency `, assuming we find ourselves in the k’th
column, is

P (`) =

∣

∣

∣

∣

∣

1
√

q(p− 1)

q−1
∑

t=0

ωbkat

p ω−`atk
p−1

∣

∣

∣

∣

∣

2

=
1

q(p− 1)

∣

∣

∣

∣

∣

q−1
∑

t=0

eiθ(2atk−(p−1))

∣

∣

∣

∣

∣

2

. (2)

Now note that the terms in the sum are of the form eiφ where (assuming w.l.o.g.
that θ is positive) φ ∈ [−θ(p − 1), θ(p − 1)]. If we again take ` so that |θ| ≤
π/(2(p−1)), then φ ∈ [−π/2, π/2] and all the terms in the sum have nonnegative
real parts. We will lower bound the real part of the sum by showing that a
constant fraction of the terms have φ ∈ (−π/3, π/3), and thus have real part
more than 1/2. This is the case whenever atk ∈ (p/6, 5p/6), so it is sufficient to
prove the following lemma:

Lemma 1. Let a have order q = p/polylog(p). Then for any ε > 0 at least

(1/3− ε)q of the elements in the coset 〈a〉k are in the interval (p/6, 5p/6).

Proof. We will prove this using Gauss sums, which quantify the interplay be-
tween the additive and multiplicative behavior of Zp and thus establish bounds
on the distribution of powers of a. Specifically, if a has order q in Z∗

p then for any

integer k 6≡ 0 (modp) we have
∑q−1

t=0 ω
atk
p = O(p1/2) = o(p). (See Appendix C.)

Now suppose s of the elements x in 〈a〉k are in the set (p/6, 5p/6), for which
Reωx

p ≥ −1, and the other q − s elements are in [0, p/6] ∪ [5p/6, p), for which

Reωx
p ≥ 1/2. Thus we have Re

∑q−1
t=0 ω

atk
p ≥ (q/2) − (3s/2). If s ≤ (1/3 − ε)q

for any ε > 0 this is Θ(q), a contradiction. �

Now that we know that a fraction 1/3− ε of the terms in (2) have real part
at least 1/2 and the others have real part at least 0, we can take ε = 1/12 (say)
and write

P (`) ≥ 1

q(p− 1)

(q

8

)2

=
1

8

q

p− 1
=

1

polylog(p)
.

Thus we observe the correct frequency with polynomially small probability, and
we again boost this to high probability by repeating a polynomial number of
times. This establishes Theorem 2.

3 The q-hedral Groups

In general, if a has multiplicative order q, then we are in the subgroup Zq nZp ⊂
Ap, the q-hedral group. In this section we show that the conjugates ofHa are then
measurement reconstructible — i.e. are information-theoretically reconstructible
from a polynomial number of quantum queries given by a polynomial size quan-
tum circuit, followed by a possibly exponential amount of classical computation.
It follows that subgroups of the q-hedral groups are measurement reconstructible
whenever q has polylog(p) divisors — for instance, Ap (where q = p− 1) if p is a
Fermat prime 2k +1. (Note also that for a prime selected at random in {1, . . . , n}



for large n, p − 1 has no more than polylog(p) divisors with high probability.)
This generalizes the results of Ettinger and Høyer [2] who showed this for the
case q = 2, i.e. the dihedral groups.

The representations of Zq nZp include the q one-dimensional representations
of Zq given by σ`((a

t, b)) = ω`t
q , ` ∈ Zq and (p− 1)/q q-dimensional representa-

tions ρk,

ρk(au, b))s,t =

{

ωkasb
p t = s+ u mod q

0 otherwise
, 0 ≤ s, t < q .

Here k ranges over the elements of Z∗
p/Zq , or, to put it differently, k takes values

in Z∗
p but ρk and ρk′ are isomorphic if k and k′ are in the same coset of 〈a〉.

These ρk are simply the (p − 1)/q diagonal blocks of the (p − 1)-dimensional
representation ρ of Ap (this is perhaps a little easier to see in the additive basis).

