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Abstract
The Cooley-Tukey FFT can be interpreted as an algorithm for the

efficient computation of the Fourier transform for finite cyclic groups, a
compact group (the circle), or the non-compact group of the real line.
These are all commutative instances of a “Group FFT”. We give a brief
survey of some recent progress made in the direction of noncommutative
generalizations and their applications.
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1. Introduction
The Fast Fourier Transform or FFT is an efficient algorithm to com-

pute the Discrete Fourier Transform (DFT). This is a linear transfor-
mation, specifically realized in terms of the the (n× n) DFT matrix:

f̂ =
(
e2πijk/n

)
jk

f. (1)

which takes a vector of samples realized as a function f ∈ Cn, and
returns a collection of Fourier coefficients f̂ ∈ Cn.

The DFT plays a crucial role in a wide range of applied activities,
principally in the analysis of time series data. These natural quan-
tifications of temporal phenomena presumably owe their origins to the
observations of the first priestly mathematicians who made it their work
to chart the course of heavenly bodies in the construction of the first
calendars. Other early examples would include the analysis of the time
course of temperatures, rainfall, and various meteorological data, pos-
sibly in the service of the study of the time series of agriculture (crop
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yields, etc.). Closer to our hearts and heads are the time series of health
that are our EKGs and EEGs, which are perhaps in turn, influenced by
the the seemingly random walk that are the time series which reflect the
health of the financial markets.

One approach to time series analysis is to view these phenomena
as well-explained as the superposition of basic periodic phenomena:
weather as a combination of diurnal and annual effects, blood pressure or
hormone levels tracking some invisible and evolved pacemaker. Herein
the DFT is that transformation of the data that teases out the period-
icities, taking the discrete or discretized signal and transforming it to a
representation in terms of weighted frequencies.

Direct calculation of a DFT of length n is effected by the multiplica-
tion of the n× n DFT matrix with a vector of length n and so requires
n2 operations. When n is large even this quadratic calculation is too
large. The great success of the FFT is the reduction in complexity to
O(n log2 n) operations (with implicit small constant).

Brief History of the Classical FFT
The original FFT was indeed due to Gauss, and has the astronomi-

cal (although not religious) origins indicated above. Its story provides
another proof that necessity is indeed often the mother of invention.
Gauss was confronted with the computationally daunting problem of in-
terpolating – by hand! – the periodic orbit of the asteroid Ceres, which
had suddenly gone missing. Gauss determined a means of building the
interpolation on n points from two interpolations of n/2 points, and in
so doing discovered the basic step in what is now the standard divide-
and-conquer efficient algorithm. His discovery languished for centuries
(cloaked in Latin and hidden away in little known writings) while a
few centuries later it was rediscovered by (among others) Danielson and
Lanczos in the service of crystallography but surely most famously, by
Cooley and Tukey [12] in the mid 1960s, this time not in the service of
the discovery of missing heavenly bodies, but instead, for the detection
of hidden nuclear tests in the Soviet Union, as well as stealthy Soviet
nuclear submarines. For full histories see [22].

The technical motivations for Cooley and Tukey’s rediscovery were

(1) The efficient computation of the power spectrum of time series
(especially sampled time series of very long length, so equivalently,
the calculation of high frequency contributions) and

(2) The efficient filtering (smoothing).
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Item (2) is equivalent to the efficient computation of (cyclic) convo-
lution. For vectors f and g of length n this is defined as

f ? g(x) =
n−1∑
y=0

f(x− y)g(y)

where the arguments are interpreted as integers mod n. (Linear convo-
lution is that which corresponds to the generation of a vector of length
2n from f by interpreting the samples f(i), g(k) as coefficients in a poly-
nomial of degree n − 1, and then asking for the coefficient of xk in the
product. Note that this could be obtained by computing cyclic convolu-
tion of f and g zero-padded to vectors of length 2n.)

Note that direct computation of the convolution requires n2 opera-
tions. The identity

f̂ ? g(k) = f̂(k)ĝ(k) (2)

shows how application of the DFT permits the filtering of f to be per-
formed directly in the frequency domain via the assignation of a par-
ticular frequency profile for g. When ĝ takes only values zero and one,
it has the form of a bandpass filter, and if the ones are restricted to a
subsequence of indices, this nonzero interval is the passband. Lowpass
filters restrict the passband to an initial segment and a terminal segment
for highpass filters.

The FFT enables fast convolution via the algorithm

f, g −→ f̂ , ĝ −→ f̂
⊙

ĝ −→ f ? g

where
⊙

is meant to indicate pointwise multiplication of the two vectors
it separates. Note that the last step is accomplished via an inverse FFT,
so that in total, the algorithm requires three FFTs and a single n point
pointwise multiplication for a total of O(n log n) operations.

Group Theoretic Interpretations
“The FFT” is actually a family of algorithms, all designed to com-

pute efficiently the DFT (1). This linear transformation can be cast
as a particular instance of any of a variety of mathematical operations,
but the focus in this chapter is a group theoretic, indeed, representation
theoretic point of view. Within this, there are at least three differ-
ent interpretations, corresponding to either the case of finite, compact,
or non-compact groups. We summarize these below, for each of them
presents its own challenges for generalization.

(1) Finite Groups – In this setting we view f as a function on the
cyclic group of order n, Cn (isomorphic to Z/nZ). The FFT is the
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efficient change of basis algorithm that takes a function written in
terms of the basis of delta functions and re-expresses it in terms
of the basis of sampled exponentials,

{
∑

x∈Cn

f(x)δx} −→ {
∑

f̂(k)ek}

where ek(j) = e2πijk/n.

(2) Compact Groups – In this case, the vector f is viewed as sam-
ples of a function on the circle S1 (i.e., samples of a periodic
function). Any such function has a Fourier expansion, f(t) =∑

`∈Z f̂(`)e−2πi`t where the Fourier coefficients are computed by
an integral

f̂(`) =
∫ 1

0
f(e2πit)e2πi`tdt.

In general, the FFT can be used to compute efficiently an approx-
imation to these Fourier coefficients, but in the interesting ban-
dlimited case, in which the function’s Fourier expansion is finite
(i.e., there exists B ≥ 0 such that f̂(`) = 0 for ` ≥ B), there is an
exact quadrature or sampling rule that provides an exact formula
for the (potentially) nonzero Fourier coefficients in terms of a DFT
of length 2B + 1.

