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ABSTRACT
Our phones go wherever we go. Ever present, and with
ever more data and connections, smartphones hold as much
sensitive data as traditional systems but do not have the
same protections. Android’s recent 6.0 (Marshmallow) re-
lease introduced much needed dynamic permission checks
for applications. However, this does not go far enough in
adapting to mobile phone’s unique security needs. Smart-
phones encounter a wide variety of settings and situations
that current security solutions fail to account for. We in-
troduce a context-aware IPC firewall for Android that dy-
namically filters messages based on environmental data. Our
BinderFilter can both block and modify Android IPC mes-
sages sent through Binder, which is in a position of complete
mediation in Android. Our Binder hooking framework and
message parser are unique in their scope and implementation—
and mitigate broad classes of cross-app attacks, such as “col-
lusion” and “UI-based activity hijacking” attacks. We also
provide a policy application, Picky, with which users can
set policy rules for any message and target applications.
BinderFilter and Picky are free software, available at [1,
2].

1. INTRODUCTION
Android is the world’s most popular mobile operating sys-

tem with over 1.4 billion users [3]. The wide variety of sensor
and personal data that phones store make them rich targets
for attackers and data miners masquerading as third-party
applications. Recently, various health tracking applications
were found to export medical information to third-party
servers [4], and Facebook’s Messenger application has faced
criticism for requiring extraneous permissions [5].

Android’s security architecture is based on permissions
[14]. Applications request permissions to access various sys-
tem APIs such as Camera, Location, Microphone, and user
data such as Contacts, Calendar, and External Storage. In
October 2015, Google released version 6.0 of Android, named
Marshmallow, which included major security updates such
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as dynamic permission checking for certain dangerous per-
missions [6]. Prior to Marshmallow, applications would stat-
ically request permissions at install time, and users would
have no way of revoking or changing application permissions.
Dynamic permission checking in Android Marshmallow filled
a significant need in Android security policy. However, it is
not sufficiently granular, nor does it expose all permission
decisions to users. Furthermore, as Marshmallow has been
adapted by only 7.5% of users as of May 2016 [7], additional
security architectures are needed to ensure user privacy for
all.

Android phones suffer from malware somewhat dispropor-
tionately. At the core of the problem is the fact that mal-
ware can commandeer other apps to do its its dirty work,
abusing the technology that Android provides for legitimate
communications between apps. Since interaction between
apps is desirable and part of the normal functionality, it is
not easy to close that malware attack vector, despite some
new security improvements recently released.

In a sense, Android’s app microcosm problem is the same
as the Internet macrocosm’s: we want computers and apps
to talk to each other; we just want to be able to control
who’s talking to whom. Just like the Internet has developed
the mitigation of the firewall to block undesirable commu-
nications, so the Android platform has been developing a
means for blocking selected bad inter-app communications.

Just as firewalls evolved, the depth of examination of indi-
vidual messages increased, and concepts of state were added,
similar evolution is taking place on the Android platform.
Our design, presented in this paper, aims to provide both
the deepest level of message examination and the richest
context for policy decisions.

While most security add-ons for Android see the need for
some type of dynamic, fine-grained blocking, only a handful
such as [29, 30] have focused on the mobile nature of mo-
bile phones. Our approach focuses on the current specific
needs of Android security by designing and implementing
the following.

• A novel context-aware security system for Android that
includes sensor, network, and system state data into
policy decisions.

• A message hooking framework for Android’s Binder
IPC system that provides the necessary feature of com-
plete mediation of Android IPC messages, including
intents and permissions.

• Blocking and modifying message data, including more



dynamic permissions than Android Marshmallow ex-
poses to users.

• A Binder message parser and formatter, allowing for
dynamic analysis of every Android IPC message.

• A user application that abstracts security policy and
allows dynamic message blocking of any message and
application.

Table 1 shows how our project improves on existing An-
droid security add-ons.