Then summing ρk over the elements (at, (1 − at)b) gives πk(Hb
a)s,t =

(1/q) ω
k(as−at)b
p , 0 ≤ s, t < q. This is again a matrix of rank 1, where each

column (even after left multiplication by ρk(c)) is some root of unity times the
vector (uk)s = (1/q) ωkasb

p . Note that nρ = q/p.
We now wish to show that there is a measurement whose outcomes given

two distinct values of b have polynomial total variation distance. First, we per-
form a series of partial measurements as follows: (i.) measure the name of the
representation; (ii.) measure the column of the representation; (iii.) perform a
POVM with q outcomes, in each of which s is u or u+1 mod q for some u ∈ Zq .
The total probability we observe one of the q-dimensional representations, since
there are (p − 1)/q of them, is nρ(p − 1)/q = 1 − 1/p. Then these three partial
measurements determine k, remove the effect of the coset, and determine that s
has one of two values, u or u+ 1. Up to an overall phase we can write this as a
two-dimensional vector

1√
2

(

ωkaub
p

ωkau+1b
p

)

We now apply the Hadamard transform (1/
√

2)
(

1 1
1−1

)

and measure s. The prob-

ability we observe u and u + 1 is then cos2 θ and sin2 θ respectively, where
θ = (πkau(a − 1)b)/p. Now when we observe a q-dimensional representation,
the k we observe is uniformly distributed over Z∗

p/Zq, and when we perform the
POVM, the u we observe is uniformly distributed over Zq . It follows that the
coefficient m = kau(u−1) is uniformly distributed over Z∗

p. For any two distinct
b, b′, the total variation distance is then

1

2(p− 1)

∑

m∈Z∗

p

(
∣

∣

∣

∣

cos2
πmb

p
− cos2

πmb′

p

∣

∣

∣

∣

+

∣

∣

∣

∣

sin2 πmb

p
− sin2 πmb

′

p

∣

∣

∣

∣

)

=
1

p− 1

∑

m∈Zp

∣

∣

∣

∣

cos2
πmb

p
− cos2

πmb′

p

∣

∣

∣

∣

=
1

2(p− 1)

∑

m∈Zp

∣

∣

∣

∣

cos
2πmb

p
− cos

2πmb′

p

∣

∣

∣

∣

≥ 1

4(p− 1)

∑

m∈Zp

(

cos
2πmb

p
− cos

2πmb′

p

)2

=
p

4(p− 1)
>

1

4
.



(Adding the m = 0 term contributes zero to the sum in the second line. In the
third line we use the facts that |x| ≤ x2/2 for all |x| ≤ 2, the average of cos2 is
1/2, and the two cosines have zero inner product.)

Since the total variation distance between any two distinct conjugates is
bounded below by a constant, by standard results in probability theory we can
distinguish between the p different conjugates with only O(log p) = poly(n)
queries. Thus hidden conjugates in q-hedral groups are measurement recon-
structible, completing the proof of Theorem 3.

What remains to be seen is that in a group of form Zq nZp, where q | p−1, it
is possible to determine the order of a hidden subgroup. Were this possible, based
on Theorem 3, we could (measurement) reconstruct arbitrary hidden subgroups
of Zq n Zp. Let H be a hidden subgroup of Zq n Zp given by the oracle f :
Zq n Zp → S, and let pα1

1 . . . pαk

k be the prime factorization of q, in which case
k ≤ ∑

i αi = O(log q). For each i ∈ [k], we will determine if pαi

i | |H |. This
suffices to determine |H |, at which point the subgroup H can be determined by
Theorem 3.

By initially applying the techniques of [9] (the weak standard method), we
may (fully) reconstruct H if H is a non-trivial normal subgroup. (This follows
because these semi-direct product groups have the special property that if A is
a non-trivial normal subgroup and A ⊂ B, then B is normal; in particular, the
normal core

⋂

γ∈G

γCγ−1

of any non-normal subgroup C is the identity group.) It remains to consider
non-normal subgroups H . Recall that in this case, H is cyclic and |H | is equal
to the order of a, where H = 〈(a, b)〉. Now, for each i ∈ [k] and 1 ≤ α ≤ αi, let
Υα

i : Zq n Zp → Zq/pα
i

be the homomorphism given by

Υα
i : (a, b) 7→ apα

i .

Then kerΥα
i = Aα

i , the subgroup of Zq n Zp consisting of all elements whose
orders are a multiple of pα

i . Consider now the function

(f, Υα
i ) : Zq n Zp → S × Zq/pα

i

given by (f, Υα
i )(γ) = (f(γ), Υα

i (γ)). Observe that (f, Υα
i ) is constant (and dis-

tinct) on the left cosets of H ∩ Aα
i and, furthermore, the subgroup H ∩ Aα

i has
order pα if and only if pα divides the order of a. We may then determine if
H ∩Aα

i has order pα by assuming that it does, applying the result of Theorem 3,
and checking the result against the original oracle f . This allows us to deter-
mine the prime factorization of |H |, as desired. Therefore, all subgroups of the
q-hedral groups Zq n Zp are measurement reconstructible, completing the proof
of Theorem 4.