(3) Non-compact Groups – In this last case, we view our discrete
set of samples as arising from a complex-valued function f defined
on the real line R. Once again, the Fourier transform is a linear
transformation from time (or space) to frequency, this time given
as the integral operator (for each x),

f̂(x) =
∫

R
f(y)e−2πiyxdy.

As in the compact case the DFT might be used to approximate
this integral, and once again there is a bandlimited theory (i.e.,
the case in which the Fourier transform only has finite support).
In this case, the function f is determined by its equispaced sam-
ples along the entire real line (i.e., so-called “Shannon sampling”)
Consequently, the FFT provides a means for an efficient and quan-
tifiable approximation to the computation of f ’s frequency content.

In summary, the FFT makes possible the efficient analysis of (1) dis-
crete periodic data viewed as a function on the discrete circle that is a
cyclic group of finite order (Cn) and (2) continuous periodic data, viewed
as a function on the circle and (3) continuous data, viewed as a function
on the line.
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Noncommutative generalizations
The groups Cn, S1, and R are all commutative groups, i.e., the law

which we combine them obeys a commutative rule: x + y = y + x. Each
of the above commutative group theoretic interpretations has, over the
past generation, found generalization to the noncommutative setting,
and the purpose of this chapter is to provide a window into this work.

Abstractly, a group is simply a set closed under some associative multi-
plication rule such that there is an identity element, and to each element
there is an inverse. Classically, these arose as the symmetries of roots of
polynomials, i.e., those arithmetic transformations that leave invariant
a given polynomial, and from this they grew to encompass the notion
of symmetry throughout mathematics and physics. They are in general
noncommutative, i.e., usually xy 6= yx (think matrices!). As indicated
above, they come in at least three general flavors - the three in which
we are interested: Finite, Compact and Non-compact.

(1) Finite groups – The most familiar commutative examples are the
aforementioned cyclic groups, Cn, while of the noncommutative
examples, the symmetric groups, Sn, the group of permutations of
n elements, commonly realized as the group of all card shuffles of
deck of size n is perhaps the most familiar.

(2) Compact groups – Standard examples come from the matrix
groups whose entries are bounded in size. The orthogonal groups
O(n) and the special orthogonal groups SO(n) (also called rota-
tion groups – symmetries of the n − 1-dimensional sphere), and
their complex analogues – unitary groups U(n) and special uni-
tary groups SU(n). With their length-preserving properties they
are effectively the symmetries of space.

(3) Non-compact groups – The invertible complex or real matrices,
GLn(C) or GLn(R) are well-known examples, and within these,
the Euclidean motion groups are particularly useful. These are

(for any n) the matrices of the form
(

a b
0 1

)
where a ∈ SO(n)

and b ∈ Rn. These occur naturally as symmetries of n-dimensional
affine space.

Noncommutative DFTs. Given a complex-valued function defined
on a group G, its Fourier decomposition (analysis) is meant to be a
rewriting in terms of a basis of functions that are nicely adapted to
translation via group elements. It is in this sense a symmetry-guided
decomposition.
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In the commutative case we have eigenfunctions of translation: If
e(x) = e2πix, then

Tye(x) = e(x− y) = e−2πiye(x)

where Ty indicates the translation (according) operator.
In the noncommutative case there are no simultaneous eigenfunctions

for all translation operators. This is both the source of frustration, as
well as the spur to art for the theory and application of the representation
theory of noncommutative groups. This forces us to look for the next best
thing which is closure of some linear space under the translation action.
That is, a basis of functions ek(x) on the group that have the property

Tyek(x) = ek(xy−1) =
∑

`

Ty(k, `)e`(x).

In this way we see that the eigenfunctions are naturally replaced by
functions that act like, and bear the name of matrix elements Ty(k, `),
and it is essentially these functions which replace the sampled expo-
nentials that create frequency space in the commutative case. When
grouped together they give matrix representations of the group and com-
prise what is called the dual of the group (denoted Ĝ). Their study is
the subject of group representation theory.

So in general, we have, for any function f defined on a finite group
G, the notion of a Fourier expansion

f(x) =
∑
ρ∈Ĝ

cρ

∑
k,`

f̂(k, `)Tx(k, `) (3)

where cρ is some constant depending on an irreducible representation
ρ, and the f̂(k, `) are the Fourier coefficients, and the matrix elements
(which depend on x) now span the analogue of frequency space. The
Fourier transform computes these Fourier coefficients, and it amounts to
computing the discrete inner product of the function with the new basis
of irreducible matrix elements.

Should G be compact, the sum is infinite (in analogy with the sum
over the integers in the case of the circle) while if G is non-compact,
this sum is in general some sort of integral (cf. [9] for pointers to basic
representation theory references).

This new basis effects convolution in a manner akin to the commuta-
tive case:

f̂ ? g(k, `) =
∑
m

f̂(k, m)ĝ(m, `) (4)

where f ? g(x) =
∑

y∈G f(xy−1)g(y).
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Organization of this chapter
The majority of what follows focuses on the case of finite groups, for

most of the progress has been in this area. This is the content of next
section. Included are generalizations of both Cooley-Tukey FFT (deci-
mation in time) in the guise of separation of variables group FFTs, as
well as the Gentleman-Sande FFT (decimation in frequency). We also
touch upon the large body of recent work devoted to the development of
quantum (finite group) FFTs. Section three is devoted to compact group
FFTs, almost exclusively compact Lie groups, while Section four dis-
cusses recent work in the difficult, but tremendously useful noncompact
case. Indeed, this raises the issue of both the utility and applicability of
these algorithms, for while the abstract development of algorithms has
epistemological value, it is even of greater interest when motivated and
subsequently applied to real problems. With this in mind, each section
contains some indication and discussion of applications, and indeed, we
hope that this chapter might inspire many new uses.

