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1.Foreword
1.1.History of this document
This document didn't start out from nowhere, but neither has it originally been 
intended for publication in book form. But then, sometimes history takes unexpected 
paths ...

Shortly after Sun had revised the ill-begotten idea of “phasing out” Solaris for x86 
platforms and started to ramp up a hardware product line with Intel CPUs in it, I was 
approached by the Service division within Sun about where they could get an 
introductory course about how to perform low-level troubleshooting – crashdump 
analysis – on the x86 platform. Information and trainings about troubleshooting on this 
level on SPARC platforms are widely available – starting with the famous “Panic!” book 
all the way to extensive classes offered by Sun Educational Services to participants 
both internal and external to Sun. That notwithstanding, we soon found out that no 
internal training about the low-level guts of Solaris/x86 did exist. Development 
engineers were usually both capable and encouraged to find out about the x86 
platform on their own, and users outside of the engineering space were few and far 
between. So this project started as a slide set for teaching engineers who were familiar 
with SPARC assembly, Solaris Internals and some Crashdump Analysis the 
fundamentals of x86 assembly and Solaris on x86 platforms, strongly focusing on 
“what's similar” and “what's different” between the low-level Solaris kernel on SPARC 
and x86 platforms.

I was to a large degree surprised by the amount of interest this material generated 
internally, so it grew, as time allowed, into a multi-day internal course on Solaris/x86 
internals and crashdump analysis. For a while, I came to spend a significant amount of 
time teaching this never-official “class” ...

Then came the work on Solaris 10 and the AMD64 port. The new “64bit x86” platform 
support brought changes in the ABI with it that severely surprised even experienced 
“x86 old-timers” and required a large amount of addition to the existing material, 
which at that time had grown into a braindump of semi-related slides. Revamping the 
Solaris hardware interface layer for both 32bit and 64bit on x86/AMD64 as well as the 
addition of new features like Dtrace or the Linux Application Environment made 
further modifications necessary.

In the end, StarOffice's limited ability to deal with presentations of 200+ slides 
eventually made it inevitable to drop the till-then adapted method of “add a slide as a 
new question comes up”.  

Would I have to make the same choice again I'd probably have opted to install myself a 
TeX system, but I decided to give StarOffice another chance and turn this material into 
something closer to a book. How I regret not having used TeX to start with ... that'll 
teach me !

Over the course of the AMD64 port of Solaris this grew into essentially the current 
form, and when people started using the 64bit port internally a large amount of new 
questions and typical problems came up which I attempted to address. To say it 
upfront, while the assembly language on AMD64 will be immediately familiar to people 
who know about “classical” x86, the calling conventions used in 64bit machine code on 
AMD64 are so much different that in many aspects crashdump analysis on 
Solaris/AMD64 is closer to Solaris/SPARC than it is to Solaris/x86. But then it isn't ... 
well, I'm disgressing, go read the book.

Then the OpenSolaris project came. Initially, I had planned to publish this on launch 
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day, but for many reasons this didn't work out at that time. So here it is – several 
months delayed, no longer completely covering the state of our internal and external 
(OpenSolaris) development releases. But it's finally reviewed, the crashdump analysis 
example dumps are made available, the StarOffice document has been cleaned up to 
only rely on freely available fonts + graphics.

Which means that you – yes, look into the mirror – are now supposed to work with this 
material, and on it. The whole document including all illustrations are now made 
available in editable form.

Please read the license attached to the end of the document.

• Yes, you can make modifications to this document.

• Yes, you can redistribute copies of this document in any form you see fit – you're in 
fact encouraged to do so.

• Yes, you're encouraged to contribute corrections or additions.

For all else legalese, see the appendix.

© 2003-2005, Frank Hofmann, Sun Microsystems, Inc.

Enjoy – and never forget:

Don't panic !
(Shall I say green is my favourite color ?)

If you wish to contact the author, please send Email to:

Frank.Hofmann@sun.com

At this point in time, I cannot even start listing the number of people that have made 
this document possible. Given that it didn't start as a book project I've kept a lousy 
bibliography.

I'd like to both thank every unnamed contributor as well as excuse myself for not 
naming you.

Using the words of Isaac Newton:

“If I have seen further it is by
Standing on the shoulder of giants.”

You know who you are.
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1.2.About modifying this document
StarOffice8 is used to edit this document, but (Beta) versions of OpenOffice 2.x should 
be able to access it as well.

The document uses the OpenSource DejaVu fonts which are a derivative of BitStream 
Vera. The difference between these two is that the DejaVu font family contains full 
bold/italic/bolditalic/condensed typefaces for Sans, Serif and Monospaced, while the 
original Bitstream Vera fonts only supply the full typeface set for Sans. Installing the 
DejaVu fonts is therefore a prerequisite to being able to edit this document and 
recreate the output as-is.

These fonts are available from http://dejavu.sourceforge.net

Other fonts than DejaVu should not be used. To simplify this, switch the StarOffice 
stylist tools to only show “Applied Styles”, and don't use any but these.

If you wish to contribute back changes/additions in plain text that's more than 
welcome. If you modify the StarOffice document itself, allow simple merge back by 
enabling the change recording facility in StarOffice. See the help functionality, on 
“Changes”.

Note that StarOffice's master text facility is somewhat dumb – it records full 
pathnames (instead of relative locations) for the subdocuments. When you open 
book.odm in StarOffice8, the Navigator will show you the list of subdocuments. Use the 
right mousebutton to request the context menu, and choose “Edit Link” to change the 
pathnames of the subdocuments to refer to the location where you unpacked the file 
set.

The same is true for embedding graphics. Not even the documented functionality 
(“link” to the illustrations instead of instantiate a copy for the document) is working. 
So be aware when you change some file under figures/, you might need to delete and 
reinsert it in the main document ...

I'll keep a pointer to the current version (StarOffice for editing / PDF for reading and 
printing) of this document on my blog:

http://blogs.sun.com/ambiguous/

And finally: These instructions should be better ...
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2.Introduction to x86 architectures
2.1.History and Evolution of the x86 architecture

The main driving force in development of the x86 processor family has always been to 
enhance existing functionality in such a way that full binary-level compatibility with 
previous x86 processors can be maintained. How important this is to Intel is best 
described in Intel's own words:

One of the most important achievements of the IA-32 architecture is 
that the object code programs created for these processors starting 
in 1978 still execute on the latest processors in the IA-32 
architecture family.

Among all CPU architectures still available in current machines, only the IBM3xx 
mainframe architecture (first introduced in 1964 with the IBM360, still available in the 
IBM zSeries mainframes) has a longer history of unbroken binary backward 
compatibility. All current “x86-compatible” CPUs still support and implement the full 
feature set of the original member of the x86 family, the Intel 8086 CPU which was 
introduced in 1978.

This means: Executable programs from code originally written for the 8086 will run 
unmodified on any recent x86-compatible CPU such as Intel's Pentium-IV or AMD's 
Opteron processor. Yes, MSDOS 1.0 is quite likely to run on the very latest and 
greatest "PC-compatible", provided you can still find some single-sided 360kB 5¼" 
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Illustration 1 - Overview of the x86 architecture evolution 
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floppy drive which would allow you to boot it on that shiny new AMD Opteron 
workstation.

Backward compatibility of the x86 processor family goes way beyond what most other 
CPU architectures (including SPARC) have to offer. Sun Microsystem's Solaris/SPARC 
binary compatibility guarantee only ensures that applications (not operating systems 
or other low-level code) written on and for previous OS/hardware will continue to run 
on recent OS/hardware combinations, but it does not claim that old versions of the 
Solaris Operating Environment will run on processors that were yet unreleased at the 
time a specific release shipped. This is different on x86. New versions of x86 CPUs 
from whatever vendor run older operating systems just fine. Incompatibilities if at all 
rise from the lack of device driver support for newer integrated peripherals, but not 
from the newer CPU's inability to function like its predecessors.

Since introduction of the Intel i80386 in 1985 (!), most features of the x86 architecture 
have remained remarkably constant. SMP support (via APIC) and support for more 
than 4GB physical memory (via PAE) was added in the Pentium respectively to the 
PentiumPro processors; after that, only instruction set extensions (MMX, SSE) were 
added but no externally-visible changes were done to other core subsystems of x86.

From the point of view of Solaris/x86, it was never necessary therefore to have more 
than one kernel, /platform/i86pc/kernel/unix, for supporting the operating system 
on x86 processors. Put this in context and compare it with Solaris in SPARC: For the 
various SPARC generations (maximum number of architectures concurrently 
supported in Solaris 2.6: sun4, sun4c, sun4d, sun4m, sun4u, sun4u1), each time 
separate platform support was required. Even today, Solaris 9 delivers ten (!) different 
kernels for the various SPARC platforms, while Solaris 9 for x86 still has only one.

This strict insistence on binary compatibility with its predecessors obviously has 
disadvantages as well. The way how the i80386 introduced 32bit support in some areas 
looks illogical and counterintuitive, especially when comparing it with 32bit 
architectures that were designed for 32bit from their very beginnings.  Some examples 
of this will be given later.

After releasing the i80386 32bit processor, Intel decided to keep future versions of 
x86-compatible (“IA32” in Intel's terms) CPUs on 32bit. Each generation became faster 
and added functionality, but the limitation to 32bit remained. In the early 1990s, this 
did not seem a problem because the major markets for x86 at that time (Microsoft DOS 
and Windows) were 16bit only anyway, and Intel's evolutionary path to 64bit had been 
layed out in the agreement with HP to co-develop a new 64bit architecture: IA64, then 
dubbed “Merced”, is today found in the Intel Itanium processors.

But IA64 has nothing to do with x86. The instruction sets have nothing in common and 
existing programs or operating systems written for 32bit x86 processors cannot run on 
machines with IA64/Itanium processors in it. The Itanium, though produced by Intel, is 
a genetic child of HP's PA-RISC architecture, but only a distant relative to Intel's own 
x86/IA32.

In addition to that, Intel and HP were late at delivering the IA64 CPU – very late.

So late that back in 2000, AMD stepped in and decided to extend the old x86 
architecture another time – to 64bit. AMD had, with varying success, been building 
x86-compatible processors since the early 1980s and saw Intel's de-facto termination 
of x86 as a chance to extend its own market reach. The AMD64 (64bit x86) 
architecture was done in a way very similar to how Intel had done the i80386, and 
processors based on AMD64 (much unlike Itanium/IA64) are, in good old x86 tradition, 
fully binary backward compatible. Of course, actually using the new 64bit operating 
mode requires porting operating system and applications (like using 32bit on the 
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i80386 did require at the time). But even when running a 64bit operating system does 
AMD64 provide a sandboxed 32bit environment to run existing applications in (again, 
like the i80386 which allowed the same for 16bit programs running on a 32bit OS). 
Therefore the AMD64 architecture offers much better investment protection than IA64 
– which will not run existing 32bit operating systems or applications.

By the time the AMD Opteron 64bit processor became available, the Itanium, on the 
market for three years then, had seen very little adoption – while users and software 
vendors kept pushing ever harder on Intel to follow AMD's lead and provide 64bit 
capabilities in their x86 processor line as well. Intel resisted this for several years in 
order not to jeopardize the market for their Itanium processors but eventually gave in 
and cloned AMD64. For obvious reasons Intel doesn't call their 64bit-capable x86 
processors “AMD64-compatible” but uses the term EM64T (Enhanced Memory 64bit 
Technology) for the architecture and IA32e for the 64bit instruction set extension. 
Intel CPUs with EM64T are compatible to AMD64 – which Intel confirms in the FAQ 
for the 64bit Extension Technology.

http://www.intel.com/technology/64bitextensions/faq.htm notes that:

Q9: Is it possible to write software that will run on Intel's processors with 
Intel® EM64T, and AMD's 64-bit capable processors?

A9: Yes, in most cases. Even though the hardware microarchitecture for 
each company's processor is different, the operating system and software 
ported to one processor will likely run on the other processor due to the 
close similarity of the instruction set architectures.

How the future of x86 will look remains to be seen. But the x86 architecture, with 
more than 25 years of age, has far surpassed the success of all other (non-embedded) 
processor architectures ever developed. With 64bit extensions that have rejuvenated 
x86, and x86-compatible processors with 64bit capabilities becoming commonplace 
now, this is unlikely to change in the near future.
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2.2.Characteristics of x86
There are two factors responsible for the main characteristics of the machine 
instruction set for what is commonly termed “x86 architecture”:

• The long history of x86 has left its mark on the instruction set.
x86 machine code carries a huge legacy of (mis-)features from the time when the 
architecture was still 16bit only, and in parts even from pre-x86 8bit days (in the 
form of limited compatibility with the Intel 8008).

• The need to introduce new capabilities without breaking binary compatibility has 
lead to a lot of instruction set extensions that are optional, and whose presence 
needs to be detected by applications / operating systems that want to make use of 
them. In addition, x86 never was a vendor-locked-in architecture, even though 
Intel's decisions have dominated its evolution. Both operating systems and 
application code for x86 therefore needs to expend some efforts on determining 
which CPU by what vendor it runs on, and what instruction set extensions this CPU 
provides before it can make use of optimized code.
This is fortunately much improved by AMD64 which establishes a new “64bit x86 
baseline”.

In addition to that, x86 CPUs use the so-called little endian way of ordering data in 
memory. Endianness becomes very relevant once data needs to be exchanged between 
systems of differing architecture.