However, as in the dihedral case [2], we know of no polynomial-time algorithm
which can reconstruct the most likely b from these queries.



4 Failure of the Abelian Fourier Transform

Suppose we try to reconstruct subgroups of Ap using the Abelian Fourier trans-
form over the direct product Z∗

p×Zp instead of using Ap’s non-Abelian structure
as a semidirect product. We first consider trying to solve the hidden conjugate
problem for Ha where a has order p− 1.

If a is a generator, the characters of Z∗
p×Zp are simply ρk,`(a

t, b) = ωkt
p−1ω

`b
p .

Summing these over Ha = {(at, (1 − at)b} shows that we observe the character
(k, `) with probability

P (k, `) =
1

p (p− 1)2

∣

∣

∣

∣

∣

∣

∑

t∈Z/(p−1)

ωkt
p−1ω

`(1−at)b
p

∣

∣

∣

∣

∣

∣

2

=
1

p (p− 1)2

∣

∣

∣

∣

∣

∣

∑

x∈Z∗

p

ω
k loga x
p−1 ω−`xb

p

∣

∣

∣

∣

∣

∣

2

.

This is the inner product of a multiplicative character with an additive one,
which is another Gauss sum. In particular, assuming b 6= 0, we have P (0, 0) =
1/p, P (0, ` 6= 0) = 1/(p (p − 1)2), P (k 6= 0, 0) = 0, and P (k 6= 0, ` 6= 0) =
1/(p− 1)2. (See Appendix C.) Since these probabilities don’t depend on b, the
different conjugates Hb

a with b 6= 0 are indistinguishable from each other. Thus
it appears essential that we use the use non-Abelian Fourier transform and the
high-dimensional representations of Ap.

(For the q-hedral groups, when q is small enough it is information-theoretically
possible to reconstruct the subgroup from the Abelian Fourier transform. In fact,
Ettinger and Høyer [2] use the Abelian Fourier transform over Z2 × Zp in their
reconstruction algorithm for the dihedral groups.)

5 Closure Under Extending Small Groups

In this section we prove Theorem 5, that for any polynomial-size group K and
any H for which we can solve the HSP, we can also solve the HSP for any
extension of K by H , i.e. any group G with K CG and G/K ∼= H . (Note that
this is more general than split extensions, i.e. semidirect products H nK.) This
includes the case discussed in [9] of Hamiltonian groups, since all such groups
are direct products (and hence extensions) by Abelian groups of the quaternion
groupQ8 [16]. It also includes the case discussed in [4] of groups with commutator
subgroups of polynomial size, such as extra-special p-groups, since in that case
K = G′ and H ∼= G/G′ is Abelian. Indeed, our proof is an easy generalization
of that in [4].

We assume that G and K are encoded in such a way that multiplication can
be carried out in classical polynomial time. We fix some transversal t(h) of the
left cosets of K. First, note that any subgroup L ⊆ G can be described in terms
of i) its intersection L ∩ K, ii) its projection LH = L/(L ∩ K) ⊆ H , and iii)
a representative η(h) ∈ L ∩ (t(h) · K) for each h ∈ LH . Then each element of
LH is associated with some left coset of L ∩K, i.e. L =

⋃

h∈LH
η(h) · (L ∩K).

Moreover, if S is a set of generators for L ∩K and T is a set of generators for
LH , then S ∪ η(T ) is a set of generators for L.



We can reconstruct S in classical polynomial time simply by querying F on
all of K. Then L∩K is the set of all k such that F (k) = F (1), and we construct
S by adding elements of L ∩ K to it one at a time until they generate all of
L ∩K.

To identify LH , as in [4] we define a new function F ′ on H consisting of the
unordered collection of the values of F on the corresponding left coset of K:
F ′(h) = {F (g) | g ∈ t(h) ·K}. Each query to F ′ consists of |K| = poly(n) queries
to K. The level sets of F ′ are clearly the cosets of LH , so we reconstruct LH by
solving the HSP on H . This yields a set T of generators for LH .