2. Finite group FFTs
As mentioned, when G is finite and commutative, the number of oper-

ations required is bounded above by O(|G| log |G|). For arbitrary finite
groups G, upper bounds of O(|G| log |G|) remain the holy grail in group
FFT research. Implicit in the big-O notation is the idea that a family
of groups is under consideration, with the size of the individual groups
going to infinity. In 1978, A. Willsky provided the first noncommutative
example by showing that certain metabelian groups had an O(|G| log |G|)
Fourier transform algorithm [55].

Two of the most important algorithms in the commutative case are
the Cooley-Tukey FFT and the Gentleman-Sande FFT, the former of-
ten described as decimation in time, while the latter as decimation in
frequency, their similarity reflected in a natural isomorphism between
the group and its dual that exists in the finite commutative case. In this
section we describe in some detail the separation of variables approach
[35] which generalizes the former, and an isotypic projection algorithm
[32] which generalizes the latter.

Applications
While the applications of Fourier analysis on commutative groups is

now legion (see the Introduction in [8] for a truly mind-boggling list!),
for finite noncommutative groups the list is still short, but constantly
growing.



8

To date, the Fourier analysis on the symmetric group Sn seems to
have found the most applicability. It has has been proposed and used
to analyze ranked data. In this setting respondents are asked to rank
a collection of n objects. As a result, each participant in effect chooses
a permutation of the initially ordered list of objects. The counts of
respondents choosing particular rankings then gives rise to a function
on Sn for which Fourier analysis provides a natural generalization of the
usual spectral analysis applied to a time series. Diaconis has used this
to study voting data (cf. [14] for a discussion of this example, as well
as others). More recently, Lafferty has applied this to the development
of conditional probability models to analyze some partially ranked data
[27].

In communications, Fourier analysis on finite matrix groups, SL2(p),
the group of two-by-two matrices with determinant one with entries in
a finite field has made possible new developments in the area of low
density parity check (LDPC) codes [28], and also proved instrumental in
the construction of expander graphs that provide models for networks
with high connectivity, but relatively small numbers of links.

Cooley-Tukey revisited
The separation of variables approach generalizes the decimation in

time FFT, which is essentially the guts of the Cooley-Tukey FFT.
Assuming that n = pq (not necessarily prime), then decimation in

time refers to the factorization of our time index ` as

` = `1q + `2 (0 ≤ `1 < p, 0 ≤ `2 < q) (5)

which is coupled with a corresponding factorization of the frequency
index k as

k = k1 + k2p (0 ≤ k1 < p, 0 ≤ k2 < q) (6)

so that
f̂(k) =

∑
`2

e2πi`2k
∑
`1

e2πi`1k1/pf(`1, `2) (7)

where f(`1, `2) = f(`1q + `2).
Notice that rewrites a “one-dimensional” computation as a “two-

dimensional” computation. The FFT organizes the calculation into two
stages:

Stage 1: For all k1, `2 compute

f̃(k1, `2) =
∑
`1

e2πi`1k1/pf(`1, `2) (8)
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This requires at most pq2 operations.

Stage 2: For all k1, k2 compute

f̂(k1, k2) =
∑
`2

e2πi`2(k1+k2pf̃(k1, `2) (9)

This requires at most p2q operations.

In toto, this gives an algorithm which requires pq(p + q) operations,
rather than (pq)2, providing savings as long as factorization is possible.

This approach generalizes nicely. Decimation in time is naturally
replaced by group factorization, (first generally observed by Beth [5]),
but the concomitant factorization of the dual (frequency) requires a little
work. For this the machinery of Bratteli diagrams has proved to be
of immense utility. For illustration we’ll revisit Cooley-Tukey in this
setting.

•
•
•
•

•
•
•

•
•
•

ggOOOO

OOOO
oo

wwooo
o

ooo
o

ggNNNNN

NNNNN

ffMMMMM

MMMMM

eeKKKKKK

KKKKKKyysss
sss

sss
sss

xxqqqqq

qqqqq

wwppppp

ppppp

1

e0

e1

e2

e0

e1

e2

e3

e4

e5

C6 C3 C1

Figure 1. The Bratteli diagram for C6 > C3 > C1.

In brief, the diagram above reflects a chain of subgroups C6 > C3 >
1, the nodes correspond to representations (frequencies) and one node
is connected to another if when restricted to that subgroup it gives
that corresponding representation. For example, evaluation of e5 on
the multiples of 2 (which comprise the copy of C3 in C6) is equivalent
to simply evaluating e2 on C3.

A full path in the Bratteli diagram is now a frequency, and the factor-
ization (6) gives a labeling of the legs that make up the path. Stages 1
and 2 above can now be reinterpreted diagrammatically, Stage 1 requires
the computation over all initial paths k1 and subgroup elements `1, while
Stage 2 becomes a computation over all coset representatives `2 and full
paths (k1, k2).
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Separation of variables
As described in [35] in the noncommutative case separation of vari-

ables takes on a general form that requires more elaborate Bratteli dia-
grams. Once again, the initial data is a chain of subgroups Gn > . . . , >
G1 > G) = {1}, but the nodes at level i now correspond to matrix rep-
resentations of Gi. A node η at level i is connected to ρ at level i + 1 by
a number of arrows equal to the multiplicity of η in ρ|Gi.

••
•

•

•

•

•

•
•
•
•
•

LLLLL

UUUUU
UUUUU

rrr
rr

iiiii
iiiii

rrr
rrLLLLL

LLLLLrrr
rr

iiiii

UUUUU

φ
(1)

(2)

(1,1)

(3)

(2,1)

(1,1,1)

(4)

(3,1)

(2,2)

(2,1,1)

(1,1,1,1)

Figure 2. The Bratteli diagram for S4 > S3 > S2 > 1.

For example, matrix representations for the group Sn correspond to
partitions of n, hence the labeling in the Bratteli diagram for the sub-
group chain S4 > S3 > S2 > 1in Figure 2. Notice that the partition
(2, 2) in Figure 2 reveals that full paths are no longer uniquely described
by their endpoints.

The arrows then from η to ρ correspond to mutually orthogonal Gi-
equivariant maps of a given irreducible vector space. In this way does
each full path in the diagram correspond to a basis vector of an irre-
ducible representation of G. Bases indexed in this fashion are called
Gel’fand-Tsetlin bases.

