CS 106: Homework 2

April 9, 2004

Page 24, problem 1

Suppose W is an arbitrary nonsingular matrix and define $||x||_W$ as ||Wx|| for some norm $||\cdot||$. Prove that $||\cdot||_W$ is a norm.

To prove that $|| \cdot ||_W$ is a norm, we need to show that it satisfies three properties.

(1) $||x||_W \ge 0$ and $||x||_W$ if and only if x = 0.

Let b = Wx. Since W is nonsingular, b = 0 if and only if x = 0. Since $|| \cdot ||$ is a norm, ||b|| = 0 if and only if b = 0. Therefore, ||b|| = 0 if and only if x = 0. For $b \neq 0$, ||b|| > 0. We have just shown that $||Wx|| \ge 0$ and ||Wx|| = 0 if and only if x = 0.

(2) $||x + y||_W \le ||x||_W + ||y||_W$

We use the linearity of the norm $|| \cdot ||$ and the linearity of W, as follows.

$$||x + y||_{W} = ||W(x + y)|| = ||Wx + Wy|| \le ||Wx|| + ||Wy|| = ||x||_{W} + ||y||_{W}.$$

(3) $||\alpha x||_W \le |\alpha| ||x||_W$

Again, we use the linearity of the norm $|| \cdot ||$ and the linearity of *W*.

 $||\alpha x||_{W} = ||W(\alpha x)|| = ||\alpha W x|| \le |\alpha| ||W x|| = |\alpha| ||x||_{W}.$

Page 24, problem 2

Let $|| \cdot ||$ be any norm on \mathbb{C}^m and also the induced matrix norm on $\mathbb{C}^{m \times m}$.

Suppose $A \in \mathbb{C}^{m \times m}$ and λ is the largest eigenvalue of A. Let $x \in \mathbb{C}^m$ be the corresponding eigenvector such that $Ax = \lambda x$. Then taking the norm and using linearity, $||Ax|| = ||\lambda x|| = |\lambda| ||x||$, so

$$|\lambda| = \frac{||Ax||}{||x||} \,.$$

The induced matrix norm ||A|| is the supremum, or least upper bound, of the set

$$\left\{ \frac{||Ax||}{||x||} \mid x \in \mathbb{C}^m \text{ and } x \neq 0 \right\} ,$$

so it is greater than or equal to every element in the set. Since $|\lambda|$ is in the set, $|\lambda| \le ||A||$ and $|\lambda| = \rho(A)$ because λ is the largest eigenvalue of A. Therefore,

$$\rho(A) \le ||A|| \; .$$

Page 30, problem 1

The approach to finding the SVD of a matrix A follows four steps: (1) find the eigenvectors and eigenvalues of AA^T and A^TA , (2) form matrix Σ from the square roots of the eigenvalues, (3) form matrices U and V from the eigenvectors, and (4) adjust the signs of the eigenvectors as necessary. In the solutions below, the SVD shown is the full SVD.

(a) Let $A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$. Then $AA^T = A^T A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$. The eigenvalues of AA^T are 9 and 4 so the diagonal matrix of singular values is $\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. The eigenvectors of AA^T are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so the SVD of A is $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

after adjusting the sign.

(b) Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then $AA^T = A^T A = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}$. The eigenvalues of AA^T are 9 and 4 so the diagonal matrix of singular values is $\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. The eigenvectors of AA^T are $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so the SVD of A is $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Note that the arrangement of the eigenvectors of AA^T in U corresponds with the arrangement of their associated singular values in Σ .

(c) Let
$$A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
. Then $AA^T = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A^T A = \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$. The nonzero eigenvalue of AA^T
and $A^T A$ is 4, so the diagonal matrix of singular values is $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. The nonzero eigenvector
of AA^T is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and the nonzero eigenvector of $A^T A$ is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so the SVD of A is
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

Note that the vector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ was added to V instead of the zero vector to make V orthogonal.

(d) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then $AA^T = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ and $A^TA = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. The nonzero eigenvalue of AA^T and A^TA is 2, so the diagonal matrix of singular values is $\Sigma = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$. The nonzero eigenvector

of
$$AA^T$$
 is $\begin{bmatrix} 1\\0 \end{bmatrix}$ and the nonzero eigenvector of A^TA is $\begin{bmatrix} \sqrt{2}/2\\\sqrt{2}/2 \end{bmatrix}$, so the SVD of A is
$$A = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0\\0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2\\\sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix}.$$

Note that the vectors corresponding to the zero singular value were added to U and V to make them orthogonal.

(e) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Then $AA^T = A^T A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. The nonzero eigenvalue of AA^T and $A^T A$ is 4, so the diagonal matrix of singular values is $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. The nonzero eigenvector of AA^T and $A^T A$ is $\begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$, so the SVD of A is $A = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix}$.

Page 30, problem 4

Both directions are not true. Clearly, if $A = QBQ^*$ and the SVD for B is $B = U\Sigma V^*$, then

$$A = QBQ^* = QU\Sigma V^*Q^* = (QU)\Sigma (QV)^*$$

is a factorization of A using the singular values of B. The factorization is an SVD for A because the matrices QU and QV are unitary. So we have shown one direction: unitarily equivalent implies same singular values.

The other direction is not true. As a counterexample, let *B* be a non-square matrix, such as the matrix from problem 1 part c. In the reduced SVD of *B*, the singular values are in a square diagonal matrix $\hat{\Sigma}$. We can construct a square matrix *A* with the same singular values as *B* by multiplying $\hat{\Sigma}$ by unitary *U* and *V*. Clearly, no unitary *Q* exists such that $A = QBQ^*$ because *A* and *Q* are square and *B* is not square.