We survey the related work in section 6. Briefly, other
hooking frameworks for Android such as Heuser et al.’s An-
droid Security Modules [11] and rovo89’s Xposed Framework
[12] have not demonstrated complete mediation of all IPC
messages. Ours is the first of its kind that hooks Binder. Ni-
tay Artenstein and Idan Revivo demonstrated Binder mes-
sage parsing and data exfiltration but did not go as far as
systematically hooking and modifying message data [13].

The remainder of this paper is as follows. We first re-
view the background on Android’s Binder IPC in section 2,
then discuss our IPC firewall design considerations and im-
plementation in section 3. Section 4 gives a brief overview
of our UI application for configuring the firewall. Section 5
evaluates the mitigations our firewall provides against broad
classes of attacks and malware abuses of the Android plat-
form, and section 6 surveys previous work.

2. BACKGROUND
The Android platform is a set of libraries, compilation

tools, interpreters, and kernel drivers built on Linux. It in-
herits Linux’s file permissions, system call architecture, and,
in Android versions after 4.3, SELinux policies. Android ap-
plication permissions correspond to capabilities and are en-
forced by the PackageManager service via checkPermission.
System permissions (such as installing packages or reboot-
ing) are only available to system services and applications
such as Settings and Google Play Store located in /system/app

or /system/priv-app, which are read-only enforced by Linux.
Network sockets and writes to external storage are also en-
forced by the kernel via Linux group ID’s (GIDs). Each
application is given a unique Linux user ID (UID) on in-
stallation. Android then enforces application memory sand-
boxing by running each application as its own process under
its unique UID. File access is restricted by the underlying
filesystem and SELinux policy, whereas service and RPC
function calls are restricted by Android’s PackageManager
based on UID.

2.1 Binder
Communication between sandboxed applications is done

via Binder inter-process communication (IPC). Binder re-
places Linux’s own IPC system in Android and enables uniquely
identifying security tokens, death notifications, and (intra-
package) RPC. Intents, Messengers, and ContentProviders
are all built on Binder. (Intents in Android are asynchronous
messages passed between applications to request data or to
start a new activity.)

2.1.1 Binder Driver
Binder is implemented as a Linux kernel driver (/dev/binder),

which is exposed to userland processes using the ioctl()

syscall. The Binder driver is also responsible for copying

data between sandboxed user processes, including data buffers,
file descriptors, and death notifications.

The Binder driver ioctl() call takes as a parameter
binder_write_read, which contains information about driver
buffer consumption and pointers to marshaled user trans-
action data. The write_buffer and read_buffer fields
point to binder_transaction_data objects. Those contain
sender pid, receiver pid, uid information, and pointers to
data buffers and offsets. Specifically, the data.ptr.offsets

field points to flat_binder_object objects. Finally,
flat_binder_object contains extra information such as file
descriptors. These structures are listed below.

s t r u c t b i nde r wr i t e r e ad {
s igned long w r i t e s i z e ;
s i gned long write consumed ;
unsigned long w r i t e b u f f e r ;
s i gned long r e a d s i z e ;
s i gned long read consumed ;
unsigned long r e ad bu f f e r ;

} ;

s t r u c t b i nde r t r an sa c t i on da ta {
union {

s i z e t handle ;
void ∗ptr ;

} t a r g e t ;

void ∗ cook i e ;
unsigned i n t code ;
unsigned i n t f l a g s ;
p i d t s ende r p id ;
u i d t s ende r eu id ;
s i z e t d a t a s i z e ;
s i z e t o f f s e t s s i z e ;

union {
s t r u c t {

const void ∗ bu f f e r ;
const void ∗ o f f s e t s ;

} ptr ;
u i n t 8 t buf [ 8 ] ;

} data ;
} ;

s t r u c t f l a t b i n d e r o b j e c t {
unsigned long type ;
unsigned long f l a g s ;
union {

void ∗ binder ;
s i gned long handle ;

} ;
void ∗ cook i e ;

} ;