Formally, this creates an isomorphism between the ‘path algebra of
the Bratteli diagram and the chain of semisimple algebras defined by
the succession of group algebra inclusions C[Gi] ↪→ C[Gi+1]. In this
way the group algebra C[Gn] is realized as a multimatrix algebra (see eg.
[20]).

Matrix elements are now indexed by pairs of paths with a common
endpoint. The beauty of the Bratteli diagram formalism lies in the
convenient characterization it gives for all types of structured matrices
which can arise through the use of Gel’fand-Tsetlin bases.

To begin, consider a ∈ Gi ≤ Gn. According to the above explanation,
the entries of ρ(a) are indexed by pairs of paths from 1 to ρ in the
corresponding Bratteli diagram. Since a ∈ Gi, the matrix entry ρuv(a)
can be nonzero only when paths u and v intersect at the level i, i.e., at
Gi, and agree from level i to level n. In this case the matrix coefficient
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ρvw(a) is independent of the subpath from level i to n. This is precisely
the diagrammatic realization of a block diagonal matrix with certain
equal sub-blocks. It is for this reason that these are also sometimes
called adapted bases.

For another example, consider the situation in which a ∈ Gn central-
izes Gj . Using the path algebra formalism, it is not too difficult to show
that in this case ρuv(a) can only be nonzero when u and v agree from
level 0 to level j, then varying freely until they necessarily meet at ρ
at level n. Here the matrix coefficient depends only the pairs of paths
between levels j and n.

Finally, any factorization of the group, say into elements in subgroups
of the chain as well as their centralizers then gives a factorization of rep-
resentations into sums of products of matrix elements, which by the
previous discussion are only nonzero in case very particular compatibil-
ity relations are satisfied among the corresponding sets of contributing
paths. Complexity estimates are then computed in terms of counts of
compatible diagrams, and also indicate a freedom of choice among a
range of possible orders of evaluation, over which the complexity esti-
mates may vary (see eg. [29, 36] for the case of the symmetric group).
The full formalism [29, 34] phrases all of this in the language of bilin-
ear maps and bears some resemblance to the fundamental FFT work of
Winograd [56].

State of the art. This separation of variables approach and its even
more elaborate successors have been responsible for the fastest known
algorithms for almost all classes of finite groups, including the symmet-
ric groups [29] and their wreath products [35]. These are among the
classes of groups for which O|G| logc |G| Fourier transform algorithms
are known. Other examples include the supersolvable groups [3], while
the algorithms for finite matrix groups and Lie groups of finite type still
have room for improvement[33, 36].

Finite group quantum FFTs. By now there are many books and
surveys available as introductions to quantum computing (see eg. [] and
the many references therein). Suffice to say that formally, the problem of
computing a Fourier transform on a finite group in the quantum setting
looks formally much like the classical setting. Using the usual bra-ket
notation, over an arbitrary finite group G, this analogously refers to the
transformation taking the state

∑
z∈G

f(z) |z〉 to the state
∑
ω∈Ĝ

f̂(ω)ij |ω, i, j〉 ,
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where f : G → C is a function with ‖f‖2 = 1 and f̂(ω)ij denotes
the i, jth entry of the Fourier transform at the representation ω. The
collection {|v〉}v represent a set of basis vectors for the Hilbert space in
question.

To date, the main applications of quantum computing, or more pre-
cisely, the advantages attributed to quantum computing, have relied on
the use of commutative Fourier analysis for the discovery of hidden peri-
odicities. This is similar in spirit to the applied motivations behind the
implementation of classical Fourier analysis, tasked to the revelation of
the periodicities whose superposition comprise the Fourier representa-
tion of a given time series.

In the quantum setting “hidden periodicity” refers to the existence
of a subgroup H in a given commutative group G, such that for a par-
ticular function f defined on G, f is invariant under translation by the
hidden subgroup, or equivalently, f is constant on cosets of some non-
trivial subgroup H. For example, in Shor’s famous quantum factoring
algorithm [51] G is the cyclic group Z∗

n where n is the number we wish
to factor, f(x) = rx mod n for a random r < n, H is the subgroup of Z∗

n

of index order(r). His quantum solution to the discrete log problem uses
Zn × Zn for G. Simon’s algorithm for the “XOR-mask” oracle problem
[52] G is Zn

2 with H given by a subgroup of order 2n−1.
Interest in noncommutative HSPs derives from the relation to the

elusive graph isomorphism problem: given undirected graphs A and B,
determine if they are related by a simple permutation of the vertices
(which preserves the connectivity relations). It would be sufficient to
solve efficiently the HSP over the permutation group Sn in order to
have an efficient quantum algorithm for graph automorphism (see, e.g.,
Jozsa [24] for a review). This was the impetus behind the development
of the first noncommutative quantum FFT [4] and is, to a large degree,
the reason that the noncommutative HSP has remained such an active
area of quantum algorithms research.

Most (if not all) quantum algorithms take advantage of a certain quan-
tum parallelism by which the register (at any time a superposition of
a collection of states – i.e., a particular vector in the Hilbert space)
is updated via application of local unitary transformations, which are,
generally speaking the tensor product of identity matrices with unitary
matrices of bounded size. Many of these can be applied simultaneously,
in essence glued together to form a single quantum gate, and the full
transform is then effected via the application of some sequence of such
gates. The efficiency of any algorithm is then measured in terms of the
quantum circuit depth.
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The various sparse factorization FFTs are, in spirit, ready-made for
quantum implementations and underlies efficient quantum implementa-
tions for [23] as well as some solvable groups [44]. A recent quantum
adaptation of the separation of variables approach [39] provides a red-
erivation of Beals’s original work, as well extensions to those classes of
groups whose classical FFTs benefited from this framework.

Sparse structured factorizations. In [17], sparse representation
theoretic factorizations are put to work in helping to find factorizations
of given linear transformations. In this work the goal is to describe a
matrix as an element of the algebra of intertwining operators between
two matrix representations. Having accomplished this, if the represen-
tations have sparse factorizations in general (eg., of the type used in
the separation of variables sorts of algorithms) then these can in turn
be used to realize a sparse factorization of the original intertwining el-
ement. The paper [17] discusses optimal applications of this approach
for signal transforms such as the DFT, various DCTs (Discrete Cosine
Transforms) and Discrete Hartley Transforms. This approach has been
partially automated and is contained in the software library AREP (Ab-
stract REPresentations) [43], which is in turn a part of the very inter-
esting SPIRAL Project [40, 45], a multi-university effort directed at the
automatic generation of platform-optimized software.