It remains to find a representative η(h) in L ∩ (t(h) · K) for each h ∈ T .
We simply query F (g) for all g ∈ t(h) · K, and set η(h) to any g such that
F (g) = F (1). Since |T | = O(log |H |) = poly(n) this can be done in polynomial
time, and we are done.

Unfortunately, we cannot iterate this construction more than a constant num-
ber of times, since doing so would require a superpolynomial number of queries
to F for each query of F ′. If K has superpolynomial size it is not clear how to
obtain η(h), even when H has only two elements: this is precisely the difficulty
with the dihedral group. This completes the proof of Theorem 5.
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A The Non-Abelian Fourier Transform

To solve the HSP for the non-Abelian groups discussed above, we shall have to
consider the more general setting of non-Abelian Fourier analysis. Here, instead
of the familiar basis functions hk(x) = ωkx

p , which are homomorphisms from
Zp into C, we have representations ρ which are homomorphisms from G into
U(d), the group of unitary d× d matrices with entries in C. We call dρ = d the
dimension of ρ.

We say that two representations ρ : G → U(d) and σ : G → U(d) are
isomorphic if there is a non-singular linear map ι : Cd → Cd for which ρ(g) ◦ ι =
ι ◦ σ(g) for every g ∈ G. Though there are an infinite number of non-isomorphic
representations of a given group G, there is a natural notion of “decomposition”



that applies to such representations; with respect to this notion, a finite group G
has a finite number of “irreducible” representations up to isomorphism, and every
other representation may be expressed in terms of these basic building blocks.
Specifically, we say that a representation ρ : G → U(d) is reducible if there is a
nontrivial subspace {0} ( W ( Cd with the property that ρ(g)(W ) ⊂W for all
g ∈ G. A representation is irreducible if no such subspace exists.

For a given group G, there are only a finite number of irreducible represen-
tations upto isomorphism; we let Ĝ denote a set of irreducible representations
of G containing one from each isomorphism class.

Let f : G→ C be a function and ρ an irreducible representation of G. Then
the Fourier transform of f at ρ, written f̂(ρ), is the operator

f̂(ρ) =

√

dρ

|G|
∑

g

f(g)ρ(g).

The functional notation f̂(ρ) is somewhat misleading, as f̂(ρ) is a dρ×dρ matrix,
the dimension dρ being determined by the representation ρ. By selecting an
orthonormal basis for Cdρ for each ρ, we may associate with f the family of
complex numbers f̂(ρ)ij , where 1 ≤ i, j ≤ dρ; With the constants

√

dρ/|G|, the
linear transformation

f 7→ 〈f̂(ρ)i,j〉ρ∈Ĝ,1≤i,j≤dρ

is in fact unitary.
The Fourier transform of a function of the form (1) is then

f̂(ρ) =

√

dρ

|G||H | ρ(c) ·
∑

h∈H

ρ(h).

As H is a subgroup,
∑

h ρ(h) is |H | times a projection operator (see, e.g., [9]);
we write

∑

h ρ(h) = |H |πH . (Its rank is determined by the number of copies of

the trivial representation in the representation IndG
H1.) With this notation, we

write f̂(ρ) =
√
nρ ρ(c) · πH where nρ = dρ|H |/|G|. For a d× d matrix M , we let

‖M‖ denote the matrix norm given by ‖M‖2
=

∑

ij |Mij |2. Then the probability
that we observe the representation ρ is

∥

∥

∥
f̂(ρ)

∥

∥

∥

2

=
∥

∥

√
nρ ρ(c)πH

∥

∥

2
= nρ ‖ρ(c)‖2 ‖πH‖2

= nρ rk πH ,

where rk πH is the rank of the projection operator πH . See [9] for more discus-
sion.

B Constructing Ap’s Representations; Induced

Representations

In this Appendix we construct the (p − 1)-dimensional representation of Ap by
inducing upward from a one-dimensional representation of the normal subgroup
N ∼= Zp. We begin with a short discussion of induced representations.