Figure 1 shows a simplified Binder IPC transaction be-
tween two processes. Figure 2 illustrates the complete path
from a userland Java application to the Binder driver. Fig-
ure 3 shows a simplified process of registering and calling
an Android system service. Each service registers with the
Context Manager process (ServiceManager service), which is
a special Binder node with ID 0. ServiceManager is started
from init. Android system services register with ServiceM-
anager, and clients make requests with the ServiceManager
proxy to query for system services.
binder_ioctl() is the entry point from userland into the

kernel driver, upon which user buffers are written, read, or
both. Pseudocode in Listing 1 illustrates the driver code’s
sequence of actions for a client making a service request.
Note that data in steps 4c, 4d, 5b, and 5c represents a



Table 1: BinderFilter and other Android privacy enhancement projects.

client’s data being transferred to the requested service. Fig-
ure 4 illustrates this data transfer facilitated by the driver.

1. device_initcall(binder_init); // called
when kernel boots

2. binder_init ()
a. misc_register (& binder_miscdev) // register

driver name and file operations
3. binder_ioctl () // entry point from userland

a. wait_event_interruptable () // block caller
until a response

b. copy_from_user () // copy struct
binder_write_read from userland

c. binder_thread_write () or
binder_thread_read () // depends on
client or service request

4. binder_thread_write () // Called by client
making a request

a. switch(cmd) {... // checks user command
b. binder_transaction ()
c. copy_from_user(data) // copy data from

userland
*. filter_binder(data) // our hook
d. list_add_tail(data, target) // add work

to the target thread ’s queue
e. wake_up_interruptable(target) // wake up

the sleeping service thread
5. binder_thread_read () // Called by service

thread waiting to handle requests
a. while (1) { if (BINDER_LOOPER_NEED_DATA)

goto retry; }
b. data = list_first_entry () // get request

data
c. copy_to_user(data) // copy the data to

service

Listing 1: Binder driver code analysis. ’data’
labeled in red represents a Binder user parcel, which
is moved by the Binder driver between separate
process address spaces.

3. BINDERFILTER
BinderFilter is our hooking implementation of Binder.

Compiled as a static kernel driver, our filter steals Binder
messages and modifies them based on our IPC firewall pol-
icy. Being in the Binder allows us to have complete access
to all IPC messages and gather context information directly
from sensor hardware.

3.1 Design

Figure 1: Simplified Binder transaction (based on
[14]).

Figure 2: Binder code path

3.1.1 Complete Mediation
We choose to block Android permissions and “steal” IPC

messages in the Binder, rather than upstream of it (as done
by many of our predecessors), because this architectural
choice allows us to have a good level of granularity while be-
ing able to capture all messages. Because direct Binder mes-
sages (app to app, app to service) are possible, the ServiceManager
is not in a position of complete mediation: apps can register
Binder receivers that don’t go through ServiceManager via
Service.bindService() [16].



Figure 3: Binder transaction and service registra-
tion (based on [15]).

Figure 4: Transfer of userland data through the
Binder. Based on Figure 5.4 from [22].

Permissions encapsulate IPC firewall policy at the level of
granularity we require. For example, multiple ways to get
phone location mean multiple intents to block [17]. We can
block all of them with one permission! For camera messages,
applications like VSCO and GoogleCamera implement their
own camera wrapper, which calls Android’s Camera API
[18]. In this case, multiple types of intents can be encapsu-
lated in one permission, android.permission.CAMERA.

3.1.2 Hook placement
We hook binder.c in one location (http://androidxref.com/

kernel 3.18/xref/drivers/staging/android/binder.c#1520). At
this point in a Binder call, the driver has just validated user
buffer data and copied it into kernel address space, but has
yet to act on it. Here we steal the buffer and modify it in the
kernel if needed (Figure 5). Our hook function declaration
is exported with EXPORT_SYMBOL.

#include "binder_filter.h"
extern int filter_binder_message(unsigned long ,

signed long , int , int , void*, size_t);
...
static void binder_transaction(struct

binder_proc *proc , struct binder_thread *
thread , struct binder_transaction_data *tr,
int reply)

{
struct binder_transaction *t = kzalloc(sizeof

(*t),
GFP_KERNEL);

...
if (copy_from_user(t->buffer ->data , tr->data.

ptr.buffer , tr->data_size)) {
...
goto err_copy_data_failed;

}
...
filter_binder_message (( unsigned long)(t->

buffer ->data), tr->data_size , reply , t->
sender_euid , (void*)offp , tr->
offsets_size);

...
}

Listing 2: Binder driver (binder.c) hook. Our
additions are shown in red.