Projection-based generalizations of the FFT
The approaches explained above rely on what is commonly known as

decimation in time, a recursive (or depending on your point of view,
iterative) traversal of the spatial (i.e., group) domain. Decimation in
time often goes by the name of subsampling.

An alternative, or perhaps more precisely, dual formulation is to in-
stead recurse through the range, iteratively constructing the frequency
content of the original data through successive projections which build
out increasingly finer orthogonal decompositions. This is the philosophy
behind decimation in frequency, originally due to Gentleman and Sande
[19].

This idea has also found generalization, in the context of computing
isotypic decompositions of a function defined on a group or its homoge-
neous space. This generalization hinges on the observation that through
a judicious choice of group elements and their representing matrices it
can be possible to find a collection of projection operators whose ap-
plication can be scheduled in such a way so as to effect the requisite
projections.
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Nested projections: The Gentleman-Sande FFT. The DFT of
length n effects the projection of the data f onto the n distinct eigen-
vectors of the DFT operator, given by the sampled exponentials. Equiv-
alently, it is also the projection onto the eigenvectors of the cyclic shift
operator T

(n)
1 , acting on n-space via

(
T

(n)
1 f

)
(j) = f(j + 1) where j + 1

indicates that the index is to be interpreted mod n. The DFT eigen-
vectors are precisely the basis which diagonalizes the shift operator –
i.e., they are also the eigenvectors for T

(n)
1 .

Of course, the operator T
(n)
1 commutes with any of its powers. Sup-

pose now that n = pq. Note that under the action of T
(n)
p =

(
T (n)

)p

1
, the

vector space V = Cn decomposes into p orthogonal and T
(n)
p -invariant

q-dimensional subspaces Vj = span{δj , δj+p, . . . , δj+(q−1)p} where δ` de-

notes the standard `th basis vector. It is clear that the action of T
(n)
p

on any Vj is equivalent to the action of T
(q)
1 on Cq, thus when restricted

to the space Vj it is diagonalizable with eigenvectors and eigenvalues
corresponding to the DFT of length q.

Thus, we see that the operator T
(n)
p has only q distinct eigenvalues

on V , one eigenspace Wj for each character of Zq, and by symmetry,
each of these is of dimension p, and as an eigenspace is of T

(n)
p -invariant.

Furthermore, since T
(n)
p commutes with T

(n)
1 , there is a basis of simul-

taneous eigenvectors. Thus

Wj = W 0
j ⊕ · · · ⊕W p−1

j .

Note that the original DFT of length n is thus the projection of f onto
the W k

j . This suggests the following algorithm for computing the DFT:

Stage 1: For j = 0, . . . , q − 1, compute f (j), the projection of f
onto Wj .

Stage 2: For each j and each k, compute the projection of f (j)

onto W k
j .

This particular fast Fourier transform is known as the Gentleman-
Sande, or decimation in frequency, FFT (see [19]).

Gentleman-Sande for finite groups. The above discussion reveals
that the decimation in frequency FFT can be viewed as a sequence of
projections onto isotypic subspaces. In the commutative case these are
the individual eigenspaces. For an arbitrary representation this is the
decomposition into invariant subspaces each of which has an irreducible
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decomposition into copies of single irreducible. Thus we can attempt
tp generalize Gentleman-Sande by finding a collection of operators and
computing (in some order) projections onto their eigenspaces of a col-
lection of simultaneously diagonalizable linear transformations [32].

For example, suppose that L(X) has three isotypic subspaces V1, V2,
and V3. Thus L(X) = V1 ⊕ V2 ⊕ V3 and each f ∈ L(X) may be written
uniquely as f = f1 + f2 + f3 where fi ∈ Vi. Additionally, suppose that
T and T ′ are diagonalizable linear transformations on L(X) such that
the eigenspaces of T are V1 ⊕ V2 and V3, and the eigenspaces of T ′ are
V1 and V2 ⊕ V3. We may therefore compute the fi by first projecting f
onto the eigenspaces of T to compute f1+f2 and f3, and then projecting
both f1 + f2 and f3 onto the eigenspaces of T ′ to compute f1, f2 and
f3. Note that each computation is done with respect to a fixed basis of
L(X). This process of decomposing L(X) = V1 ⊕ V2 ⊕ V3 is illustrated
in Figure 3.

V1 ⊕ V2 ⊕ V3

↙ ↘
V1 ⊕ V2 V3

↙ ↘ ↓
V1 V2 V3

Figure 3. Decomposing L(X) = V1 ⊕ V2 ⊕ V3 using T and T ′.

We call the pair {T, T ′} a separating set for L(X). because they allow
us to separate a representation into its isotypic components.

From this point of view, the Gentleman-Sande FFT first computes
a projection of the data onto the isotypic decomposition corresponding
to the subgroup generated by T

(n)
p (isomorphic to Zq) and then further

decomposing each of these according to the decomposition of T
(n)
1 (iso-

morphic to the fill group G). So that {T (n)
p , T

(n)
1 } are a separating set

for Zpq.
More generally, suppose now that {T1, . . . , Tk} is a collection of diag-

onalizable linear transformations on a vector space V whose eigenspaces
are direct sums of the isotypic subspaces of V . For each isotypic sub-
space Vi, let ci = (µi1, . . . , µik) be the k-tuple of eigenvalues where, for
1 ≤ j ≤ k, µij is the eigenvalue of Tj associated to Vi. If ci 6= ci′

whenever Vi 6= Vi′ , then we say that {T1, . . . , Tk} is a separating set for
V .

The existence of a separating set {T1, . . . , Tk} for V means that the
computation of the isotypic projections of v ∈ V can be achieved through
a series of eigenspace projections as follows:



16

Stage 1 Compute the projections of v onto each eigenspace for T1.

Stage 2 For each i > 1, Iteratively compute the projections of the pro-
jections previously computed for Ti−1 onto each of the eigenspaces
of Ti.

It is not difficult to see that the computed projections at Stage k are
precisely the isotypic projections of the vector v.