2.2.1.CISC and RISC
Back in the early days of CPU design in the 1970s and early 1980s, manufacturing 
technology did not allow for anything close to the complexity we have today. CPU 
designers then had to make tradeoffs, mostly between a feature-rich assembly 
language, but few registers and generally lower instruction throughput, and a feature-
poor assembly language with many registers and faster execution for the simple 
instructions that there were.

The x86 architecture is the classical example of a so-called CISC processor. The term 
CISC stands for Complex Instruction Set Computer, and is used to describe a processor 
whose instruction set offers single, dedicated CPU instructions for possibly very 
involved tasks. Philosophically, the ultimate design goal for a CISC processor is to 
achieve a 1:1 match between CPU instructions and instructions in a high-level 
programming language.

CISC is almost a requirement for CPUs which maintain full backward compatibility 
such as the x86 family. Adding functionality to an existing architecture always means 
adding instructions and complexity. A pure evolutionary CPU development as Intel has 
done it therefore almost necessitates a CISC architecture.

All in all, Intel's latest instruction set reference needs two volumes and more than 
1000 pages to describe all x86 instructions supported by the latest x86 CPUs by Intel.
For comparison - the sparcv9 architecture reference manual only has 106 pages 
describing all sparcv9 assembly instructions.

Given the focus on instruction functionality vs. versatility, CISC architectures tend to 
have features like:

• many special-purpose instructions.
An example on x86 would be two separate instructions for comparison – the generic 
CMP instruction and the TEST instruction which will only check for equality or 
zeroness.
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• the ability to modify a memory location directly, without the need to load its 
contents into a register first.
This is done to offset the lack of registers – the idea is that if destination or source 
of an operation can be memory, less registers are needed.

• instructions with varying length.
This is both due to the fact that CISC architectures usually allow to embed (large) 
constants into the instruction, and because feature additions over time have 
required the introduction of longer opcodes (instruction encodings).
Another consequence of this is that there are few gaps (undefined or illegal 
opcodes) in the instruction set. As we will see, to an x86 CPU random data makes up 
for a decodeable instruction stream !

• few general-purpose registers.
Historically there had to be a tradeoff between using the space on the CPU die to 
provide more registers or more-capable instructions. CISC CPU designers chose to 
do the latter, and it often proved difficult to extend the register set even after 
manufacturing technologies would have allowed for it. The x86 architecture lived 
with only eight registers, until AMD designing the 64bit mode finally took the 
chance and extended the register set to 16.

The x86 architecture is the single major remaining CISC architecture out there today. 
Most other CPU architectures on the market today, whether SPARC, PowerPC, ARM or 
(to a degree) even IA64, have gone the other way – RISC. 

SPARC assembly source binary machine code disassembler output

func:
    tst   %i0
    orcc  %g0, %i0, %g0
    set   1234, %i0
    or    %g0, 1234, %i0
    cmp   %i0, %i1
    subcc %i0, %i1, %g0
    clr   %i0
    or    %g0, %g0, %i0
    mov   %i1, %i0
    or    %g0, %i1, %i0
.size func,.-func

section .text
   0:  80 90 00 18
   4:  80 90 00 18
   8:  b0 10 24 d2
   c:  b0 10 24 d2
  10:  80 a6 00 19
  14:  80 a6 00 19
  18:  b0 10 00 00
  1c:  b0 10 00 00
  20:  b0 10 00 19
  24:  b0 10 00 19

section .text
     tst  %i0
     tst  %i0
     mov  0x4d2, %i0
     mov  0x4d2, %i0
     cmp  %i0, %i1
     cmp  %i0, %i1
     clr  %i0
     clr  %i0
     mov  %i1, %i0
     mov  %i1, %i0

Illustration 1 - machine code example on RISC, synthetic instructions

SPARC and all its incarnations are a classical example of RISC (Reduced Instruction 
Set Computer), and share many generic features with other RISC architectures:

• Lots and lots of CPU registers are available. For example, SPARC provides at least 
32 general-purpose registers (internally hundreds, via register windows).

• To modify data in memory, one must load it into a register, modify the register 
contents and store the register back into memory. This is called a load-store 
architecture.

• RISC instructions usually have a fixed instruction size. All SPARC instructions, for 
example, are 32bit. RISC Instruction sets are rather designed than evolved.

• Instructions often are multi-purpose. A RISC CPU, for example, may not have 
separate instructions for subtracting values, comparing values or testing values for 
zero – instead, typically, “SUB” will be used but the result (apart from condition 
bits) be ignored. See the SPARC assembly code example above.

• Instructions tend to be simple. If a RISC CPU offers complex instructions at all, they 
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are usually completed by help of the operating system - instructions leading to 
complex system activity will trap and require software help to finish.

Unlike CISC, the focus for RISC is on raw execution power - the more instructions per 
unit of time a CPU can process the faster it will be in the end. Executing a dozen 
simple instructions as fast as theoretically possible often proves to provide better 
throughput than executing a single, slow instruction to achieve the same effect. RISC 
originally was invented to allow for simpler CPU designs running at higher clock 
speed.

RISC pays for this by often requiring more instructions to achieve an equivalent result 
as CISC gets with just one or two instructions:

x86 assembly binary code SPARC assembly binary code

movq
 $0x123456789abcdef0,
 %rax
addq %rax,var

48 b8
 f0 de bc 9a
 78 56 34 12
48 01 04 25
 XX XX XX XX

sethi %hi(0x12345400), %o1
xor   %o1, -0x279, %o1
sethi %hi(0x65432000), %o0
xor   %o0, -0x110, %o0
sllx  %o1, 32, %o1
xor   %o1, %o0, %o0
sethi %hi(var), %o1
or    %o1, %lo(var), %o1
ldx   [%o1], %o2
addc  %o0, %o2, %o2
stx   %o2, [%o1]

13 04 8d 15
92 1a 7d 87
11 19 50 c8
90 1a 3e f0
93 2a 70 20
90 1a 40 08
13 0X XX XX
92 12 6X XX
d4 5a 40 00
94 42 00 0a
d4 72 40 00

Illustration 2 - RISC & CISC: Adding a 64bit constant to a global variable “var”

Today, most arguments in the CISC vs. RISC debate have become obsoleted by 
technical progress.

Since the introduction of Intel's Pentium-IV and AMD's Athlon, modern x86 processors 
internally "recompile" x86 instructions into RISC instruction sets. Intel calls this µ-ops, 
while AMD uses the term ROPs (RISC ops) openly. These RISC execution engines in 
x86 CPUs are not exposed to the user - the step of decoding/compiling x86 instructions 
into the underlying micro-ops is done by an additional layer of hardware in the 
instruction decoder part of these CPUs.

Likewise, RISC CPUs over time have added complex instructions such as hardware 
multiply/divide which had to be done purely in software in early RISC designs. 
Additionally, instruction set extensions like the Visual Instruction Set (VIS) on 
UltraSPARC or AltiVec on PowerPC allow for DSP-like (SIMD) functionality just like 
MMX/SSE do on x86.

So what is a modern x86 CPU then ? CISC or RISC ?

The answer is:

Both. It is a CISC CPU, but to perform best, one has to program it like a RISC CPU.

For example, AMD in their Software Optimization Guide for AMD Athlon64 and AMD 
Opteron Processors explains it like this:

The AMD64 instruction set is complex; instructions have variable-length 
encodings and many perform multiple primitive operations. AMD Athlon 64 
and AMD Opteron processors do not execute these complex instructions 
directly, but, instead, decode them internally into simpler fixed-length 
instructions called macro-ops. Processor schedulers subsequently break 
down macro-ops into sequences of even simpler instructions called micro-
ops, each of which specifies a single primitive operation.
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and a little later:

Instructions are classified according to how they are decoded by the 
processor. There are three types of instructions:

Instruction Type Description
DirectPath Single A relatively common instruction that the processor

decodes directly into one macro-op in hardware.
DirectPath Double A relatively common instruction that the processor

decodes directly into two macroops in hardware.
VectorPath A sophisticated or less common instruction that the

processor decodes into one or more [ ... ] macro-ops [ ... ]
.

and finally:

Use DirectPath instructions rather than VectorPath instructions.

In short:

Bypass the CISC runtime translation layer to get best performance out of the 
underlaying RISC execution engine.

Similar notes can be found in the respective manuals for Intel's Pentium IV CPU family 
and later.
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2.2.2.Endianness
The x86 CPU family is traditionally Little Endian. What does this mean ?

The topic of how bytes that form multi-byte (or, for that matter, multi-bit) entities 
should be ordered in the past used to have almost religious traits. This is the reason 
why the technical term for memory byte ordering, Endianness, was taken from 
Gulliver's Travels by Jonathan Swift and refers to the holy war between the two 
empires of Lilliput and Blefuscu about the question which end eggs are to be opened at 
first.

The original reference which coined the term seems to be a posting by David Conen in 
his famous essay “On holy wars and a plea for peace”, which dates from the 1st of 
April 1980 and became a classic on that subject after it was published by the IEEE 
computing magazine in 1981. The article is also known under the reference number 
IEN-137.

Data ordering in little endian mode Data ordering in big endian mode

utsname+0x303?s 
utsname+0x303:  snv_24
> utsname+303?J
utsname+0x303:  736e765f32340000 
> utsname+303?2X
utsname+0x303:  32340000   736e765f
> utsname+303?4x
utsname+0x303:    0  3234  765f  736e
> utsname+303?8B
utsname+0x303:   0 0 34 32 5f 76 6e 73

utsname+0x303?s 
utsname+0x303:  snv_24
> utsname+0x303?J
utsname+0x303:  736e765f32340000 
> utsname+0x303?XX
utsname+0x303:  736e765f 32340000 
> utsname+0x303?4x
utsname+0x303:  736e 765f 3234 0       
> utsname+0x303?8B
utsname+0x303:  73 6e 76 5f 32 34  0  0

When a processor accesses a multi-byte data type (i.e. C types short, int, long, 
long long) from memory in a single operation, it will make an implicit assumption 
what comes first – the most significant byte (MSB) or the least significant byte (LSB). 
These terms are used interchangeably with Endianness,

• LSB (least significant byte first) : Little Endian
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Illustration 4 - On the origin of the term “Endianness”
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• MSB (most significant byte first) : Big Endian

As there is endianness on byte level, there's also endianness on bit level, i.e. regarding 
the ordering of bits within a byte. But this poses less problems than byte ordering, 
because apart from serial protocols little data exchange is done on bit-level, and 
fortunately mixed-endian CPUs that used little endian for bits and big endian for bytes 
or vice versa (yuck – like ancient greek written in a mode called “boustrofedon”, “like 
the ox plows” - one line from left-to-right, and the next right-to-left) are no longer on 
the market. Today, big-endian CPUs use big endian for both bit and byte ordering, and 
likewise little-endian CPUs.

To a CPU, reading numbers from memory, aka ordering bytes within a word, is like 
reading a text to humans – words are made up from characters, and you read them 
from left-to-right – unless, of course, you're reading Arabic or Hebrew texts, or 
traditional chinese, where you read them from right-to-left. There is no inherent 
advantage or disadvantage to do it either way, and what's supposed to be the correct 
way of doing it depends on the CPU/language you use. But a consequence is that what 
feels natural to one seems very odd to the other.

So accessing data the big-endian way is like reading left-to-right, while little-endian is 
like reading right-to-left and therefore may look odd. But if the output is formatted, it 
becomes clear again:

Little Endian: Right-aligned pointers Big Endian: Left-aligned pointers

utsname+101/J
utsname+0x101:  6361626863746168
> utsname+101/X
utsname+0x101:          63746168
> utsname+101/x
utsname+0x101:              6168
> utsname+101/B
utsname+0x101:                68

utsname+101/J
utsname+0x101:  6361626863746168
> utsname+101/X
utsname+0x101:  63616268
> utsname+101/x
utsname+0x101:  6361
> utsname+101/B
utsname+0x101:  63

The difference in endianness between e.g. x86 (little endian) and SPARC (big endian) 
becomes relevant as soon as data is exchanged between two machines of differing 
endianness. Even within the same system this can happen, in the case the CPU and a 
peripheral device use different endianness but share memory. Whenever file contents, 
shared memory or network packets are exchanged between two parties that use 
different endianness, a common storage format must be agreed on, or a method to 
swap endianness must be found.

Examples how to deal with endianness are:

Network Byte Ordering.

On creating network packet contents, the sender is supposed to use the host-to-
network interfaces, htonl() etc., to convert data to the network byte ordering, 
while the receiver shall use the corresponding network-to-host functions, 
ntohl() etc., to decode network data into its native format.
Network byte ordering is big-endian, but it is unportable to program based on 
that assumption. It's also unnecessary – on big-endian machines, the interfaces 
for host/network byteorder conversion will do nothing – they'll simply pass 
through their input. Compiler optimizers eliminate these calls on big-endian 
systems.
See manpage byteorder(3SOCKET).

Remote Procedure Calls (RPC).

Passing RPC arguments between two systems requires an endian-agnostic data 
representation. This is called XDR (exchangeable data representation), and a 
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library is supplied that programs can use to convert a huge variety of basic data 
types into XDR representation. XDR is a generalization of network byte ordering 
to arbitrary data types. See manpage xdr(3NSL).

DMA Memory Access by device drivers.

Peripheral devices and the main CPU in a machine may access memory with 
differing endianness. When writing a device driver for such a device, the 
programmer therefore needs an interface to specify to the host operating 
system that a given device is big- or little-endian. Depending on whether device 
and host use the same or a different byte ordering, data to be transferred to or 
from that device must be converted into the proper byte order. Under Solaris, 
the DDI interface set provides routines to request byte swapping to be done by 
the framework. See manpages:
ddi_device_acc_attr(9S), ddi_dma_mem_alloc(9S) and ddi_dma_sync(9S).
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2.3.Marketeering – Naming the architecture

The number of trademarked and non-trademarked terms applied to “x86 CPUs” and 
software that runs on the “x86 platform” is legend, and marketing departments 
everywhere keep adding to it.