Figure 5: Binder driver hook placement

3.1.3 Grammar
We define a policy grammar for firewall rules as in Fig-

ure 6. Messages are passed in as string literals to enable
support for dynamic blocking of all messages.

Figure 6: BinderFilter policy grammar example.
Matching fields have the same color.

3.2 Logging
The Android Binder driver (binder.c) uses three types of

logging frameworks: printk, TRACE_EVENT, and seq_printf.
We develop a log message formatter for existing Binder ker-
nel debug message logs using Python. The code can be found
at [21]. An example of the existing log message compared
to its formatted version can be found in Figure 7.



Figure 7: Binder log message formatting. Matching
fields have the same color.

Binder’s existing log output does not include buffer con-
tents. We parse flattened Binder message buffers in Binder-
Filter for dynamic IPC analysis (see Figure 8). Contents are
printed to the kernel debug buffer when BinderFilter’s
filter_print_buffer_contents module parameter is set.

Figure 8: Binder buffer content analysis

3.3 Blocking
In this section we analyze Binder IPC message content

examples much like network packets, for implementation of
features specified in the introduction. Our blocking imple-
mentation looks at Binder message string literals and wipes
buffer contents if the message and context match our firewall
policy.

static void apply_filter(char* user_buf , size_t
data_size , int euid)

{
char* ascii_buffer =

get_string_matching_buffer(user_buf ,
data_size);

struct bf_filter_rule* rule = all_filters.
filters_list_head;

...
if (binder_filter_block_messages == 1) {

while (rule != NULL) {
if (rule ->uid == euid && context_matches(

rule)) {
block_or_modify_messages(user_buf ,

data_size , ascii_buffer , rule ->
message);

}
rule = rule ->next;

}
}
kfree(ascii_buffer);

}

static void block_or_modify_messages(char*
user_buf , size_t data_size , char*
ascii_buffer , const char* message)

{
char* message_location = strstr(ascii_buffer ,

message);
if (message_location != NULL) {

memset(user_buf , 0, data_size);

}
}

Listing 3: BinderFilter blocking logic. UID,
Context, and blocking are highlighted.

3.3.1 Permissions
We have currently implemented and tested blocking of the

following permissions:

android . permis s ion .CAMERA
android . permis s ion .RECORD AUDIO
android . permis s ion .READ CONTACTS
android . permis s ion .WRITE CONTACTS
android . permis s ion .GET ACCOUNTS
android . permis s ion .ACCESS FINE LOCATION
android . permis s ion .ACCESS COARSE LOCATION
android . permis s ion .READ EXTERNAL STORAGE
android . permis s ion .WRITE EXTERNAL STORAGE
android . permis s ion .INTERNET
android . permis s ion .SYSTEM ALERT WINDOW
android . permis s ion .WRITE SETTINGS
android . permis s ion .READ PHONE STATE
android . permis s ion .CALL PHONE
android . permis s ion .READ CALL LOG
android . permis s ion .WRITE CALL LOG
android . permis s ion .SEND SMS
android . permis s ion .RECEIVE SMS
android . permis s ion .READ SMS
android . permis s ion .RECEIVE MMS
android . permis s ion .RECEIVE WAP PUSH
android . permis s ion .READ CALENDAR
android . permis s ion .WRITE CALENDAR
android . permis s ion .BODY SENSORS
android . permis s ion .ACCESS NETWORK STATE
android . permis s ion .CHANGE NETWORK STATE
android . permis s ion .ACCESS WIFI STATE
android . permis s ion .CHANGE WIFI STATE
android . permis s ion .BATTERY STATS
android . permis s ion .BLUETOOTH
android . permis s ion .BLUETOOTH ADMIN
android . permis s ion .NFC
android . permis s ion .FLASHLIGHT
android . permis s ion .TRANSMIT IR
android . permis s ion . USE SIP

The Binder message that is sent as a result of Package-
Manager’s checkPermission() call contains the UID of the
application in question and the string literal of the Android
permission.