We may easily find separating sets for V by looking to the conjugacy
classes C1, . . . , Ch of G. In particular, if Tj =

∑
c∈Cj

ρ(c) is the class
sum of Cj (with respect to ρ) and µij = |Cj |χi(Cj)/di, then the class
sum Tj is a diagonalizable linear transformation on V whose eigenspaces
are direct sums of isotypic subspaces, and µij is the eigenvalue of Tj that
is associated to the isotypic subspace Vi ([32]).

Although the complete collection of class sums forms a separating set
of V . We may, however, be able to find much smaller separating sets
than the complete collection of class sums. For example. the Gentleman-
Sande FFT uses approximately log n of the n conjugacy classes (since the
group is commutative each element forms a conjugacy class). Other spe-
cific examples where this gives a savings include the homogeneous spaces
formed from distance transitive graphs and their symmetry groups as
well as quotients of the symmetric group [32].

The efficiency of this approach depends on an efficient eigenspace pro-
jection method. Since the separating sets we use consist of real symmet-
ric matrices, in [32] Lanczos iteration is used. This is an algorithm that
may be used to efficiently compute the eigenspace projections of a real
symmetric matrix when, as in all of our examples, it has relatively few
eigenspaces and when it may be applied efficiently to arbitrary vectors,
either directly or through a given subroutine (see, e.g., [42]). Implicit in
this iterated projection are notions of multiresolution analysis. See [18]
for recent group theoretic interpretations of this.

Open questions for finite group FFTs
Other groups for which highly improved (but not O(|G| logc |G|)) algo-

rithms have been discovered include the matrix groups over finite fields,
and more generally, the Lie groups of finite type. See [37] for pointers
to the literature. There is much work to be done finding new classes
of groups which admit fast transforms, and improving on the above re-
sults. The ultimate goal is to settle or make progress on the following
conjecture:
Conjecture. There exist constants c1 and c2 such that for any finite
group G, there is a complete set of irreducible matrix representations for
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which the Fourier transform of any complex function on the G may be
computed in fewer than c1|G| logc2 |G| scalar operations.

Perhaps progress toward this goal will require new techniques (indeed,
it does seem as though the separation of variables approach has been
pushed almost as far as it can go). One place to look, and indeed one of
the more intriguing open question in the development of FFT techniques,
is for generalizations of those commutative FFT methods which are used
for groups of prime order: Rader’s prime FFT [46] and the “chirp-z
transform” (the “chirp” here refers to radar chirp) [6, 47].

Both of these algorithms use an idea that rewrites the DFT (of prime
length p) at nonzero frequencies in terms of a convolution of length p−1
(which, since it is composite, can be computed efficiently using other
FFT methods) while computing the DFT at the zero frequency directly.
Rader’s prime FFT uses a generator g of Z/pZ×, a cyclic group (under
multiplication) of order p− 1, to write f̂(g−b) as

f̂(g−b) = f(0) +
p−2∑
a=0

f(ga)e2πiga−b/p. (10)

The summation in (10) has the form of a convolution on Z/(p− 1)Z, of
the sequence f ′(a) = f(ga), with the function z(a) = exp2πiga/p.

Rabiner et al. [47] (see also [6]) make the change of variables jk =
(j2 + k2 − (j − k)2)/2 to obtain

f̂(k) = ωk2/2
N−1∑
j=0

(
f(j)ωj2/2

)
ω(j−k)2/2

This is a non-cyclic convolution of the sequence
(
f(j)ωj2/2

)
with the

sequence
(
ω−j2/2

)
, and may be performed using a cyclic convolution of

any length M ≥ 2N . Note that this gives an approach which rewrites
the DFT in terms of a convolution that does not depend on N being
prime. This method is commonly known as the chirp-z transform.

The discovery of noncommutative generalizations of these ideas would
be very, very interesting.

3. FFTs for compact groups
The DFT and FFT also have a natural extension to (continuous)

compact groups as well. The terminology “discrete Fourier transform”
derives from the fact that the algorithm was originally designed to com-
pute the (possibly approximate) Fourier transform of a continuous signal
from a discrete collection of sample values.
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Under the simplifying assumption of periodicity a continuous func-
tion may be interpreted as a function on the unit circle, and compact
commutative group, S1. Any such function f has a Fourier expansion
defined as

f(t) =
∑
l∈Z

f̂(l)e−2πilt (11)

where

f̂(l) = 〈f, el〉 =
∫ 1

0
f(t)e2πiltdt. (12)

If f̂(l) = 0 for |l| ≥ N , then f is band-limited with band-limit N and
there is a quadrature rule or sampling theory for f meaning that the
Fourier coefficients of any can be computed as a summation using only
a finite set of samples,

f̂(l) =
2N−2∑
k=0

1
(2N − 1)

f

(
k

2N − 1

)
e2πikl/(2N−1) (13)

where the factor 1
2N−1 should be viewed as a (constant) weight function

with support at the equispaced points { k
2N−1}

2N−2
k=0 (where the circle and

unit interval have been identified). The FFT then efficiently computes
these Fourier coefficients.

A more general framework capable of encompassing all continuous
compact groups and their quotients is easily stated: the irreducible rep-
resentations of a compact group G are all finite-dimensional, and any
square-integrable function f (with respect to Haar measure) has an ex-
pansion in terms of irreducible matrix elements

f =
∑
λ∈Λ

dλ∑
j,k=1

f̂(λ)jkT
λ
jk (14)

where Λ is some countable set, T λ denotes an irreducible representation
of degree dλ < ∞, and the implied convergence is in the mean. The
Fourier coefficients {f̂(λ)jk} are computed by integrals

f̂(λ)jk = dλ〈f, T λ
jk〉 = dλ

∫
G

f(x)T λ
jk(x)dx (15)

where dx denotes (the translation-invariant) Haar measure.
In turn, a general FFT schema then requires (1) a formulation of the

notion of bandwidth, accompanied by a corresponding sampling theory,
and lastly, an algorithmic component for the efficient evaluation of the
quadrature, or FFT.
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Applications
To date, it is the group of rotations in three space, SO(3) where most

of the applications for FFTs on continuous, noncommutative compact
groups have been found. Its representation theory is effectively that of
the theory of spherical harmonics. One large source of applications come
from the climate modeling community (see eg. [53]) where spherical har-
monics are used for spectral methods approached to solving the relevant
PDEs in spherical geometry. Further applications are to be found out-
side the atmosphere as spherical harmonics expansions of the CMB are
the source of new information about its fine scale inhomogeneities which
hope to provide new information about the shape of space and origins
of the Universe.