Naming the architecture is truly the Babel of the computing industry.

• The term “x86” and derivatives of that is generic (not trademarked), and commonly 
used to describe all architectures (by various vendors) that were in one way or the 
other “derived” from the original Intel 8086 microprocessor, and have a high degree 
of compatibility with Intel CPUs.

• The same applies to “PC compatible” - though that includes more than just a CPU 
that is “x86 compatible”. The original IBM PC/AT (trademarked terms, again) had, in 
addition to the i8086 CPU, a set of standard hardware/peripherals whose presence 
can be assumed on “compatibles”. Later, Microsoft, Intel and other hardware 
vendors devised updated “PC XX” standards to list a set of hardware/bus interfaces 
available by default on “modern” systems.

• Intel uses the trademarked terms “Intel Architecture”, and more specifically “32bit 
Intel Architecture” (IA32). Intel always had more than one CPU architecture in their 
portfolio (e.g. today the Itanium/IA64, in the past the i860 RISC, even before that 
the i437) so “Intel Architecture” alone doesn't mean anything technically. IA32, on 
the other hand, is the term applied to the instruction set/feature set of Intel CPUs 
whose ancestor is the 8086 – in short, IA32 is “x86 by Intel”.

• The CPU names i8086, i80286, i80386, i80486, Pentium, ... are Intel trademarks.

• UNIX platforms have traditionally shortened these to i86, i286, i386 (with and 
without the leading 'i'). “386” is particularly frequent as the first 32bit version. 
“386” and variants thereof is found all over:
$ file ls
ls: ELF 32-bit LSB executable 80386 Version 1,
 dynamically linked, stripped
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$ uname -a
SunOS hatchback 5.10.1 onnv-work i86pc i386 i86pc

$ isainfo
amd64 i386

We also find it, for example, in the ELF format architecture name:
 <sys/elf.h>: #define EM_386 3 /* Intel 80386 */

It's also present as the conditional-compile definition for 32bit x86:
<sys/isa_defs.h>:
[ ... ]
/*
 * The feature test macro __i386 is generic for all processors implementing
 * the Intel 386 instruction set or a superset of it. Specifically, this
 * includes all members of the 386, 486, and Pentium family of processors.
 */
#elif defined(__i386) || defined(i386)
/*
 * Make sure that the ANSI-C "politically correct" symbol is defined.
 */
#if !defined(__i386)
#define __i386
#endif
[ ... ]

Intel itself never used the terms “i586”, “i686” (with or without the 'i') or similar, 
but other CPU vendors (like AMD or Cyrix) did, and e.g. the GNU gcc compiler 
recognizes -m586 and similar as hint to optimize code for post-486 processors.

The confusion about names doesn't get better with the extension to 64bit.

• The 64bit extension was created and first specified by AMD. AMD called this 
“x86_64” during development (and the term is still used as the architecture name on 
Linux), and “AMD64” on release.
In fact, both are found as the ELF architecture name:
<sys/elf.h>:
#define EM_AMD64 62 /* AMDs x86-64 architecture */
#define EM_X86_64 EM_AMD64 /* (compatibility) */

AMD64 applies to the instruction set (x86 including 64bit extensions).

• The AMD Opteron and Athlon64 are CPUs by AMD implementing the AMD64 
architecture.

• Intel for obvious reasons does not use the term “AMD64”. Since “IA64” is already 
given to the (x86-incompatible) Itanium architecture, Intel has created two new 
names of its own instead:

• EM64T (Extended Memory 64bit technology)

• IA32e

The first is applied to processors by Intel that are “AMD64 compatible”, while the 
second (which is very uncommon) is used in Intel's architecture reference manual to 
describe the 64bit x86 instruction set (extension).

• Microsoft and Sun, for example, chose to use the term “x64” when talking about the 
64bit x86 architecture, resp. their operating systems supporting it. In that context, 
“x86” means 32bit-x86, while “x64” means 64bit-x86.

In this document, the term “x86” is used wherever possible, with a specific note 
“32bit”, “32bit mode”, “64bit” etc. as appropriate.
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3.Assembly Language on x86 
platforms
From “The Tao of Programming”:

The Tao gave birth to machine language.
 Machine language gave birth to the assembler.

The assembler gave birth to the compiler.
 Now there are ten thousand languages.

3.1.Generic Introduction to Assembly language
Programming languages, however they are structured, tend to implement a common 
set of minimum functionality. Programming languages usually have features like:

• instructions, i.e. operations to modify and query "state"

• "state" (operands/variables/data) that instructions operate on

• modularization (the ability to substructure both program and data into smaller 
reusable units of execution/access, termed functions/structures)

Assembly language of course supplies all of these. The purpose of this section is to 
explain how constructs used in x86 assembly language implement these basic building 
blocks. Since this manual is not supposed to replace introductory tutorials on either 
programming in general nor machine-level programming as such, no attempt will be 
made to explain things like "what is an instruction", "what is an expression". Minimum 
familiarity with programming is assumed.

To understand assembly language programs (or disassembled compiled code), look at 
the above list of language building blocks again in more detail.

3.1.1.Instructions
Assembly language uses mnemonics (human-readable transcript of the actual binary 
machine code) for instructions. The following classes are usually supplied:

1. arithmetic/logical instructions. Anything that actually modifies data (aka performs 
an operation) falls under this category. Examples are addition, multiplication, and 
other numerical operations.

2. comparisons and conditionals to query state and change the flow of execution 
depending on that state. A typical example would be a "check if lower than" or a 
"branch if equal" instruction.

3. Load/Store operations for data transfer

4. function subroutine support, aka call/ret instructions (instruction transfer)

How readable the assembly language for a specific processor is depends somewhat on 
the choice of the CPU vendor how to name the instructions.

Intel for the x86 CPU family has used plain english terms (or at worst simple 
abbreviations) for assembly instruction names. A typical example would be the name of 
the instruction that calculates the sum of two operands: "ADD". At worst, an 
abbreviation as "MOVNTQA" (Move non-temporal quadword aligned) can occur, but in 
most cases x86 assembly instruction names are descriptive.
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3.1.2.Operands, Variables and Data
To understand the concepts used in assembly language for accessing data, we have to 
examine more closely what data can be. More precisely, what the scope (visibility) of a 
particular item is.

One possible way how data can be classified in a hierarchical way would be:

This is not the only possible subclassification of "data", of course, but the above 
scheme has the advantage that it maps very well to some of the concepts inherent to 
assembly language.

From the point of view of currently executing machine code, data can be considered to 
be “closer” and “further” away.

• Data that can be seen from any code within the current program is called global. 
Global data is persistent, it will continue to exist even if the specific piece of code 
that happened to be using it has been completed.

• The C programming language knows a specific subtype of global data that is 
called static. Static data in C is not visible to every code from the current 
program but only to code from the same sourcefile, or to all instantiations (calls) 
of a given function. C static also is persistent.

• Any other data in use by the program is temporary and only lives as long as the 
current function is executing. Such data is recreated/reinitialized each time a given 
function is run, and different functions operate on different sets of data. This is 
generically called local data. It is usually subclassed further into:

• Function input: Arguments

• Function output: return value(s)

• Other non-persistent data in use by the function: local variables

• Structured programming languages have finer-grained blocks of execution than 
functions. Consider, for example, a loop within a function. It uses data, though in 
most cases not all of the data that this function is operating on. Instead, it uses only 
a subset of that. This subset of currently-in-use data is called the working set.
For optimal performance, a method is desired to access data from the working set in 
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Illustration 1 - Data Namespace based on scope of access
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as fast a way as possible.

In terms of machine-level architecture, data as classified above therefore falls into 
three big groups:

1. Global, persistent data. This is the Heap.

2. Temporary data which lives as long as the function that uses it is executing. This is 
usually called the Stack.

3. Data that makes up the current working set. Most CPUs provide fast-access 
temporary storage for such data – a set of Registers.
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Illustration 2 - Machine-Language concepts for heap, stack and registers

HEAP

REGISTERS STACK
in use / active
(working set)

common to all 
instantiations

(C language static)

Data

globally visble visible from within
a specific function only

per function instance

input
(arguments)

output
(return values)

locals

inactive



3.1.3.Registers, the Stack and the Heap
A high-level programming language often does not inherently know the concept of 
memory. Where data is stored or how it is accessed is up to the internal 
implementation of the language and not usually exposed to the programmer. Even 
intermediate-level languages like "C" that supply language features for specifying data 
locality (C keywords extern/static/auto/register, pointers) don't usually specify 
how these features are implemented, but refer to "the architecture" to supply the 
backend. Assembly language is different here. Due to the tight binding between 
hardware features and assembly language, the programmer here has to know about 
the details regarding where data is stored, resp. consider the optimal place where to 
put operands at any given time.  This is where the above diagram comes in handy.

Assembly language at least knows the distinction between persistent and temporary 
data – the heap and the stack. There are machines out there (the Java Virtual Machine, 
or Forth, for example) which implement nothing else, but most current processors 
provide hardware support for putting a working set of data into fast temporary storage 
– a set of registers.

CPU Registers are kind of a "Level 0 Cache" (and the existance of registers as a fast-
access temporary data storage far preceeds the existance of CPU caches) within the 
CPU, and used to hold variables that are either frequently queried or being modified as 
part of a computation. In many CPUs, arithmetic operations require the presence of 
the operands within registers. CPU registers, provided enough of them are available, 
will be the place where the working set of variables for the current function is found.

But even modern CPUs created/designed at a time when space on the CPU die is 
aplenty, don't offer unlimited number of registers. On the contrary, registers are 
usually a scarce resource. This is where the stack comes in again - to serve as a 
backing store for local variables. By giving each function its own dedicated piece of 
memory specific to this instantiation (i.e. different for e.g. two CPUs calling the same 
code), a so-called stack frame, the function can "swap" its working set between stack 
(or heap) and registers.

Registers and/or the stack frame also serve for data-passing between nested function 
calls. By letting the frames of calling and called function overlap, arguments can be 
passed between functions or values returned.

Data that is not specific to one instantiation of a function call but shared between all 
calls to this function (a C static), or all calls to all functions (a global variable) will 
not end up in the stack but in a well-defined location in memory that every code knows 
about. This memory location is often called the data segment of the program, or the 
heap.
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3.2.Assembly language on x86 platforms

3.2.1.Registers
The general-purpose x86 register set has evolved from the 8bit i8008 processor's AH/AL 
accumulator model via the eight 16bit registers of the i8086 processor, and their 
extension (hence the register name prefix 'E') to 32bit in the i80386 and 64bit in the 
AMD Opteron. All registers are global, and 16/8bit register names are only alias names 
for lower bits of the 32bit register. This is called register aliasing. In 32bit mode, x86 
processors implement the following general-purpose registers:

Overall, x86 CPUs in 32bit mode have only eight global, general-purpose registers. 
They are shared between 32/16/8bit access:

• 32bit registers : EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

• 16bit registers : AX, BX, CX, DX, SI, DI, BP, SP
These registers cover bit 0..15 of the corresponding 32bit registers.

• 8bit registers : AL, BL, CL, DL, and AH, BH, CH, DH,
These registers cover bits 0...7 (.L) or bits 8..15 (.H) of registers EAX ... EDX.

Processors in the x86 family supply many more registers than that, but none of these 
are general-purpose. Instead, specific instructions are required to make use of those. 
Commonly-seen special registers in x86 include:

• The processor state register(s): EFLAGS, CR0...CR8.

• The program counter (instruction pointer) register: EIP.

• Floating point and vector registers: ST0..ST8, MM0..MM8, XMM0..XMM8

Peculiar to the architecture is the concept of segmentation, which also is controlled via 
a special set of registers:

• Descriptor Table registers: GDTR, LDTR, IDTR

• Segment registers: CS, DS, ES, FS, GS, SS

Modern x86 CPUs supply hundreds of registers, all of them special-purpose. They are 

3.Assembly Language on x86 platforms 25

Illustration 3 - Register set (integer registers) on x86 architectures in 32bit mode
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called machine-specific registers, or MSR, and control specific features of the given 
CPU. Please refer to the processor manuals from the respective CPU vendors.

In 64bit mode (AMD64 and EM64T processors), the general-purpose register set is 
twice as large as before, and access to 16/8bit “subregisters” has been unified:

64bit mode retains register aliasing but makes it uniform. In addition to that, the 
number of general-purpose registers (and the number of XMM vector registers) has 
been doubled. In 64bit mode, the CPU provides:

• 16 64bit registers : RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP and R8..R15.

• 16 32bit registers : EAX, EBX, ECX, EDX, EDI, ESI, EBP, ESP and R8D..R15D.
These registers map bits 0..31 of the corresponding 64bit register.

• 16 16bit registers : AX, BX, CX, DX, DI, SI, BP, SP and R8W..R15W.
These registers map bits 0..15 of the corresponding 32/64bit register.

• 16 8bit registers : AL, BL, CL, DL, DIL, SIL, BPL, SPL and R8B..R15B.
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Illustration 4 - Register set (integer registers) on x86 architectures in 64bit mode
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These registers map bits 0..7 of the corresponding 16/32/64bit register.

In 64bit mode, the “highbyte” registers AH..DH are deprecated; they still are available 
but their use is no longer suggested for 64bit code.