Let G be a group, H a subgroup of G, and σ : H → U(d) a representation of
H . We shall define a representation IndG

Hσ of G, the induced representation. Let
Γ = {γ1, . . . , γt} ⊂ G be a left transversal of H in G, so that G = ∪γ∈Γ γH , this

union being disjoint. The representation IndG
Hσ is defined on the vector space

of dimension d|G|/|H | whose elements are formal sums
∑

γ∈Γ γ · vγ , where each

vγ ∈ Cd. Addition and scalar multiplication are given by the rule
∑

γ · uγ +
∑

γ · vγ =
∑

γ · (uγ + vγ) and c
∑

γ · vγ =
∑

γ · cvγ . Then IndG
Hσ is defined by

linearly extending the rule

[

IndG
Hσ(g)

]

γ · vγ 7→ γ′ · σ(h)vγ

where (γ′, h) is the unique pair in Γ ×H so that gγ = γ ′h.
Returning now to the affine group, let τt(1, b) 7→ ωtb

p for 0 ≤ t < p be
the p distinct one-dimensional characters of the normal subgroup N = Zp. Let
H = Ap/N ∼= Z∗

p. Consider the conjugation action of H on these characters:
that is, define (a, 0) � τt(1, b) = τt[(a, 0)(1, b)(a, 0)−1] = τt(1, ab) = τat(1, b).
Note that this action has two orbits, one consisting of the trivial character τ0
and the other consisting of all non-trivial character.

Now, considering the first orbit, consisting of τ0 alone, we see that the isotropy
subgroup is all of H . Now, let ρ0 be the extension of σ0 to all of H (which
makes sense, since it was stable under the H-action). Then for each irreducible

representation σ̌ of H , we get an irreducible representation σ = Ind
Ap

HN (ρ0 ⊗ σ̌).
(Note that this gives rise to the representations σs above.)

Focusing on the other orbit, for simplicity consider σ̌1. Since H is cyclic,
the isotropy subgroup of σ1 is the identity subgroup and this gives rise to the

representation ρ = Ind
Ap

N σ̌1. Now Ind
Ap

N operates on the vector space W =
(1, 0)C ⊕ . . .⊕ (p− 1, 0)C. The action is

[Ind
Ap

N (a, b)] · (i, 0) 7→ σ̌1((ai)
−1b)(ai, 0).

so that

[Ind
Ap

N (a, b)]j,k =

{

ωbj
p k = aj mod p

0 otherwise
, 1 ≤ j, k < p

which is precisely the (p− 1)-dimensional representation ρ in the multiplicative
basis. We can construct the q-dimensional representations of the q-hedral groups
in a similar way.

C Notes on Exponential Sums

The basic Gauss sum bounds the inner products of additive and multiplicative
characters of Fp, the finite field with p elements. Definitive treatments appear
in [14, §5] and [13]. Considering Fp as an additive group with p elements, we
have p additive characters χs : Fp → C, for s ∈ Fp, given by

χs : z 7→ ωsz
p ,



where ωp = e2πi/p is a primitive pth root of unity. Likewise considering the
elements of F∗

p = Fp \ {0} as a multiplicative group, we have p − 1 characters
ψt : F∗

p → C, for t ∈ F∗
p, given by

ψt : gz 7→ ωtz
p−1,

where ωp−1 = e2πi/(p−1) is a primitive p−1st root of unity and g is a multiplica-
tive generator for the (cyclic) group F∗

p.
With this notation the basic Gauss sum is the following:

Theorem 6. Let χs be a multiplicative character and ψt an additive character

of Fp. If s 6= 0 and t 6= 1 then

∣

∣

∣

∑

z∈F∗

p

χs(z)ψt(z)
∣

∣

∣
=

√
p.

Otherwise

∑

z∈F∗

p

χs(z)ψt(z) =











p− 1 if s = 0, t = 1,

−1 if s = 0, t 6= 1,

0 if s 6= 0, t = 1.

See [14, §5.11] for a proof.
This basic result has been spectacularly generalized. In the body of the paper

we require bounds on additive characters taken over multiplicative subgroups of
F∗

p. Such sums are discussed in detail in [13]. The specific bound we require is
the following.

Theorem 7. Let χt be a nontrivial additive character of Fp and a ∈ F∗
p an

element of multiplicative order q. Then

q−1
∑

z=0

χt(a
z) =











O(p1/2), if q ≥ p2/3,

O(p1/4q3/8), if p1/2 ≤ q ≤ p2/3,

O(p1/8q5/8), if p1/3 ≤ q ≤ p1/2.

See [13, §2] for a proof.
Note that in the body of the paper, we use Zp to denote the additive group of

integers modulo p and Z∗
p to denote the multiplicative group of integers modulo

p.