Most recently, FFTs for SO(3), as applied to the development of fast
convolution algorithms on SO(3) [25] have been used to develop search
algorithms for shape databases.

FFTs for compact groups – the work of Maslen
The first FFT for a noncommutative and continuous compact group

was the efficient spherical harmonic expansion algorithm discovered by
J. Driscoll and D. Healy [15]. In this case, the Fourier expansion of
a function on the 2-sphere, viewed as function on SO(3)/SO(2) (with
SO(2) identified with the rotations that leave the north pole fixed) has a
natural notion of bandwidth given by degree of the spherical harmonic. a
sampling rule on the 2-sphere, equiangular in both latitude and longitude
gives a quadrature rule, and a function of bandwidth B (and O(B2)
Fourier coefficients) requires O(B2) points. The story is completed with
a fast algorithm (O(N3/2 log2 N) operations for N = B2) that uses the
three-term recurrence satisfied by the Legendre functions to produce a
divide and conquer algorithm for its efficient evaluation.

Some years later, this work was extended to the full compact setting
by D. Maslen: a general notion of bandwidth consistent with the com-
mutative and spherical notions [31], a sampling rule [30], and finally an
FFT which also relies on three term recurrence relations satisfied by re-
lated orthogonal polynomial systems. What follows is a brief summary
of this work

There is a natural definition of band-limited in the compact case,
encompassing those functions whose Fourier expansion has only a finite
number of terms. The simplest version of Maslen’s theory is as follows:

Definition 1. Let R denote a complete set of irreducible representa-
tions of a compact group G. A system of band-limits on G is a decom-
position of R = ∪b≥0Rb such that
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[1] |Rb| < ∞ for all b ≥ 0;

[2] b1 ≤ b2 implies that Rb1 ⊆ Rb2;

[3] Rb1 ⊗Rb2 ⊆ spanZRb1+b2 .

Let {Rb}b≥0 be a system of band-limits on G and f ∈ L2(G). f is
band-limited with band-limit b if f̂(T λ

jk) = 0 for all λ /∈ Rb.

The case of G = S1 provides the classical example. If Rb = {χj : |j| ≤
b} where χj(z) = zj , then χj ⊗χk = χj+k and the corresponding notion
of band-limited (as per Definition 1) coincides with the usual notion.

For a noncommutative example, consider G = SO(3). In this case the
irreducible representations of G are indexed by the non-negative integers
with Vλ the unique irreducible of dimension 2λ + 1. Let Rb = {Vλ : λ ≤
b}. The Clebsch-Gordon relations

Vλ1 ⊗ Vλ2 =
λ1+λ2∑

j=|λ1−λ2|

Vj (16)

imply that this is a system of band-limits for SO(3). When restricted to
the quotient S2 ∼= SO(3)/SO(2), band-limits are described in terms of
the highest order spherical harmonics that appear in a given expansion.

Maslen’s most general setting for a notion of band-limit develops a
theory of band-limited elements for any filtered module over a filtered
algebra. In the case of a connected compact Lie group G, then Rs

is defined to be the set of all matrix elements that come from repre-
sentations whose highest weight is at most s. For the matrix groups
SU(r + 1), Sp(r), SO(2r + 1), it is possible to choose a norm for which
R1 is the span of all matrix representations with highest weight given by
a fundamentally analytically integral dominant weight or zero. Band-
width is thus defined in terms of lengths of factorizations in sums of
products of such elements expressing a given matrix element [31].

The importance of developing the band-limited theory is that in this
setting there exists a sampling theory or quadrature rule that allows the
Fourier coefficients to be computed exactly as finite sums. The following
is the content of [30], once the notion of bandlimit is arranged.

Theorem 1 Lemma 1, Let G be compact with a system of band-limits
{Rb}b. For any band-limit b, there exists a finite set of points Xb ⊂ G
such that for any function f ∈ L2(G) of band-limit b,

f̂(T λ
jk) =

∑
x∈Xb

f(x)T λ
jk(x)w(x) (17)
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for all λ ∈ Rb and some weight function w on Xb.

Theorem 1 reduces the integrals (15) to summations, so that efficient
algorithms can now be designed to perform the computations (17). For
the classical groups U(n), SU(n), Sp(n). a system of band-limits Rn

b is
chosen with respect to a particular norm on the dual of the associated
Cartan subalgebra. Such a norm ‖·‖ (assuming that it is invariant under
taking duals, and ‖α‖ ≤ ‖β‖ + ‖γ‖, for α occurring in β ⊗ γ) defines
a notion of band-limit given by all α with norm less than a fixed b.
The associated sampling sets Xn

b are contained in certain one-parameter
subgroups.

Implicit here are certaindiscrete special function transforms, which
that are implicit can often be reduced to certain discrete polynomial
transforms

f̂(Pj) =
N−1∑
k=0

f(k)Pj(xk)wk (18)

where P0, . . . , PN−1 are a set of linearly independent polynomials with
complex coefficients, {x0, . . . , xN−1} are a set of N distinct complex
points and {w0, . . . , wN−1} is a set of positive weights. The case of the
DFT comes from choosing equispaced roots of unity for sample points,
equal weights of one, and Pj(x) = xj . Direct calculation of all the f̂(Pj)
clearly requires N2 operations.

If the Pj make up a family of orthogonal polynomials, then fast al-
gorithms exist to speed the calculation. Here the idea is to use the
three-term recurrence satisfied by these polynomials to create a divide-
and-conquer algorithm which reduces transforms of degree n to sums
of transforms of degree less than n, ultimately providing an O(n log2 n)
algorithm. (See [16] and references therein.)

By using these sorts of complexity estimates, together with a sam-
pling theory and a careful organization of the calculation (using the dia-
grammatic techniques explained above) Maslen is able to derive efficient
algorithms for all the classical groups.