The 64bit x86 register set is uniform – all registers can be used in the same way, i.e. 
all of them have 8/16/32bit “subregisters”. That doesn't mean all of them are equally 
efficient, though. The x86 instruction set has “optimized machine opcodes” for some 
arithmetic operations that put their result into %eax/%rax, for example. Likewise, the 
64bit extensions encode the use of %r8..%r15 via an additional byte in the instruction 
stream, so the use of the “classical” registers vs. the “new” registers creates more 
compact binary code. Please refer to the CPU vendors' optimization guidelines for 
instructions on how to optimally use the register set if you intend to write assembly 
code for 64bit x86 platforms manually.

64bit mode also has the FLAGS register (RFLAGS), and the 64bit program counter RIP, 
which is made explicitly available for PC-relative addressing, a feature not available in 
32bit code.

Register aliasing requires rules that specify how the high bits of the 16/32/64bit 
register are handled if an instruction operates explicitly on a 32/16/8bit register:

• A 8bit operation on .L does not affect bits 8..31 (i.e. the upper bits in the .X and E.. 
registers). Operating on .H, bits 0..7 and 16..31 are unaffected.
Bits 32...63 of the 64bit R.. register are cleared.

• A 16bit operation does not affect bits 16..31 (i.e. the upper bits in E../R..D).
Bits 32...63 of the 64bit R.. register are cleared.

• A 32bit operation clears bits 32..63 of the 64bit R... register.

In other words, if operating in 64bit mode, all operations that are not explicitly 64bit 
will zero extend their result to 64bit. The advantage of doing this is in preserving the 
semantics of all existing 32bit operations. For example, a 32bit addition will overflow 
after 32bit and set status register bits to indicate this condition, instead of silently 
wrapping around to 64bit and preventing proper detection of the 32bit overflow.
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3.2.2.Addressing Modes
Accessing memory is possible either:

• Direct, supplying an absolute 32/64bit value as address

• Register indirect, using the value contained in a register as address

• Indirect with offset, using the contents of a register as the base address and a (no 
larger than 32bit) constant as additional offset

• Indirect with index and scale, using a register as base address of an array, a second 
register as index into that array and a scale factor of 1, 2, 4 or 8 for that register to 
specify the size of the elements in the array.

• Indirect with offset, index and scale. Same as before, except that now the start 
address of the array will be the sum of base register and offset. This allows e.g. to 
efficiently access arrays that are themselves members of larger data structures.

• instruction pointer relative with offset. This is only available in 64bit mode and 
allows for efficient position-independent code.

As a summary, memory access on x86 systems is done by calculating the address 
implicitly using the following formula:

Any parts are optional. In 32bit mode, only the 32bit registers %eax...%esp can be used, 
of course.

The stack is special on x86, and the architecture has explicit support for accessing 
stack memory – via PUSH/POP instructions.

Pushing something onto the stack will decrement %esp/%rsp by the size of the operand 
and put the value of the operand into the memory location that %esp/%rsp points at 
then.

Popping something off the stack takes the value the %esp/%rsp points at, and then 
increments %esp/%rsp by the size of the operand.
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instruction-pointer-relative (64bit only):

memory location = offset   %rip 
Illustration 5 - Summary of x86 addressing modes



3.2.3.x86 assembly syntax
On most processors, the assembly language (i.e. the human-readable mnemonics) has 
been created by the CPU vendor. This of course also applies to x86, but the story 
doesn't end there. On x86 systems, there are two dialects of assembly language:

• Intel Syntax

• AT&T Syntax

For non-UNIX assembly programmers, Intel's official assembly language syntax will be 
used. But on UNIX systems, the situation is traditionally reversed. After Intel released 
the 80386 processor with its 32bit capabilities, AT&T's UNIX System Laboratories 
were one of the first operating system vendors to create a 32bit operating system for 
it. Since there was no existing 32bit-x86 market in 1985, there were also no readily-
available development toolchains (compiler, assembler, linker) for them to use, so this 
had to be written, in the case of the assembler from scratch. Legend has it that AT&T 
developers looked at Intel's assembly language specification and were horrified by the 
ambiguities in the syntax, and the strong dissimilarity of Intel's assembly language 
syntax to those of other CPUs that UNIX had been ported to before.

So AT&T devised their own assembly language syntax for x86 platforms, which is 
standard for x86 assembly on UNIX and UNIX-like systems.

On binary level, there's of course only one x86 machine language. AT&T and Intel 
Syntax are just a different way of making the machine language human-readable. As 
an analogy, consider writing the same chinese-language text with chinese characters 
and in the pinyin style using latin characters – striking differences, but yet it's chinese. 
Fortunately, the differences between AT&T syntax and Intel syntax are smaller than 
that.

Some simple examples illustrate differences between Intel and AT&T syntax very well:

Operation AT&T Syntax Intel Syntax

Move data from 
memory into a 
register

movb  address, %ah
movw  address, %ax
movl  address, %eax
movq  address, %rax

MOV   AH, [ address ]
MOV   AX, [ address ]
MOV   EAX, [ address ]
MOV   RAX, [ address ]

More Addressing:
Direct, Indirect, 
Indexed

movl  address, %edi
movb  -0x20(%ebp), %dl
movq  (%rax,%rcx), %r12
movl  (%edx,%esi,4), %edx
movw  0x8(%ebp,%ecx), %si
movw  $0, 0x20(%ebx)

movl  %r12d, 12345(%rip)

MOV   EDI, [ address ]
MOV   DL, [ EBP – 0x20 ]
MOV   R12, [ RAX + RCX ]
MOV   EDX, [ EDX + 4 * ESI ]
MOV   SI, [ EBP + ECX + 0x8 ]
MOV WORD PTR
      [ EBX + 0x20 ], 0
MOV   [ RIP + 12345 ], R12D

Use of constants addb  $10, %r15b
subl  $1234, -0x10(%rbp)

orl   $0x10110, %ebx
xorl  $0xffffffff, %ecx
movq  $0x123456789abcdef0, %rax
andl  $0xfffffff0, %esp

ADD   R15B, 10
SUB INT PTR
      [ RBP – 0x10 ], 1234
OR    EBX, 0x10110
XOR   ECX, 0xffffffff
MOV   RAX, 0x123456789abcdef0
AND   ESP, 0xfffffff0

Arithmetics xorl  %eax, %eax
addl  %ecx, %edx
andl  $0x1000, %esi
andl  $0x10, -0x30(%ebp)

XOR   EAX, EAX
ADD   EDX, ECX
AND   ESI, 0x1000
AND INT PTR
      [ EBP – 0x30 ], 0x10
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Operation AT&T Syntax Intel Syntax

imulq %rax, %rbx, %rcx
orl   $0x400, %r13d
addb  $123, globalvar

leal  (%eax,%eax,4), %eax
leal  (%eax,%ebx), %ecx

IMUL  RCX, RAX, RBX
OR    R13D, 0x400
ADD BYTE PTR
      [ globalvar ], 123
LEA   EAX, [ EAX + 4 * EAX ]
LEA   ECX, [ EAX + EBX ]

Control transfer call  funcX
call  *%ebx
ret
iret
lcall $0x27,0
jae   func+0x123

CALL  func
CALL  [ EBX ]
RET
RET FAR
CALL FAR 0, 0x27
JAE   func+0x123

Special 
Instructions

cmpxchgl %eax, (%ecx)
cmpxchgq %rdx, (%r15)

repz
scasb

pushal
movl  %xmm5, (%eax,%ebx)

lock
orl   $0x800, (%rax)

CMPXCHG   [ ECX ], EAX
CMPXCHG8B [ R15 ], RDX

REPZ CASB

PUSHAD
MOVD  [ EAX + EBX ], XMM5

LOCK OR INT PTR
      [ RAX ], 0x800

In general, AT&T syntax has been designed to remove ambiguities that are inherent to 
Intel syntax. The differences can be summed up as follows:

• AT&T prefixes register names with '%' to avoid ambiguities with names of variables.
Intel reserves the names of registers. If a variable uses a name that the next Intel 
CPU uses for a register – you're out of luck.

• AT&T prefixes constants (whether numerical values or symbols whose address is to 
be taken as a constant) with '$'.
Intel does not specifically mark constants. Again, ambiguities between register 
names and variable names possible.

• AT&T orders operands source first, destination second, i.e. a from-to ordering.
Intel uses destination first, source second. Operations are “do to <>: .”.<>

• AT&T suffixes instruction names with b, w, l or q to specify the operand size.
Intel derives the operand size implicitly from the name of the target register. In 
cases where the target is memory, the ... PTR syntax extension is used.

• AT&T uses a format offset(%base,%index,scale) for address declarations.
Intel puts the formula in square brackets, [ BASE + SCALE * INDEX + OFFSET ]

• AT&T in assembly sourcecode (not in disassembler output, though) puts 
instruction prefixes onto separate lines.
Intel requires instruction prefixes to directly preceed the instruction they apply to.

• AT&T and Intel name a small set of instructions differently, in cases where the size 
suffix in AT&T syntax makes a new instruction name unnecessary, for string 
instructions, or far calls/returns.

• AT&T by convention uses lowercase, and variable names are case-sensitive.
Intel syntax uses capital letters for everything.

Keep the differences between AT&T and Intel syntax in mind if you're reading Intel's 
or AMD's architecture reference manuals – these all use Intel syntax. Especially the 
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different argument ordering can be confusing at times.

For porting assembly sourcecode written in Intel syntax to AT&T syntax, the 
“shortcut” via assembling it using an Intel-syntax-aware assembler, and disassembling 
it with one that outputs AT&T assembly is suggested.

As far as this document is concerned, AT&T syntax will be used. This is the x86 
assembly language found in the Solaris sourcecode, and the kind of disassembler 
output one gets when using debugging tools on the Solaris operating system.
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3.3.x86 assembly on UNIX systems – calling 
conventions, ABI
The x86 architecture supplies instructions for stack- and framepointer maintenance 
and call/ret instructions for performing function calls. But this is not sufficient. From 
architectural constraints, no rules exist for:

• how does the caller pass arguments to the called function ?

• how does the called function return results to the caller ?

• What happens with contents of the (global) registers when doing a call ?

In addition to that, x86 in hardware only knows basic C data types char, short, int, 
(long) long, float and double. What about compound data types – arrays and 
structures ? How are these laid out in memory ?

Compiled code should better agree on a common set of rules for passing arguments 
and returning values, for register usage and data structure layout, or else linking code 
from a library and a user-supplied program together is going to break big-time. This is 
why operating systems define standard calling conventions which all dynamically-
linked code on this platform must obey. This is called the Application Binary Interface, 
or short ABI.

The ABI usually is a big document that defines much more than just the standard 
calling conventions for binary code. Details on functions in the standard libraries, 
software packaging and installation rules or lists of software programs that are 
considered an essential part of the system are also in the ABI.

For UNIX systems derived from AT&T UNIX System V R4, like Solaris, the relevant 
document is the System V ABI. It contains:

• A generic (platform-independent) part listing things common to all platforms UNIX 
has been ported to

• A platform supplement part, chapter 3, that details the abovementioned platform-
specific calling conventions and data layout rules for a specific architecture. When 
one talks about “the i386 UNIX ABI” or “the x86-64 UNIX ABI”, what's meant is the 
platform-specific chapter 3 ABI supplement for the given architecture.
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To illustrate the calling conventions on x86 systems, we'll investigate compiler-
generated assembly code for a simple C language program:

#include <strings.h>

/*
 * A compound data structure consisting of several primitive types
 */
typedef struct {

char s_c;
unsigned short s_us;
long s_l;
int s_i;
char s_name[256];
struc_t *s_next;

} struc_t;

/*
 * C “constructor” for struc_t
 */
int init_struc(
    struc_t *s,
    char i_c,
    unsigned short i_us,
    int i_i,
    long i_l,
    char *i_name,
    struc_t *i_next)
{

s->s_c = i_c;
s->s_us = i_us;
s->s_i = i_i;
s->s_l = i_l;
s->s_next = i_next;
strncpy(s->s_name,
    i_name,
    sizeof(s->s_name));

return (1);
}

It depends on compiler and optimization how the assembly will look like in the end; the 
code below was created using the Sun Workshop compiler, version 10, on a system 
running Solaris 10. The ABI is different for 32bit and 64bit binaries, as will be shown.
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3.3.1.The i386 UNIX ABI – 32bit x86
First, the 32bit assembly code created from the above:

function offset binary opcode assembly C sourcecode

init_struc
init_struc+0x1
init_struc+0x3
init_struc+0x6
init_struc+0x9
init_struc+0xc
init_struc+0xe
init_struc+0x12
init_struc+0x16
init_struc+0x19
init_struc+0x1c
init_struc+0x1f
init_struc+0x22
init_struc+0x25
init_struc+0x2b
init_struc+0x30
init_struc+0x33
init_struc+0x36
init_struc+0x37
init_struc+0x3c
init_struc+0x41
init_struc+0x43
init_struc+0x44

55
8b ec
83 e4 f0
8a 45 0c
8b 4d 08
88 01
66 8b 45 10
66 89 41 02
8b 45 14
89 41 08
8b 45 18
89 41 04
8b 45 20
89 81 0c 01 00 00
68 00 01 00 00
ff 75 1c
83 c1 0c
51
e8 fc ff ff ff
b8 01 00 00 00
8b e5
5d
c3

pushl  %ebp
movl   %esp,%ebp
andl   $0xfffffff0,%esp
movb   0xc(%ebp),%al
movl   0x8(%ebp),%ecx
movb   %al,(%ecx)
movw   0x10(%ebp),%ax
movw   %ax,0x2(%ecx)
movl   0x14(%ebp),%eax
movl   %eax,0x8(%ecx)
movl   0x18(%ebp),%eax
movl   %eax,0x4(%ecx)
movl   0x20(%ebp),%eax
movl   %eax,0x10c(%ecx)
pushl  $0x100
pushl  0x1c(%ebp)
addl   $0xc,%ecx
pushl  %ecx
call   <strncpy>
movl   $0x1,%eax
movl   %ebp,%esp
popl   %ebp
ret    

... init_struct(
    ...
) {

    s->s_c = i_c;

    s->s_us = i_us;

    s->s_i = i_i;

    s->s_l = i_l;

s->s_next = i_next;
 sizeof(s->s_name)
 i_name
 &s->s_name

    strncpy(...);
    return (1);

}

The disassembler output is color-coded in the table above to highlight specific areas:

• Green shows function prologue and function epilogue.

