
CS 106
Spring 2004

Homework 1
Elena Davidson

8 April 2004

Problem 1.1

Let B be a 4 × 4 matrix to which we apply the following operations:

1. double column 1,

2. halve row 3,

3. add row 3 to row 1,

4. interchange columns 1 and 4,

5. subtract row 2 from each of the other rows,

6. replace column 4 by column 3,

7. delete column 1

1.1(a)

x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12

x13 x14 X15 x16

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1

2 0
0 0 0 1

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

(B) (C) (D) (E)

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1 0 0 0
0 1 0 0

-1 -1 1 -1
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1

(F) (G) (H) (I)

To apply the requested operations, we mutliply the matrices listed above. Given a matrix X , we perform the
operation Y X when we want to work on X ’s rows with the matrix Y , and XY when we want to work on X ’s
columns. And so, we perform the following steps:

1. BC

2. D(BC)

3. E(D(BC))

4. E(D(BC))F

5. G(E(D(BC))F)

6. G(E(D(BC))F)H

7. G(E(D(BC))F)H I
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1.1 (b)

To achieve the same result as a product of three matrices, we need to group together the rows operations and
the column operations. That is, perform all the operations that work on the rows in a matrix A, compute
AB, and then multiply ABC for the remaining operations.

Problem 1.3

A square or rectangular matrix R is upper triangular if r i j = 0 for i > j . By considering what space is
spanned by the first n columns of R and using (1.8), show that if R is a non-singular m ×m upper-triangular
matrix, then R−1 is also upper-triangular.
Let Z = A−1. Equation (1.8) gives us

e j =

m∑

i=1

zi j ai .

Furthermore, we know that e j = Az j . In other words, each ei is a column of the identity matrix. Therefore,
considering each Z i as a vector, Z i is some linear combination of A in the first i places and 0 everywhere
else. Z1 takes the form (x1, 0, . . . , 0) for some x1, Z2 takes the form (x2, x3, 0, . . . , 0) for some x2, x3, and
so on. Therefore the matrix Z must have 0’s below the diagonal; it is upper-triangular.

Problem 1.4

Let f1, . . . , f8 be a set of functions defined on the interval [1, 8] with the property that for any numbers
d1, . . . , d8, there exists a set of coefficients c1, . . . , c8 such that

8∑

j=1

c j f j(i) = di , i = 1, . . . , 8.

1.4(a)

Show by appealing to the theorems of this lecture that d1, . . . , d8 determine c1, . . . , c8 uniquely.
If A is the 8 × 8 matrix representing the linear mapping from d1, . . . , d8 to c1, . . . , c8, then consider the
basis matrices e j for j = 1, 2, . . . , 8. For any e j , the operation Be j gives you a unique ci . Furthermore, the
matrix formed by combining all the e j s must have rank = m. Since the e j ’s are bases for the di ’s, we can
use theorem 1.2 directly to see that A maps no two distinct vectors to the same vector.

1.4(b)

Let A be the 8 × 8 matrix representing the linear mapping from data d1, . . . , d8 to coefficients c1, . . . , c8.
What is the i, j entry of A−1?
The i, j entry of A−1 is f j(i).
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Problem 2.1

Show that if a matrix A is both triangular and unitary, then it is diagonal.
Assume that A is upper-triangular. By the definition of unitary, A∗ = A−1. Since A is triangular, we know
from exercise 1.3 that A−1 is also upper-triangular. Moreover, since A is unitary, we know that A∗ is upper-
triangular as well. In order for A and its transpose to be upper-triangular, A must be diagonal. The same
follows if A is lower-triangular.

Problem 2.3

Let A ∈ C
m×m be hermitian. An eigenvector of A is a nonzero vector x ∈ C

m such that Ax = λx for some
λ ∈ C, the corresponding eigenvalue.

2.3(a) (first solution)

Prove that all eigenvalues of A are real.
We have that Ax = λx . Multplying both sides by x ∗ we get

Ax = λx

x∗ Ax = x∗λx

= λ||x ||2

In other words, λ = x∗ Ax/||x ||2. First we need to show that x ∗ Ax is real. We’ll start by showing that x ∗ Ax
is hermitian:

(x∗ Ax)∗ = x∗ A∗(x∗)∗

= x∗ Ax

And so, x∗ Ax is hermitian. Therefore, it must have reals on the main diagonal. We know ||x ||2 is real by
the definition of norm. Therefore, the eigenvalue λ must also be real.

2.3(b) (second solution)

We have Ax = λx . We can rewrite as follows:

Ax = λx

A∗x = λ

x∗ A∗x = λx∗x

Now we can transpose both sides of the first equality:

Ax = λx

x∗ A∗ = λx∗

x∗ A∗x = xλx∗

And so, we have that λ = λ, and so λ must be real.
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2.3(b)

Prove that if x and y are eigenvectors corresponding to different eigenvalues, then x and y are orthogonal.
By definition, x and y are orthogonal if x · y = 0. We have Ax = λ1x and Ay = λ2y with λ1 6= λ2.
Therefore we get

Ax · y = x · AT y

= x · Ay

λ1x · y = x · λ2y

(λ1 − λ2)(x · y) = 0

And since λ2 6= λ2, it must be the case that x · y = 0.

Problem 2.4

What can be said about the eigenvalues of a unitary matrix?
All eigenvalues of a unitary matrix lie on the unit circle, and so must have length 1. We can show this with
the property that unitary matrices don’t stretch or dilate the matrix, that is: ||Ax || = ||x ||. And so we get:

||Ax || = ||x ||

||Ax || = ||λx || = |λ|||x ||

And so we get that |λ|||x || = ||x ||, so λ must be on the unit circle.

Problem 2.5

Let S ∈ C
m×m be skew-hermitian, i.e., S∗ = −S.

2.5(a)

Show by using exercise 2.1 that the eigenvalues of S are pure imaginary.
We have Ax = λx . Since A∗ = −A we get

x A∗x = x − Ax

= x − λx

= x − λx,

telling us that λ = −λ and so λ must be imaginary.

2.5(c)

Show that Q = (I − S)−1(I + S), known as the Cayley transform of S, is unitary.
We have

QQ∗ = (I − S)−1(I + S)(I − S)(I + S)−1.
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Now we need to show that (I + S)(I − S) = (I − S)(I + S), which we can do by applying distribuve laws
of matrix arithmetic:

(I + S)(I − S) = (I + S)I − (I + S)S

= (I + S)I − (I S + SS)

= I + S − S − SS

= I + S + S∗ + S∗S

and

(I − S)(I + S) = I (I + S) − S(I + S)

= I (I + S) − (SI + SS)

= I + S − S − SS

= I + S + S∗ + S∗S

= (I + S)(I − S)

Now that we have (I + S)(I − S) = (I − S)(I + S), we can amend the original equation:

QQ∗ = (I − S)−1(I + S)(I − S)(I + S)−1

= (I − S)−1(I − S)(I + S)(I + S)−1

= I

And so we conclude that Q is unitary.
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