Theorem 2 ([31], Theorem 5)
Assume n ≥ 2.

(i) For U(n), TXn
b
(Rn

b ) ≤ O(bdimU(n)+3n−3)

(ii) For SU(n), TXn
b
(Rn

b ) ≤ O(bdimSU(n)+3n−2)

(iii) For Sp(n), TXn
b
(Rn

b ) ≤ O(bdimSp(n)+6n−6)

where TXn
b
(Rn

b ) denotes the number of operations needed for the partic-
ular sample set Xn

b and representations Rn
b for the associated group.
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Approximate techniques.
In the bandlimited case, Maslen’s techniques are exact, in the sense

that if computed in exact arithmetic, they yield exactly correct answers.
Of course, in any actual implementation, errors are introduced and the
utility of an algorithm will depend highly on its numerical stability.

There are also “approximate methods”, approximate in the sense that
they guarantee a certain specified approximation to the exact answer
that depends on the running time of the algorithm. For computing
Fourier transforms at non-equispaced frequencies, as well as spherical
harmonic expansions, the fast multipole method and its variants are used
[21]. Multipole-based approaches efficiently compute these quantities
approximately, in such a way that the running time increases by a factor
of log(1

ε ) where ε denotes the precision of the approximation. Another
approach is via the use of quasi-classical frequency estimates for the
relevant transforms [38]. It would be interesting to generalize these sorts
of techniques to compact groups and their quotients.

Open question
Maslen’s work effectively creates uniform sampling grids with con-

comitant quadrature rules, but it may be possible that some applica-
tions may require nonuniform grids. In the commutative case, exam-
ples include applications in medical imaging and other forms of non-
invasive testing. Noncommutative examples might include astrophysi-
cal, weather, and climate data. The corresponding measurements are
rarely equidistributed, (in particular, there are many large uninhabited
regions in which the data is never taken) and in fact, these two variable
expansions generally use grids which evenly sampled in one direction,
but use Legendre points in the other [41, 53]. For example, as applied
to the analysis of the cosmic microwave background, this is meant to
provide a sampling that sparse at ”the center”, which corresponds to
avoiding our own galaxy. It would seem to be of great interest to push
forward the wealth of work done in the commutative setting (see eg. [1]
and the many examples therein).

4. Noncompact groups
Much of modern signal processing relies on the understanding and

implementation of Fourier analysis for L2(R), i.e., the noncompact com-
mutative group R. It is only fairly recently that noncommutative, non-
compact examples have begun to attract significant attention.
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In this area some of the most exciting work is being done by G.
Chirikjian and his collaborators. They have been concerned primar-
ily with the Euclidean motion group SE(n). Recall that the motion
groups are given as semidirect products of Rn with the rotation groups
SO(n), realized as n + 1 by n + 1 matrices of the form(

A v
0n 1

)
where A ∈ SO(n) and v ∈ Rn and 0n denoting the all zero row vector
of length n. This provides an algebraic mechanism for gluing together
the group of additive translations with rotations.

Their motivation comes from a diverse collection of applications, rang-
ing among robotics, molecular modeling and pattern matching. Appli-
cations to robotics come from the problem of workspace determination
for discretely actuated manipulators. A standard example is a robot
arm and standard problem in motion planning is to determine the set
of reachable configurations, as well as to plan a path to move from one
configuration to another. The configuration of the end of the arm can
be described with two parameters: a position in space (a vector in Rn

for n = 2 or 3) as well as an orientation (an element in SO(n)), i.e., an
element of SE(n). One sort of design paradigm is to build a robot arm
as an assembly of a sequence of basic modules, so that the arm takes on
a worm-like or cillial form. Any single basic unit will have some finite
discrete set of reachable states, defining a discrete probability density in
SE(n). This is the workspace of a single unit. The workspace of the full
arm (defined as the linked assembly of m of these basic units) is then
given as the m-fold convolution of the fundamental workspace. This is
called the workspace density. Applications to polymer science are anal-
ogous, with similar modeling considerations used to describe the motion
of a given end of a polymer (such as DNA) relative to its other end.
These are but two examples, for details, as well as other applications see
[9] and the many references therein.

Just as the classical FFT provides efficient computation of convolu-
tions on the line or circle, then so does an FFT for SE(n) allow for effi-
cient convolution in this setting, replacing direct convolution by FFTs,
matrix multiplications and inverse FFTs.

In a collection of papers (see [9]) Chirikjian and Kyatkin create a
computational framework for working with the representation theory of
SE(3) acting on R3. The matrix elements in this case are known and
involve spherical harmonics, half-integer Bessel functions, glued together
with Clebsch-Gordan coefficients. Explicitly, they find themselves in the
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position of having to compute (for a function f(r, R) of compact support
on SE(3))

f̂s
`′,m′;`,m(p) =∫

u∈S2

∫
r∈R3

∫
R∈SO(3)

f(r, R)hs
`,m(u)×

eipu·r
`′∑

n=−`′

U `′
nm′(R)hs

`′n(u)dud3rdR. (19)

where the h’s and U ’s are defined in terms of generalized Legendre func-
tions.

Computation is now effected via a host of discretizations on R3, SO(3),
S2, and the dual index p, as well as some assumptions on the number
of harmonics used to describe f . The exponent pu implies the need
to convert from a rectangular to a polar R3 grid and so there is also
an interpolation (through splines) used. The complexity of the final
separation of variables style algorithm is then given by gluing together all
the appropriate fast algorithms (FFTs, fast interpolation, fast spherical
harmonic expansions, fast Legendre expansions).

The details of this analysis are found in [26]. This paper also contains
an analogous discussion for SE(2) as well as the discrete motion groups
defined as the semidirect product of translations (R3) with any of the
(finite number of) finite subgroups of SO(3).

Open questions
To date, the techniques used here are approximate in nature and in-

teresting open problems abound. Possibilities include the formulation
of natural sampling (regular and irregular), band-limiting and time-
frequency theories. The exploration of other special cases beyond the
special Euclidean groups, such as semisimple Lie groups (see [2], for
a beautifully written succinct survey of the Harish-Chandra theory) is
also intriguing. “Fast Fourier transforms on semisimple Lie groups” has
a nice ring to it!
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