• Red shows how init_struc() acccesses its own arguments.

• Blue shows access to different members of struc_t.

This simple example therefore suffices to demonstrate the rules in the i386 UNIX ABI 
supplement.

How are arguments passed to a function ?
Where does a function find its own arguments ?

Look at the call to strncpy(). Its arguments are pushl'ed to the stack, in 
reverse order, i.e. argN pushed first, arg0 last – immediately before the call.

Likewise, look at the way init_struc() accesses its own arguments. This is the 
code marked red. Its arguments are found at:

+0x8(%ebp) struc_t *s argument 1
+0xc(%ebp) char i_c argument 2
+0x10(%ebp) unsigned short i_us argument 3
+0x14(%ebp) int i_i argument 4
+0x18(%ebp) long i_l argument 5
+0x1c(%ebp) char *i_name argument 6
+0x20(%ebp) struc_t *i_next argument 7

All arguments are passed on the stack.
A function locates its arguments based on its framepointer.
Arguments, even if smaller than 4 bytes in size, are 4-byte aligned on the stack.

How does a function return a value ?
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Clear enough – the function epilogue places '1' into register %eax.

How is data in a compound (C struct) laid out, i.e. what padding if any is used ?

We can see from the instructions marked in blue, i.e. those that store the values 
passed as arguments into init_struc() into the actual struc_t, that the data 
structure is laid out so that members can be accessed aligned at a multiple of 
their size. After the leading char s_c, one byte of padding makes sure that the 
following unsigned short s_us starts at a 2-byte aligned address, and so on.

This is not mandated by the x86 architecture – as we can see e.g. from the 
instruction pointers, x86 has no generic problem with misaligned memory 
access.

So far, no thorough explanation of the green stuff, the function prologue/epilogue, has 
been given. We notice that it saves/restores the caller's framepointer and initializes 
the one for init_struc(), which is needed to make argument access via +...(%ebp) 
possible, of course, but there's more to it.

The purpose of the prologue becomes clear when one looks at a significantly more 
complicated function.  Let's take such an example from the Solaris kernel, in the form 
of the ufs filesystem implementation of VOP_GETPAGE(). The disassembly starts with:

ufs_getpage:        pushl  %ebp
ufs_getpage+0x1:    movl   %esp,%ebp
ufs_getpage+0x3:    subl   $0x58,%esp
ufs_getpage+0x6:    andl   $0xfffffff8,%esp
ufs_getpage+0x9:    pushl  %ebx
ufs_getpage+0xa:    pushl  %esi
ufs_getpage+0xb:    pushl  %edi

and the function epilogue looks like this:

ufs_getpage+0x861:  movl   -0x48(%ebp),%eax
ufs_getpage+0x864:  popl   %edi
ufs_getpage+0x865:  popl   %esi
ufs_getpage+0x866:  popl   %ebx
ufs_getpage+0x867:  movl   %ebp,%esp
ufs_getpage+0x869:  popl   %ebp
ufs_getpage+0x86a:  ret

We see that in addition to stack reservation and framepointer initialization, the 
prologue also saves registers %ebx, %esi and %edi to the stack, while the function 
epilogue restores them before returning to the caller.

The complicated function obviously needs to do this because there is a rule that says 
“the value in these registers may not to change during call”. Which is precisely what 
the ABI does – it splits the x86 register set into:

• Registers that belong to the caller (nonvolatile registers). These are preserved 
during function calls, and the called function, if it uses them, has the obligation to 
restore their previous values before returning. The nonvolatile registers are 
%esp/%ebp (obviously) and %ebx, %esi, %edi.

• Scratch registers. These change their values during function calls – they belong to 
the called function, which is free to use them for whatever it wants (exception: it 
must put its return value into %eax). The scratch registers are %eax, %ecx, %edx.

This is more complicated than simpler rules like “all registers scratch” or “all registers 
preserved”. So what is the advantage of splitting the register set into caller-owned and 
callee-owned registers ?
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It becomes clear if you consider what happens in simple functions that have no need to 
use all registers. There are two possibilities:

a. Complicated function calling a simple function.
In this case, a rule that says “all registers scratch” (the caller cannot rely on any 
register contents after call) would be counterproductive. The simple function may 
well be able to do its task without overwriting registers of the caller. 

b. Simple function calling a complicated function.
This is the other extreme. A rule “called function must preserve every register” 
would now unneededly require the complicated function to save and later restore all 
registers – although its caller hasn't even used all of them.

The designers of the i386 UNIX ABI therefore considered it to be beneficial to go the 
middle way – simple functions can get away using only the scratch registers, while 
complicated functions will never have to save/restore more than the nonvolatile (local) 
registers.
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3.3.2.The AMD64 UNIX ABI – 64bit x86
The 64bit UNIX ABI supplement for AMD64 has been created when the 64bit-x86 
Linux port was done. There are significant differences wrt. to function calling and 
argument passing between 32bit x86 and 64bit x86, because the 64bit ABI attempts to 
exploit the new possibilities,

• 16 general-purpose registers

• fast SSE2 floating point available by default, including 16 XMM registers

to speed up function calling.

Under 64bit-x86, arguments are passed in registers. Argument passing therefore 
becomes complicated – for floating point arguments, very complicated.

The binary code for the small example turns into the following 64bit machine code:

function offset binary opcode assembly C sourcecode

init_struc
init_struc+0x1
init_struc+0x4
init_struc+0x7
init_struc+0xb
init_struc+0xe
init_struc+0x12
init_struc+0x16
init_struc+0x1d
init_struc+0x21
init_struc+0x24
init_struc+0x2b
init_struc+0x2d
init_struc+0x32
init_struc+0x37
init_struc+0x3a
init_struc+0x3b

55
48 8b ec
40 88 37
66 89 57 02
89 4f 10
4c 89 47 08
4c 8b 45 10
4c 89 87 18 01 00 00
48 83 c7 14
49 8b f1
48 c7 c2 00 01 00 00
33 c0
e8 00 00 00 00
b8 01 00 00 00
48 8b e5
5d
c3

pushq  %rbp
movq   %rsp,%rbp
movb   %sil,(%rdi)
movw   %dx,0x2(%rdi)
movl   %ecx,0x10(%rdi)
movq   %r8,0x8(%rdi)
movq   0x10(%rbp),%r8
movq   %r8,0x118(%rdi)
addq   $0x14,%rdi
movq   %r9,%rsi
movq   $0x100,%rdx
xorl   %eax,%eax
call   <strncpy>
movl   $0x1,%eax
movq   %rbp,%rsp
popq   %rbp
ret

int init_struc(
...) {
  s->s_c = i_c;
  s->s_us = i_us;
  s->s_i = i_i;
  s->s_l = i_l;
 i_next;
  s->s_next = ...;
&s->s_name
i_name
sizeof(s->s_name)

  return(1);

}

The same color coding as before is used:

• Green shows function prologue and function epilogue.

• Red shows how init_struc() acccesses its own arguments.

• Blue shows access to different members of struc_t.

It's surprising to see that the 64bit code is actually more compact than the 32bit 
version. This is due to the changed argument passing conventions – there is no need to 
explicitly load arguments from the stack into registers – they're already there.

First, what has not changed ?

• There's still a function pro- and epilogue which initializes/restores the framepointer 
for the function. Its role will also be to save/restore the nonvolatile registers.

• The return value is still the same register – now 64bit of course, %rax.

• Members of compound data structures are still being aligned at a multiple of their 
size. Since AMD64 is LP64, long is now 8 bytes and the s_i and following members 
therefore are shifted backwards.

But the only access to +...(%rbp) that we see is for argument 7.  Args 1..6 are passed 
in registers instead:

%rdi struc_t *s argument 1
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%sil char i_c argument 2
%dx unsigned short i_us argument 3
%ecx int i_i argument 4
%r8 long i_l argument 5
%r9 char *i_name argument 6
+0x10(%rbp) struc_t *i_next argument 7

This makes it difficult to retrieve arguments from call stacks – they will only be part of 
the call stack if the called function itself decides to preserve them. If not, since all 
registers are global, the arguments to a given function will be lost as soon as this 
function makes another call. Besides, before doing that %rax is cleared – which again 
is something that wasn't done in 32bit.

Like on 32bit x86, the 64bit ABI also specifies how registers are shared between caller 
and callee. Looking at prologue:

    ufs_getpage:         pushq  %rbp
    ufs_getpage+0x1:     movq   %rsp,%rbp
    ufs_getpage+0x4:     pushq  %r15
    ufs_getpage+0x6:     pushq  %r14
    ufs_getpage+0x8:     pushq  %r13
    ufs_getpage+0xa:     movq   %rsi,%r13
    ufs_getpage+0xd:     pushq  %r12
    ufs_getpage+0xf:     pushq  %rbx
    ufs_getpage+0x10:    subq   $0x98,%rsp

and epilogue:

    ufs_getpage+0x6b0:   movl   -0x78(%rbp),%eax
    ufs_getpage+0x6b3:   addq   $0x98,%rsp
    ufs_getpage+0x6ba:   popq   %rbx
    ufs_getpage+0x6bb:   popq   %r12
    ufs_getpage+0x6bd:   popq   %r13
    ufs_getpage+0x6bf:   popq   %r14
    ufs_getpage+0x6c1:   popq   %r15
    ufs_getpage+0x6c3:   leave
    ufs_getpage+0x6c4:   ret

of a complicated function again, we find how the register set is used in 64bit x86 on 
UNIX systems:

• %rsp and %rbp are used for the stack- and framepointer. Their value is preserved 
over function calls (obviously). If optimized code eliminates the use of a 
framepointer, %rbp becomes a nonvolatile register – as in 32bit.

• %rdi, %rsi, %rdx, %rcx, %r8 and %r9 (in that order) are arguments.
A function that uses less than six arguments can use them as scratch registers.

• %rbx and %r12 through to %r15 are nonvolatile. They belong to the caller and retain 
their values when doing a function call. It's the called function's responsibility to 
save and restore them if it needs them.

• %rax, %r10 and %r11 are scratch registers. %rax contains a return value.

38 3.Assembly Language on x86 platforms



3.3.3.The AMD64 UNIX ABI and the register lifecycle
The big problem for post-mortem analysis on 64bit x86 is the argument passing 
conventions: If arguments are passed in global registers, then deeply-nested function 
call sequences will always have re-used the argument registers of some earlier callers 
in the sequence. Stacktraces in debuggers on 64bit x86 therefore usually do not 
display arguments. But the way registers are being used:

• %rbx and %r12..%r15 are nonvolatile (local) – every user of these has the obligation 
to save/restore them for its caller

• %rsp/%rbp as stack- and framepointer

• %rdi, %rsi, %rdx, %rxd, %r8 and %r9 as argument registers – being re-used when the 
next function call is made,

• %rax, %r10 and %r11 as scratch registers

enforces a certain code style that all compiler-generated assembly code uses.

On entry, a function:

1. saves %rbp of its caller,

2. initializes its own %rbp,

3. allocates stackspace by explicitly subtracting a value from %rsp,

4. saves (to the stack) those of the nonvolatile registers %rbx, %r12..%r15 that it plans 
to use,

5. moves those of its argument registers (rdi, %rsi, %rdx, %rxd, %r8 and %r9) that it 
wants to use even after making function calls of its own into permanent places:

• into one of the now-available nonvolatile registers (i.e. into its local registers)

• into “hidden” local variables (i.e. into its stack).

On exit from the function, steps 1..4 are reversed, in order to restore both stack and 
nonvolatile registers for the caller.

This code that sets up (on entry) and tears down (before return) a stackframe for a 
function is called function prologue / epilogue. The x86 architecture does not supply a 
single CPU instruction that could be used to implement all of the above (SPARC does 
all of this implicitly via register window switches), so a sequence of simple instructions 
is used.

For performance, the generated code will only perform the necessary operations. All of 
the above is optional in case the given function doesn't require:

• all of the nonvolatile registers (it'll only save/restore those that it needs)

• stack space (it won't allocate stackspace then)

• a framepointer (it won't save/initialize/restore it then)

In addition to that, neither the AMD64 nor the i386 UNIX ABI specify the exact steps 
how prologue/epilogue code is supposed to implement the “tasklist” above. The 
instructions chosen (MOV vs. PUSH, for example), the sequence in which e.g. registers 
are saved, or whether registers are saved before or after stack allocation is done all 
depends on the compiler's choice and is subject to compiler optimization.

This leads to a multitude of different code sequences for prologue/epilogue.