{(0) (64) (28) (0) android.app.IActivityManager (0)
(0) (41) (0) android.permission.
ACCESS_COARSE_LOCATION (0) (155) (9)(0)) ’(0)}

3.3.2 System Permissions
Android’s PackageManager service checks system applica-

tions’ permissions differently (see Section 2). Below is a code
excerpt from the service that assigns system run-time install
permissions to system apps.

// Only system components can circumvent
runtime permissions when installing.

if (( installFlags & PackageManager.
INSTALL_GRANT_RUNTIME_PERMISSIONS) != 0

&& mContext.checkCallingOrSelfPermission(
Manifest.permission.
INSTALL_GRANT_RUNTIME_PERMISSIONS) ==
PackageManager.PERMISSION_DENIED) {
throw new SecurityException ("You need the "



+ "android.permission.
INSTALL_GRANT_RUNTIME_PERMISSIONS
permission "

+ "to use the PackageManager.
INSTALL_GRANT_RUNTIME_PERMISSIONS
flag");

}

Listing 4:
PackageManagerService.installPackageAsUser().
System package permissions check is highlighted.

To properly block system permissions, we must look at
the specific apps that use them. An analysis of Google
Play Store finds that before installation of packages, the
com.android.vending.INTENT_PACKAGE_INSTALL_COMMIT in-
tent is sent. Here we can block that intent in lieu of the
permission.

Figure 9: Message analysis for installation activity

3.4 Context
Context is obtained directly from sensor data in the Binder-

Filter driver. This defends against spoofed data. In the
event that context information cannot be obtained, default
fallback policy rules are followed. Figure 10 shows parsing
wifi SSID from its flattened Binder buffer.

Figure 10: Message analysis for Wi-Fi SSID

3.5 Message Modification
By modification of Binder messages we mean replacing

message content with other content before the (modified)
message reaches its target. For example, a user may want
to send fake image or audio recording data to an application
instead of blocking requests and risking a crash, should the
application fail to deal gracefully with the failure.

This capability powerfully complements blocking of mes-
sages and has been implemented by the best-of-breed host-
based network firewalls such as Netfilter, which includes the
IPQUEUE and newer NFQUEUE mechanisms to just this
effect. These mechanisms also enable low-level security re-
search, as we hope ours will as well.

We implement copying file contents with sys_read and
sys_write.

static void copy_file_to_file(char*
filename_src , char* filename_dst)

Figure 11: Message analysis for image capture intent

{
...
set_fs(KERNEL_DS);
fd_read = sys_open(filename_src , O_RDONLY , 0)

;
fd_write = sys_open(filename_dst , O_WRONLY|

O_CREAT|O_TRUNC , 0644);
...
while (1) {

read_len = sys_read(fd_read , read_buf ,
buf_size -1);

if (read_len <= 0) {
break;

}
sys_write(fd_write , read_buf , read_len);
write_file = fget(fd_write);
...
vfs_write(write_file , read_buf , read_len , &

pos);
fput(write_file);

}
...

}

Listing 5: Code snippet of buffered file copying in
the kernel

3.6 Deployment
Android versions 4.3 and above disable loadable kernel

modules by default. To hook Binder, which is a statically
compiled kernel driver, we must recompile the kernel with
our hooking code in it. We can then flash the new ker-
nel image onto an Android device. This step preserves user
information, apps, and state, and requires an unlocked boot-
loader and root access.