Particularly the GNU C compiler is creating many different variants, as the following 
examples for function prologue code, all created by gcc, show:
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“Dense Prologue” Mixing prologue and 
function code

Using MOV instead of PUSH

pushq  %rbp
movq   %rsp,%rbp
pushq  %r15
pushq  %r14
pushq  %r13
pushq  %r12
pushq  %rbx
subq   $0xd8,%rsp
movq   %rdi,-0x40(%rbp)
movq   %rsi,-0x48(%rbp)
movl   %edx,-0x4c(%rbp)
movq   %rcx,-0x58(%rbp)
[ ... ]

pushq  %rbp
movq   %rsp,%rbp
pushq  %r15
movl   %r9d,%r15d
pushq  %r14
xorl   %r14d,%r14d
pushq  %r13
movq   %rsi,%r13
pushq  %r12
movl   %edx,%r12d
pushq  %rbx
subq   $0x28,%rsp
cmpl   $0x1000,%r8d
movl   %edi,-0x3c(%rbp)
movq   %rcx,-0x48(%rbp)
[ ... ]

pushq  %rbp
movq   %rsp,%rbp
subq   $0x30,%rsp
movq   %r13,-0x18(%rbp)
movq   %r14,-0x10(%rbp)
movq   %rsi,%r13
movq   %rbx,-0x28(%rbp)
movq   %r12,-0x20(%rbp)
movq   %rdi,%r14
movq   %r15,-0x8(%rbp)
[ ... ]

The Sun Workshop 10 compiler, as of today, always creates a strict, dense prologue 
similar to the first gcc variant shown above. Yet, it's distinctly different in two things:

1. Workshop-compiled code allocates stackspace before saving the nonvolatile 
registers,

2. Workshop-compiled code saves nonvolatile registers in a different order than gcc.

Unlike gcc, Sun Workshop cc never uses MOV instructions to save the nonvolatile 
registers, and it also doesn't intersperse code from “further down” in the function with 
the prologue. Workshop-created prologue code is always similar to something like:

Typical 64bit prologue code created by Sun Workshop 10

pushq  %rbp
movq   %rsp,%rbp
subq   $0x8,%rsp
pushq  %r12
pushq  %r13
pushq  %r14
movq   %rsi,%r14
movq   %rdx,%r12
movq   %rcx,%r13
[ ... ]

There's similar variation in function epilogue code created by gcc, while, again, Sun 
Workshop 10 cc always uses a compact sequence of popq instructions.

It's left as an exercise to the reader to familiarize oneself with different styles for 
function epilogues.
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This register lifecycle, with associated explicit function prologues and epilogues that 
implement it, is due to the register set being global (shared by everybody) and the 
resulting need to manage register use in a cooperative way. It's achieved by moving 
registers to the stack before using them as “locals”, and matching that restoring their 
values before returning from the function.

Asking “where did a specific register go to” (after entering a function) or “where did a 
specific register come from” (before calling another function) therefore allows us to 
track arguments even if register-based calling conventions are in effect, like on 
AMD64.
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Illustration 6 - Register lifecycle – sharing registers, function calling and the stack

● Caller's nonvolat iles
   %rbx, %r12 ... %r15

● local variables
  -...(%rbp)
 +...(%rsp)

● Caller's fram epoin ter %rbp

● inpu t  argu m ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● ou tp u t  argum ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● nonvolat iles (locals)
  %rbx, %r12 ... %r15

● Caller's nonvolat iles
   %rbx, %r12 ... %r15

● local variables
  -...(%rbp)
 +...(%rsp)

● Caller's fram epoin ter %rbp

● Caller's nonvolat iles
   %rbx, %r12 ... %r15

● local variables
  -...(%rbp)
 +...(%rsp)

● Caller's fram epoin ter %rbp

● in pu t  argu m ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● ou tpu t  argum ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● nonvolat iles (locals)
  %rbx, %r12 ... %r15

● in pu t  argu m ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● ou tpu t  argum ents
  %rdi, %rsi, %rdx,
  %rcx, %r8, %r9

● nonvolat iles (locals)
  %rbx, %r12 ... %r15
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3.4.Case study: Comparing x86 and SPARC assembly 
languages
The two platforms currently supported by the Solaris operating system are SPARC and 
x86. As already shown, SPARC is a RISC architecture while x86 is CISC. This alone 
doesn't sum up all of the differences between the two assembly languages, of course:

Feature How x86 does it How SPARC does it

instruction length varies from 1..16 bytes.
The instruction pointer usually 
is misaligned.

constant 4 bytes.
Misaligned program counters 
cause traps.

general-purpose 
registers

all registers are global.
eight in 32bit, sixteen in 64bit.
ABI determines register usage.

32 registers, 8 each are 
global/input/local/output.
Register windows with the idea 
of output/input overlap are 
inherent in SPARC architecture.

dedicated
/dev/null register

None. It's unnecessary.
x86 has plenty of special-case 
instructions that make 
discarding a result unnecessary, 
and the ability to embed zero as 
a constant into any instruction.

Register %g0 discards writes and 
always reads as zero.
Frequently used if the result of a 
calculation is unnecessary and 
only the effect on condition 
codes is relevant, i.e. in 
synthetic instructions like cmp.

stack- and 
framepointer

The architecture mandates the 
use of register %esp/%rsp as 
stackpointer, and suggests using 
%ebp/%rbp as framepointer. 
Many instructions implicitly 
operate on the stack.

The register windowing 
mechanism would support the 
use of any pair %i./%o. as 
stack/framepointer.
By convention, %i6/%o6 are used 
for frame/stackpointer.

arithmetic/logical 
instructions

x86 arithmetic / binary logical 
instructions are destructive – 
the second source operand will 
be overwritten with the result.
x86 implements the C language

     a += b

style.

SPARC arithmetic / binary 
logical instructions are usually 
nondestructive. All instructions 
take three registers – two for 
the source operands and one for 
the destination operand. In C:

     a = b + c.

memory operands x86 allows one memory operand 
per (arithmetic) instruction. 
Either source or destination can 
be memory. Instructions 
modifying memory without 
involving a register are possible.

SPARC can only modify data in a 
register. To modify a word in 
memory, a load-store cycle (load 
it from memory to a register, 
change it in the register, store it 
back) is required.

implicit register 
usage

Many instructions implicitly 
modify certain registers:

stack/framepointer changed by:
  call/ret
  push/pop
  enter/leave

string instructions:

SPARC instructions require an 
explicit destination register.
In cases where this is not 
shown, the instruction is 
synthetic and the destination is 
explicit from that, usually %g0 if 
the result is irrelevant. Notable 
exception is call/ret, where 
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Feature How x86 does it How SPARC does it

take source/destination from the 
string source/dest registers
%esi/%edi (32bit), %rsi/%rdi 
(64bit)

counted loops, repeat prefixes:
%ecx/%rcx holds counter value

64bit arithmetics in 32bit mode:
%edx:%edx hold 64bit value.

%o7/%i7 are used to hold the 
return address.

instruction-
embedded 
constants

For direct addressing and 
initialization (movq instruction), 
constants up to 64bit are 
possible.
All other instructions allow 
using 32bit constants directly.

Instruction-embedded constants 
cannot be larger than 13 bit 
(including the sign).
For initialization, the sethi 
instruction allows to put a 19bit 
value into bits 31..13 of a 
register.
Larger constants are 
constructed in a sequence of 
sethi/or.

atomic 
instructions

x86 knows explicit atomicity via 
the lock instruction prefix.
Every instruction that allows a 
memory location as target 
operand can be made atomic.

SPARC has a dedicated set of 
instructions that are implicitly 
atomic: cas, ldstub, or xchg.
Others need to be “emulated” 
using these.

illegal/undefined 
instructions

Generically, none. Random data 
translates into “meaningful” 
instruction sequences for x86.

x86 knows “the” undefined 
instruction, ud2, a reserved 
opcode that triggers a trap.

Lots of.

Wide ranges for the opcode bits 
in the 32bit instruction are not 
assigned a specific meaning 
(illtrap and undef) and cause 
traps.

Addressing x86 addressing modes:

Direct (64bit absolute address)
Indirect (address in a register)
Indirect with 8/16/32bit offset
Indexed (address + scale*index)

and combinations of those.
In 64bit mode, it can also do:

position-relative (PC plus offset)

SPARC addressing modes:

Indirect
Indirect with index
Indirect with 13bit offset

On SPARC, addressing is always 
indirect – an address must be in 
a register before ld/st.
Indirect without (!) index is 
done using %g0 as index ...

The total number of instructions on x86, given that it's CISC, is of course much higher 
than on SPARC, being a classical RISC architecture.
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Apart from these architectural differences between the assembly languages, there are 
differences to the ABI wrt. to how function calling works – which, from the point of 
view of post-mortem analysis, mostly affect layout and contents of the stack. 
Comparing properties of the stack on x86 and SPARC:

stack detail How x86 does it How SPARC does it

function 
arguments

32bit x86 passes all arguments 
on the stack. A debugger can 
always retrieve them.

64bit x86 puts the first six args 
to %rdi, %rsi, %rdx, %rcx, %r8, 
%r9 and spills arguments after 
that into the stack. args 1..6 can 
only be retrieved from the stack 
if the called function saves them 
to the stack explicitly.

SPARC puts the first six args 
into %o0..%o5, which after the 
save done by the called function 
are then found in %i0..%i5.

A register window flush at a 
later time will write these into 
the stack and a debugger can 
retrieve them from there, but an 
input register could've been 
reused.

Arguments past the sixth spill 
onto the stack, like 64bit x86.

return addresses The x86 call instruction pushes 
the address of the instruction 
following it (i.e. the actual 
return address) onto the stack.

The x86 ret instruction pops off 
the return address and jumps 
there.

The SPARC call instruction 
puts its own (!) address into %i7.

The SPARC ret instruction is 
synthetic – it will evaluate to 
jmp [%o7+8] (skipping the delay 
slot of call). Using a restore 
as delay slot for ret resets the 
register window for the caller.

Return addresses are written to 
the stack when a register 
window flush occurs.

saved 
framepointers

x86 requires explicit stack frame 
maintenance, both on entry:
  pushl %ebp
  movl  %esp,%ebp
  subl  ...,%esp
or, as “abbreviation” for these:
  enter ...

and on exit from a function:
  movl  %ebp,%esp
  popl  %ebp
or, again as a single instruction:
  leave

The use of a framepointer is 
optional – it can be optimized 
away.

call writes the return address 
to the stack before the called 
function saves the framepointer.

The stack therefore has pairs of 
return address/framepointer.

SPARC gives framepointer 
maintenance for free via the 
register windowing mechanism. 
A function on entry reserves 
stackspace via:
  save  %i6,...,%o6

and thereby also performs the 
window switch (new %i6 = old
%o6, and new %o6 = old %o6 
minus frame size). save is 
equivalent to the explicit stack-
/framepointer dance on x86.

To undo the window switch and 
restore the caller's stack- and 
framepointer, a function will call 
restore on return.

Stack-/Framepointer %i6/%o6 
are flushed on window spill.

Return addresses are in %i7/%o7 
and the stack therefore has 
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stack detail How x86 does it How SPARC does it

pairs 
framepointer/return address.

stackspace usage x86 stacks are dense.

Functions that can do all their 
work using their arguments and 
the available scratch registers 
will not allocate stackspace at 
all. A stack sequence where two 
return address/framepointer 
pairs follow each other without 
anything in-between is common.

SPARC stacks are sparse. 

Stackframes on SPARC are at 
least MINFRAME size – to provide 
backing store for the 16 new 
registers 'allocated' by the 
register window switch. Even a 
function that doesn't use all of 
its %i./%l./%o. registers must 
allocate backing store for them.

The minimum distance between 
framepointer/return address 
pairs therefore is MINFRAME.

stack bias x86 stack- and framepointers 
are not biased, neither in 32bit 
nor in 64bit mode.

A x86 CPU has other means of 
detecting the operating mode 
than deriving that from whether 
the stackpointer is misaligned or 
not. See chapter 3.

SPARC 64bit stackpointers are 
biased – offset by 0x7ff, and 
therefore always misaligned.

The SPARC kernel uses this for 
two purposes:

1. To distinguish between 32bit 
and 64bit applications in trap 
and system call handlers.

2. Due to the address offset size 
limitation, ±0x7ff,  biased 
stacks allow 64bit code on 
SPARC to access stackframes 
twice the size without explicit 
offset calculations.
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3.5.The role of the stack
On RISC architectures with huge numbers of registers, assembly-level programmer 
and/or engineers doing low-level troubleshooting and crash-/coredump analysis often 
can ignore the stack – everything interesting is in registers, the stack is purely backing 
store and the debugging tools “just display” arguments or local variables for a given 
function in the backtrace. This is especially true on SPARC, where the register window 
architecture makes this approach comfortable and easy – the debugger finds me the 
register window and I will then only look at the registers of a specific function.

This is not so on x86 platforms. The scarcity of registers forces functions to allocate 
stack space for local variables. It has already been shown that at least in 32bit mode, 
even argument passing is done via the stack. In 64bit, where arguments are passed in 
registers, they may indirectly appear on the stack – the called function often has to 
save them into “hidden locals” on its stackframe to preserve them for the case that it 
needs the arg registers for doing another call itself.

All this makes explicit stack accesses the most-frequent operation x86 machine code 
will do. Statistics illustrate this. The following shellscript:

#!/bin/ksh
functions=$(
echo “::nm -t func -f name” | mdb -k | sort -u | awk '{ if (NR > 1) print }'
)
for fnc in $functions; do

asmcode=$(echo “$fnc::dis” | mdb -k)
linestotal=$(echo “$asmcode” | wc -l)
stackaccess$(echo “$asmcode” | egrep '[re][bs]p|push|pop' | wc -l)
echo “$fnc $linestotal $stackaccess” |

awk '{ printf(“%s %d %d %2.2f\n”, $1, $2, $3, 100*$3/$2) }'
done 2>/dev/null

allows to create a table what percentage of the instructions in Solaris kernel functions 
is an explicit stack access. This gives:

The result, averaged over every function in Solaris 10/x86 64bit, is a whopping 23% – 
wow. Almost every fourth instruction on average is a stack access !
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Illustration 7 - stack access by ~25000 functions in Solaris 10/amd64

0     5     1
0

    1
5

    2
0

    2
5

    3
0

     35
    4

0
    4

5
    5
0

    5
5

    6
0

    6
5

    7
0

    7
5

    8
0

    8
5

    9
0

    9
5

    1
0

0

0

200

400

600

800

1000

1200

percentage of function code accessing the stack

n
u

m
b
e
r 

o
f 

fu
n

ct
io

n
s



For a 32bit kernel, due to the fact that argument passing there is done on the stack as 
well, we expect even higher figures. Verifying this is left as an exercise to the reader !

Working with x86 assembly code, and even more so doing post-mortem debugging on 
x86 platforms therefore requires a thorough understanding of the stack. We have to 
become, literally, able to identify each and every value in a given stack to reconstruct 
what has been happening in this function call sequence.

3.5.1.Stack basics
Stack access can be implicit or explicit in x86.

Implicit stack access is done by instructions that modify the stackpointer and/or 
contents of the stack without requiring stack- or framepointer as argument – typically 
PUSH or POP. This is the classical stack – a LIFO (last in first out) array.

A C language type declaration for using a stack would look like this:

void *stackpointer[];
#define PUSH(value) *(--stackpointer) = (void *)value
#define POP(value) value = *(stackpointer++)

The stack by convention grows downward. Subtracting something from the 
stackpointer therefore means stackspace is being allocated, and vice versa adding to 
the stackpointer frees stackspace. PUSH and POP do that implicitly – allocate/free one 
word of stackspace and put/get the argument (from) there.

x86 has pushl (32bit)/pushq (64bit) and the corresponding popl/popq instructions, it 
implements a stack as shown above in hardware. push/pop are extremely common 
operations. In addition to these basics, x86 has several important instructions which 
push/pop values implicitly and do something with it. Such instructions also come in 
pairs, like push and pop.

The first pair is call and ret. They are used to perform function calling.

• call transfers execution and saves information for the called function where to 
return to once its work is done. The return address (address of the instruction 
following call) is put – on the stack. call therefore is equivalent to (nonexistant) 
pseudocode:

PUSH <INSTRUCTION POINTER + sizeof(call instrunction)>
GOTO <CALL TARGET>

• ret of course is the opposite – the called function uses this when it's done, in order 
to resume the caller. Given how call works on x86, pseudocode for ret must be:

POP  <RETURN ADDRESS>
GOTO <RETURN ADDRESS>

The other pair, enter/leave, is also related to code modularization/function calling. To 
explain what exactly these do, we need to go into the details of modularization again – 
how does nested function calling work, and where do function put their data ?

It was already mentioned that the stack can be used by functions in low-level code to 
hold transient data – arguments, local variables and return values. Since for obvious 
reasons two functions don't share local variables, that means every function in a 
calling sequence must get its own dedicated piece of stackspace – the stack frame of 
this function. It is convenient to let stackframes of caller/callee overlap – for passing 
data between two functions, if required. SPARC register windows with output/local/ 
input registers use this model for registers, but in a more rigid version (fixed size 
frames) than “generic stacks”. Stacks therefore generically look like this:

With a stackpointer-only model, the running function only knows the end of its stack – 
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but has no direct knowledge of where its stackframe starts. It can go the hard way and 
count (or let the compiler count during code generation) how many items it has on the 
stack at a particular point – or it keeps a record of what the stackpointer was at entry 
to the function, by recording the start of its stackframe. This is called framepointer. 
Stack- and framepointer specify where a stackframe starts and where it ends.

• The framepointer locates the start of the last stackframe.

• The stackpointer records the location of the last item on the stack.

Since a framepointer is nice to have, x86 provides a pair of instructions enter/leave 
that functions may use on entry/exit to allocate/free stackspace and switch 
framepointer and stackpointer.

• enter is equivalent to the following sequence of simple instructions (32bit shown):
pushl %ebp save previous framepointer
movl  %esp,%ebp new framepointer: stackpointer at entry
subl  $...,%esp allocate stackspace.

It's uncommon to see compiler-generated code that uses enter – both AMD's and 
Intel's Optimization Guidelines deprecate this instruction in favour of the simple 
sequence shown.

• leave is equivalent to the following sequence of simple instructions (64bit shown):
movq  %rbp,%rsp free stackspace
popq  %rbp restore previous framepointer

It depends on the compiler whether it uses leave or the simple sequence – both are 
commonly found.

These are the common x86 instructions that implicitly access the stack. But stack- and 
framepointer both are registers (%esp/%rsp: stackpointer, %ebp/%rbp: framepointer, in 
32/64bit mode), and therefore usable with any of the x86 addressing modes to locate 
data on the stack. Explicit stack access via stack- or framepointer-indirect addressing 
therefore has the advantage of locating any item on the stack directly – not just the 
topmost one as PUSH/POP. 
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Illustration 8 - stack layout
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3.5.2.Stack contents in detail
From all information given so far, we can now refine the previously-shown picture 
about stack usage so that it fully reflects the situation on x86-based UNIX systems.

Findings:

• Since call is used to transfer instruction to another function, a return address will 
be on the stack.

• Since the new function will save the caller's framepointer on entry, it will be on the 
stack.

• Since the new function likely allocates stackspace, some “other” data will follow. 
These values can be locals, saved nonvolatile registers, or (in 64bit mode) saved 
argument registers. What exactly is in there and whether this “other” data exists 
depends on that function.

• If another function is being called, arguments may be put onto the stack.

All this combined gives the following stack layout diagram for x86 platforms:

Matching this to real stack data from core- and crashdumps on Solaris/x86 will be 
explained in all details in chapter 6.

3.5.3.Advanced: Buffer overflow exploits
Not sure – shall I include this ?

3.Assembly Language on x86 platforms 49

Illustration 9 - x86 stack layout details
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3.6.Odd things about the x86 instruction set
Talk about things like LEA, REP, LOOP, ... ? Floating point and MMX/SSE ?
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3.7.Examples of compiler-generated code on x86 
platforms
In order to give the reader a better impression what to expect when looking at 
disassembled program code, this section will provide examples of compiler-generated 
assembly from typical C language constructs:

• function calling, argument passing, argument access

• if (...) { ... } else { ... } statements

• switch { ... } statements

• for (...) loops

• accessing data structures and arrays.

We will also check how the binary code for data access changes if the compiler is 
instructed to create position-independent code.

Example sourcecode and resulting compiled code will be given for 32bit and 64bit. 
GNU gcc and Sun Workshop 10 compilers are used to illustrate compiler differences.

3.7.1.x86 instructions used by Sun Workshop & GNU C 
Compilers
Overall, compiled code on x86, whether 32bit or 64bit, uses far fewer instructions than 
one could expect given the ~1000 different ones that the instruction set provides. As 
already indicated before, efficient programming on x86 means using the chip like it 
were RISC, and restrict oneself to a set of “fastpath instructions”. But what are those ?

This diagram has been created by iterating over the symbol table of a 32bit Solaris/x86 
crashdump and disassembling every function. In total, 1689120 instructions were 
found and then binned by instruction name – the graph shows the result.

Since the Solaris 10 kernel is a pretty large piece of code (albeit integer only), we can 
assume with a good level of confidence that the distribution of how frequent certain 
instructions are being used here is representative of what we can expect in any large 
compiler-generated binary. 

Let's look at the same histogram as shown before, but now generated from a 64bit 
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Illustration 10 - 40 most-used instructions in the 32bit Solaris/x86 kernel
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Solaris 10/x86 kernel. Created as before – by disassembling all function symbols from a 
64bit Solaris/x86 crashdump. In total, 1700637 instructions were found.

This not only differs in 32bit vs. 64bit, but also shows how different compilers can 
change the set of instructions used in compiler-generated binary code – the 64bit 
Solaris 10 kernel is compiled using gcc 3.4.3.

Some explanation of these graphs and of course the shown frequently-used 
instructions is in order.

First, we note in both 32bit and 64bit modes, mov (in all its sizes) is the by-far most-
frequently used instruction. This has several reasons:

• mov is multi-purpose. It can:

• copy a register into another,

• initialize a register or memory with a constant, 

• do memory loads and stores.

• Our statistics for stack access have already shown that almost ¼th of all code in 
64bit (and as mentioned even more in 32bit) does implicitly or explicitly use the 
stack. Not all of this is going to be push/pop – some significant amount will be 
explicit stack access via mov.

Considering the stack brings us to other important instructions. We note that on 32bit, 
pushl and addl are 2nd and 3rd place while their 64bit cousins pushq/addq are much 
less frequent. The reason for this again is the ABI difference – 32bit code passes 
arguments on the stack and uses pushl to do so. After returning from call, addl is 
(often) used to clean up the stack (i.e. pop off the arguments into “nowhere”). On 
64bit, neither is necessary unless there are more than six arguments – so the 
remaining use for pushq/popq that now dominates their usage is the function prologue. 
The ratio of 64bit popq vs. pushq is much closer than the one for 32bit pushl vs. popl.

The next big contributors are of course call/ret/leave, and as indicated push/pop as 
part of function pro- and epilogues. The fact that the 32bit code doesn't seem to use 
leave highlights a compiler difference – as the disassembly examples later in this 
chapter will show, gcc tends to use leave in epilogues while Workshop cc uses the 
equivalent simple instruction sequence, and the 32bit code was compiled using 
Workshop cc, while the 64bit code is gcc-created.

Another big part of code is anything related to branching – cmp and test in all sizes, 
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Illustration 11 - 40 most-used instructions in the 64bit Solaris/x86 kernel
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the different conditional branches j.., and jmp as unconditional goto. Not every code 
sequence can be streamlined, of course. Note that in 64bit mode, we more frequently 
use cmpl and testl than their 64bit cousins – which shows the code doesn't use 64bit 
operand size that often (except for pointers, of course), and proves AMD was right in 
making 32bit operand size the default even when running in 64bit mode. cmpl/testl 
use less code space and more efficient in execution than cmpq/testq.

Then, there's xorl – in both 32bit and 64bit. We see much more xorl operations than 
any other arithmetic/logical instruction. Why on earth should we xor things so often ?
Well, we don't. But there's one peculiar xorl operation that's very handy, and that is to 
xor a register with itself – zeroing it. Due to zero-extension for 32bit operations, that 
even works in 64bit mode. The same instruction, xorl %eax,%eax zeros %eax in 32bit 
and %rax in 64bit mode. SPARC has %g0, x86 has xorl.

The next peculiar thing is the lea instruction (leal and leaq). lea stands for load 
effective address, but its name notwithstanding this is no memory access. lea does 
address calculation. It performs pointer arithmetics, if you like. The difference 
between

leal +0x10(%eax,%ecx,8), %esi
movl +0x10(%eax,%ecx,8),%esi

is the same as the difference between C code that does something like:
varaddr = &mystruct->array[i];
varcontents = mystruct->array[i];

In other words: lea is an arithmetic operation – it takes the address specification as a 
formula and calculates the result without actually attempting to dereference. lea can 
(and will) be used for general-purpose arithmetics, as long as the desired computation 
can be expressed within the bounds of what x86 addressing modes allow.

Following this is nop (and in 32bit code andl). Both are for optimization – while x86 
CPUs don't require instruction (or stack-) pointer alignment, they may perform better 
in some situations if code or stack are aligned at e.g. multiples of 16. Both compilers 
are aware of this and therefore generate the necessary code.

What remains in the shown diagrams falls into two classes of instructions:

• arithmetics of all sorts. add, adc (add with carry), sub, sbb (subtract with borrow), 
inc, dec, imul, or, and, shr/shl resp. sar/sal (logical/arithmetical shifts) and more 
all fall into this category.

• sign and zero extension. This is what movs[bwl][lq] and movz[bwl]l are for. 
Remember that in 64bit, zero extension is done by default for 32bit operations – 
there's no need for a movz[bwl]q instruction because that's implicit. But of course 
sign extension to 64bit, movs[bwl]q, is required now and then,

To look up the documentation for the remaining instructions named in the graphs, 
sete/setne and stc, is left as an exercise to the reader, along with familiarizing 
oneself with the ~3% resp. ~5% of instructions that are classified as others above !

For the following examples, the given sourcecode was compiled using Sun Workshop 
10 cc and GNU gcc 3.4.3 using the commands:

cc -xO3 -xarch=amd64 -c ....c
gcc -O2 -m64 -c ....c

Thin fixedwidth: additional switch to create 64bit code.
In all assembly listings, color and font coding is used:

• Green shows function prologue and function epilogue.

• Red shows when the function acccesses its own arguments.
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• Blue shows function calls (and their arguments) made by the given code.

• thin italics designates branch targets within the function.