4. PICKY
Picky implements a user interface for setting BinderFil-

ter policy. It allows users to dynamically set policy in an
accessible and usable way. Supported features include:

• Requiring a lockscreen to open

• Import and Export policy file

• Persistent policy across application sessions and reboot

• Per-application blocking of messages

• User-defined custom messages

• Contextual policy rules

• Modification of messages



Figure 12: Per-application blocking

Figure 13: User-defined context rules

4.1 Kernel Interface
Android’s NDK (Native Development Kit) allows Java

apps to call Native C++ code through the JNI (Java Native
Interface) framework [20]. Java functions with the native

keyword are implemented in the JNI layer. We use this
layer to call sys_open, sys_read, and sys_write to read
and write userland policy to and from the BinderFilter ker-
nel driver. File and SELinux permissions are dynamically
set for BinderFilter drivers to allow access.

Picky.java:
public static native String nativeReadPolicy

();
public static native String

nativeWriteFilterLine(int action , int uid
, String message , String data);

picky -jni.c:
JNIEXPORT jstring JNICALL
Java_Picky_Policy_nativeReadPolicy(JNIEnv *

env , jclass type) {
char returnValue [4096]
...
int fd = open ("/dev/binderfilter", O_RDWR);
int len = read(fd, returnValue , sizeRead);
...
return (*env)->NewStringUTF(env ,

returnValue);
}

JNIEXPORT jstring JNICALL
Java_Picky_Policy_nativeWriteFilterLine(

JNIEnv *env , jclass type , jint action ,
jint uid , jstring message_ , jstring data_
) {

struct bf_user_filter user_filter;
user_filter.action = (int) action;
user_filter.uid = (int) uid;
user_filter.message = (char*) message;
user_filter.data = (char*) data;
user_filter.context = 0;
int fd = open ("/dev/binderfilter", O_RDWR);
int write_len = write(fd, &user_filter ,

sizeof(user_filter));
...
return (*env)->NewStringUTF(env ,

write_len_str);
}

binder_filter.c:
static ssize_t bf_write(struct file *file ,

const char __user *buf , size_t len ,
loff_t *ppos)

{
struct bf_user_filter* user_filter =

init_bf_user_filter ();
...
if (copy_from_user(user_filter , buf , sizeof

(struct bf_user_filter))) {
return 0;

}
...
add_or_remove_filter(user_filter);
write_persistent_policy ();
...

}

static ssize_t bf_read(struct file * file ,
char * buf , size_t count , loff_t *ppos)

{
int len;
char* ret_str = get_policy_string ();



len = strlen(ret_str);
...
if (copy_to_user(buf , ret_str , len)) {

return -EINVAL;
}
...
return len;

}

Listing 6: Android JNI layer kernel interaction
(highlighted).

5. EVALUATION
Here we discuss the effectiveness of our firewall against

various classes of attacks previously discussed in both aca-
demic and industry literature.

Information stealing and overzealous applications. We
tested our firewall with various applications from the Play
Store such as Facebook, Evernote, Keep, Maps, etc., as well
as an application we developed as a sanity check on individ-
ual permissions. We note that the adoption of Android 6.0
dynamic permission checking by application developers has
not been widespread, and, whereas some apps like Facebook
and Evernote will restart gracefully on a permission denial,
other applications will stop due to a lack of dynamic permis-
sion checking. Both stock applications and malicious appli-
cations such as Android.Enesoluty [31] and Android.Loozfon
[32] are subjected to our message filter.

Malicious apps with root privileges such as mempodroid
[33]. Root applications are contained by Linux processes
with the root or system UID. Because we intercept all mes-
sages for all UIDs, apps started with the system UID are
blocked by our firewall regardless of root privileges. We
note that if malicious applications are able to overwrite un-
derlying SELinux policies, they could disable our firewall;
however, preventing such priviliege escalation in the filesys-
tem is out of the scope of this project.

Collusion attacks such as [34, 35]. We can block appli-
cations that combine their separate permissions in order to
achieve functionality beyond what a user intends. We detect
an application’s process state as started or stopped based on
the android.intent.category.LAUNCHER and
android.intent.action.PACKAGE_RESTARTED intents. This
application running context can then inform policy to pre-
vent colluding applications.

UI-based attacks. These attacks trick users into providing
input into a window controlled by the attacker, either by
overlaying malicious elements on top of trusted applications
[36, 37, 38, 39], or by preempting trusted applications with
a phishing window [36, 38, 40, 41, 42]. Android 6.0 requires
users to explicitily allow overlay permissions in response
to many abuses of the overlay architecture. For previous
versions of Android, our IPC firewall blocks overlay access
with the android.permission.SYSTEM_ALERT_WINDOW per-
mission.

We can prevent activity hijacking attacks that preempt
trusted application screens with an identical phishing screen.
Our firewall blocks WindowManager requests for an appli-
cation during that application’s window session. This is
analogous to the Overlay Mutex in [36], which only allows
one application to control the display window at once. We
define a window session start as an application intent to
IWindowSession, which contains the package name for the

starting application. The window session end is defined as
a user touch input event for either the back, home, or menu
button. These events are captured in the Binder from
android.hardware.input.IInputManager.

6. RELATED WORK
Research around Android security systems has have fo-

cused on data privacy in terms of permission revocation [8,
24, 25, 26, 27, 28, 29], taint analysis [9, 23], and sandbox-
ing [10, 24, 25]. Taint analysis was first introduced in Enck
et al.’s influential TaintDroid, which monitors user data by
tagging (tainting) it dynamically in Android’s Dalvik VM
[9]. LeakMiner [23] uses static taint analysis for applica-
tions on the Play Store to detect possible information leak-
age. Permission revocation has been used to prevent infor-
mation leakage via an inline reference monitor in Backes et
al. [8]. Aurasium achieves fine-grained, dynamic permission
checking by repackaging application packages with sandbox-
ing code, which is then enforced by hooks in the Dalvik VM
[24]. Backes et al. (2015) deviates from UID-permission
based security architectures with an application sandboxing
architecture based on app virtualization [10]. FlaskDroid
[25] enforces fine-grained, dynamic permission revocation in
the kernel by dynamically setting SELinux policies for user-
land applications based on a trusted user space agent. We
take their approach of a trusted userland policy application
enforced by the kernel.

Although our Binder IPC hooking approach requires mod-
ification to underlying kernel code, it makes no assumptions
about Android layers that are more likely to change over
time, such as the Dalvik VM. Specifically, security add-ons
that rely on Dalvik hooks may be broken in by Android’s
successor to Dalvik, ART, which introduced ahead-of-time
compilation in Android 5.0.

Previous architectures that have hooked Binder have shown
promising results: we build on projects like DeepDroid [29]
to systematically intercept and modify all Binder messages
without relying on Dalvik VM or Android middleware code
injection. Nitay Artenstein and Idan Revivo demonstrated
Binder message parsing and data exfiltration but did not
go as far as systematically hooking and modifying message
data [13].

We adopt DeepDroid and CRePE’s automatic context de-
tection for policy enforcement [29, 30] and apply it to the
new Android security landscape of SELinux, ART, and dy-
namic permission revocation in Marshmallow. Security pol-
icy must be informed by the environment that a system
encounters. To summarize, our main contributions to this
previous work include a context-aware policy system that
bases filtering decisions on the system’s state, and a hooking
framework in Android’s IPC system that supports blocking,
stealing, and modification of all IPC messages.

7. CONCLUSIONS
We have introduced a new hooking framework for Binder.

Our use of Binder driver hooks in BinderFilter and Picky al-
lows users to control their privacy settings per application,
context, and message. In addition, users can specify custom
messages to block and modify saved content data. More
work remains to be done in adding contexts and message
modifications. Because dynamic permission checking was
only recently introduced in Android 6.0, many apps still do



not handle permission revocation, leading to crashes. Mod-
ification of message content (as opposed to simply blocking
messages) could prevent unwanted crashes of applications
while also ensuring user data privacy.
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APPENDIX

Figure 14: Binder driver code analysis timeline. Visualization of Listing 1.

Figure 15: Binder code path (application layer). Expansion of Figure 2.



Figure 16: Binder code path (application framework layer). Expansion of Figure 2..

Figure 17: Binder code path (core libraries layer). Expansion of Figure 2.



Figure 18: Binder code path (core libraries continued and linux kernel layer). Expansion of Figure 2.