The codesamples shown are of course only a small fraction of “what is possible”. Their 
purpose is to illustrate both the general structure of compiler-generated output for 
32bit and 64bit x86, and to demonstrate how different compiler output from two 
different code generators (those of gcc and Workshop) can become even in such simple 
cases.
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3.7.2.if() ... else statements
Sourcecode sample:

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>

int rfile(char *filename, void *destbuf, off_t offset, size_t nbyte)
{

int fd;

if ((fd = open(filename, O_RDONLY, 0444)) < 0) {
perror(“open failed”);
return (-1);

} else if (nbytes > 0) {
if (pread(fd, destbuf, nbyte, offset) != nbyte) {

perror(“pread failed”);
return (-2);

}
} else {

printf(“fooling me ? NULL read at %ull\n”, offset);
}
return (0);

}

The example was compiled adding `getconf LFS_CFLAGS` to compiler switches. This 
allows to demonstrate how 64bit values are passed as arguments in a 32bit program.

For the 32bit code, we find that the 64bit value (off_t) actually is passed as two 
separate 32bit values – in +0x10(%ebp) and +0x14(%ebp), in this case.

Apart from that, the 32bit assembler code shows compiler differences.

Regarding optimizations, we find:

• The Sun Workshop compiler tends to inline function epilogues multiple time in 
order to avoid branches. Interesting to note that although it does this, the total 
amount of code is still less than the gcc output.

• gcc on the other hand puts arguments into nonvolatile registers in order to avoid 
having to re-fetch them from the stack.

Regarding how the stack is being used, we see:

• The Workshop compiler aligns the stackpointer on entry but not on call, where it 
removes exactly the number of args afterwards using addl as it pushl'ed before.

• gcc doesn't align the stackpointer on entry but when doing a function call, it always 
reserves a multiple of 16 bytes (0x10) for argument stackspace – even if the called 
function takes less than that.
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x86 32bit binary, Sun Workshop cc x86 32bit binary, GNU gcc 3.4.3

rfile:       pushl  %ebp
rfile+0x1:   movl   %esp,%ebp
rfile+0x3:   andl   $0xfffffff0,%esp
rfile+0x6:   pushl  %ebx
rfile+0x7:   pushl  $0x124
rfile+0xc:   pushl  $0x0
rfile+0xe:   pushl  0x8(%ebp)
rfile+0x11:  call   open64
rfile+0x16:  addl   $0xc,%esp
rfile+0x19:  testl  %eax,%eax
rfile+0x1b:  jl           <rfile+0x57>
rfile+0x1d:  movl   0x18(%ebp),%ebx
rfile+0x20:  testl  %ebx,%ebx
rfile+0x22:  jbe          <rfile+0x3d>
rfile+0x24:  pushl  0x14(%ebp)
rfile+0x27:  pushl  0x10(%ebp)
rfile+0x2a:  pushl  %ebx
rfile+0x2b:  pushl  0xc(%ebp)
rfile+0x2e:  pushl  %eax
rfile+0x2f:  call   pread64
rfile+0x34:  addl   $0x14,%esp
rfile+0x37:  cmpl   %ebx,%eax
rfile+0x39:  je           <rfile+0x50>
rfile+0x3b:  jmp          <rfile+0x6e>
rfile+0x3d:  pushl  0x14(%ebp)
rfile+0x40:  pushl  0x10(%ebp)
rfile+0x43:  pushl  $printf_arg1
rfile+0x48:  call   printf
rfile+0x4d:  addl   $0xc,%esp
rfile+0x50:  xorl   %eax,%eax
rfile+0x52:  popl   %ebx
rfile+0x53:  movl   %ebp,%esp
rfile+0x55:  popl   %ebp
rfile+0x56:  ret
rfile+0x57:  pushl  $perror_openfail
rfile+0x5c:  call   perror
rfile+0x61:  addl   $0x4,%esp
rfile+0x64:  movl   $-0x1,%eax
rfile+0x69:  popl   %ebx
rfile+0x6a:  movl   %ebp,%esp
rfile+0x6c:  popl   %ebp
rfile+0x6d:  ret
rfile+0x6e:  pushl  $perror_preadfail
rfile+0x73:  call   perror
rfile+0x78:  addl   $0x4,%esp
rfile+0x7b:  movl   $-0x2,%eax
rfile+0x80:  popl   %ebx
rfile+0x81:  movl   %ebp,%esp
rfile+0x83:  popl   %ebp
rfile+0x84:  ret

rfile:       pushl  %ebp
rfile+0x1:   movl   %esp,%ebp
rfile+0x3:   pushl  %edi
rfile+0x4:   pushl  %esi
rfile+0x5:   pushl  %ebx
rfile+0x6:   subl   $0x10,%esp
rfile+0x9:   pushl  $0x124
rfile+0xe:   pushl  $0x0
rfile+0x10:  pushl  0x8(%ebp)
rfile+0x13:  movl   0x10(%ebp),%esi
rfile+0x16:  movl   0x14(%ebp),%edi
rfile+0x19:  movl   0x18(%ebp),%ebx
rfile+0x1c:  call   open64
rfile+0x21:  addl   $0x10,%esp
rfile+0x24:  testl  %eax,%eax
rfile+0x26:  js           <rfile+0x75>
rfile+0x28:  testl  %ebx,%ebx
rfile+0x2a:  je           <rfile+0x4c>
rfile+0x2c:  subl   $0xc,%esp
rfile+0x2f:  pushl  %edi
rfile+0x30:  pushl  %esi
rfile+0x31:  pushl  %ebx
rfile+0x32:  pushl  0xc(%ebp)
rfile+0x35:  pushl  %eax
rfile+0x36:  call   pread64
rfile+0x3b:  addl   $0x20,%esp
rfile+0x3e:  cmpl   %ebx,%eax
rfile+0x40:  jne          <rfile+0x5e>
rfile+0x42:  xorl   %eax,%eax
rfile+0x44:  leal   -0xc(%ebp),%esp
rfile+0x47:  popl   %ebx
rfile+0x48:  popl   %esi
rfile+0x49:  popl   %edi
rfile+0x4a:  leave  
rfile+0x4b:  ret
rfile+0x4c:  pushl  %eax
rfile+0x4d:  pushl  %edi
rfile+0x4e:  pushl  %esi
rfile+0x4f:  pushl  $printf_arg1
rfile+0x54:  call   printf
rfile+0x59:  addl   $0x10,%esp
rfile+0x5c:  jmp           <rfile+0x42>
rfile+0x5e:  subl   $0xc,%esp
rfile+0x61:  pushl  $perror_preadfail
rfile+0x66:  call   perror
rfile+0x6b:  movl   $-0x2,%eax
rfile+0x70:  addl   $0x10,%esp
rfile+0x73:  jmp           <rfile+0x44>
rfile+0x75:  subl   $0xc,%esp
rfile+0x78:  pushl  $perror_openfail
rfile+0x7d:  call   perror
rfile+0x82:  movl   $-0x1,%eax
rfile+0x87:  addl   $0x10,%esp
rfile+0x8a:  jmp           <rfile+0x44>
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x86 64bit binary, Sun Workshop cc x86 64bit binary, GNU gcc 3.4.3

rfile:       pushq  %rbp
rfile+0x1:   movq   %rsp,%rbp
rfile+0x4:   subq   $0x8,%rsp
rfile+0x8:   pushq  %r12
rfile+0xa:   pushq  %r13
rfile+0xc:   pushq  %r14
rfile+0xe:   movq   %rsi,%r14
rfile+0x11:  movq   %rdx,%r12
rfile+0x14:  movq   %rcx,%r13
rfile+0x17:  xorl   %esi,%esi
rfile+0x19:  movl   $0x124,%edx
rfile+0x1e:  xorl   %eax,%eax
rfile+0x20:  call   open
rfile+0x25:  testl  %eax,%eax
rfile+0x27:  jl           <rfile+0x65>
rfile+0x29:  testq  %r13,%r13
rfile+0x2c:  je           <rfile+0x47>
rfile+0x2e:  movl   %eax,%edi
rfile+0x30:  movq   %r14,%rsi
rfile+0x33:  movq   %r13,%rdx
rfile+0x36:  movq   %r12,%rcx
rfile+0x39:  xorl   %eax,%eax
rfile+0x3b:  call   pread
rfile+0x40:  cmpq   %r13,%rax
rfile+0x43:  je           <rfile+0x58>
rfile+0x45:  jmp          <rfile+0x83>
rfile+0x47:  leaq   printfarg(%rip),%rdi
rfile+0x4e:  movq   %r12,%rsi
rfile+0x51:  xorl   %eax,%eax
rfile+0x53:  call   printf
rfile+0x58:  xorl   %eax,%eax
rfile+0x5a:  popq   %r14
rfile+0x5c:  popq   %r13
rfile+0x5e:  popq   %r12
rfile+0x60:  movq   %rbp,%rsp
rfile+0x63:  popq   %rbp
rfile+0x64:  ret    
rfile+0x65:  leaq   err_open(%rip),%rdi
rfile+0x6c:  xorl   %eax,%eax
rfile+0x6e:  call   perror
rfile+0x73:  movl   $-0x1,%eax
rfile+0x78:  popq   %r14
rfile+0x7a:  popq   %r13
rfile+0x7c:  popq   %r12
rfile+0x7e:  movq   %rbp,%rsp
rfile+0x81:  popq   %rbp
rfile+0x82:  ret
rfile+0x83:  leaq   err_pread(%rip),%rdi
rfile+0x8a:  xorl   %eax,%eax
rfile+0x8c:  call   perror
rfile+0x91:  movl   $-0x2,%eax
rfile+0x96:  popq   %r14
rfile+0x98:  popq   %r13
rfile+0x9a:  popq   %r12
rfile+0x9c:  movq   %rbp,%rsp
rfile+0x9f:  popq   %rbp
rfile+0xa0:  ret

rfile:       pushq  %rbp
rfile+0x1:   xorl   %eax,%eax
rfile+0x3:   movq   %rsp,%rbp
rfile+0x6:   movq   %rbx,-0x18(%rbp)
rfile+0xa:   movq   %r12,-0x10(%rbp)
rfile+0xe:   movq   %rdx,%r12
rfile+0x11:  movq   %r13,-0x8(%rbp)
rfile+0x15:  movl   $0x124,%edx
rfile+0x1a:  subq   $0x20,%rsp
rfile+0x1e:  movq   %rsi,%r13
rfile+0x21:  xorl   %esi,%esi
rfile+0x23:  movq   %rcx,%rbx
rfile+0x26:  call   open
rfile+0x2b:  testl  %eax,%eax
rfile+0x2d:  js           <rfile+0x82>
rfile+0x2f:  testq  %rbx,%rbx
rfile+0x32:  je           <rfile+0x60>
rfile+0x34:  movq   %r12,%rcx
rfile+0x37:  movq   %rbx,%rdx
rfile+0x3a:  movq   %r13,%rsi
rfile+0x3d:  movl   %eax,%edi
rfile+0x3f:  call   pread
rfile+0x44:  cmpq   %rbx,%rax
rfile+0x47:  jne          <rfile+0x71>
rfile+0x49:  xorl   %eax,%eax
rfile+0x4b:  movq   -0x18(%rbp),%rbx
rfile+0x4f:  movq   -0x10(%rbp),%r12
rfile+0x53:  movq   -0x8(%rbp),%r13
rfile+0x57:  leave  
rfile+0x58:  ret    
rfile+0x59:  nop    
rfile+0x5d:  nop    
rfile+0x60:  movq   %r12,%rsi
rfile+0x63:  movl   $printf_arg,%edi
rfile+0x68:  xorl   %eax,%eax
rfile+0x6a:  call   printf
rfile+0x6f:  jmp          <rfile+0x49>
rfile+0x71:  movl   $err_pread,%edi
rfile+0x76:  call   perror
rfile+0x7b:  movl   $-0x2,%eax
rfile+0x80:  jmp          <rfile+0x4b>
rfile+0x82:  movl   $err_open,%edi
rfile+0x87:  call   perror
rfile+0x8c:  movl   $-0x1,%eax
rfile+0x91:  jmp          <rfile+0x4b>
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The 64bit code shows several interesting peculiarities beyond the ABI differences (args 
in registers, and zeroing %rax before calling a function) that need explanation.

Both Workshop cc and gcc for example seemingly fail to initialize the first argument 
for open() - neither writes to %rdi. This is of course correct – it'll pass-through the 
input value. The filename is not needed anymore after this, so it isn't saved anywhere.

That's not true for the remaining arguments to rfile(). They're still needed, so both 
cc and gcc decide to keep these in nonvolatile registers – but only gcc recognizes that 
using %rbx is more efficient than using %r12..%r15.

As with 32bit code, Workshop cc inlines the epilogue several times while gcc keeps a 
single copy. Also, as mentioned, gcc uses leave while Workshop cc uses the equivalent 
two-instruction sequence.

The Sun Workshop compiler shows that position-independent code on AMD64 is very 
efficiently doable via %rip-relative addressing. Sun Workshop cc defaults to that for 
loading the addresses of the strings passed as arguments to printf() and perror().

gcc's prologue code here demonstrates the use of the so-called stack redzone. In gcc's 
terms, the redzone are the 128 bytes of unallocated stackspace immediately below the 
current value of the stackpointer. This can be accessed using byte offsets relative to 
the stack/framepointer, which is what gcc does here instead of using pushq 
instructions.

I.e. gcc accesses the stack first, and allocates it later.

It is debatable whether this is an optimization; in any case, this behaviour is highly 
incompatible with kernel code both in Linux and Solaris – the kernel is preemptive 
and running with interrupts enabled, and those events may use the current thread's 
stack below what the stackpointer is at the time the interrupt occurs. In both Linux 
and Solaris kernels, gcc's redzone usage must be disabled or data corruption (with a 
crash likely soon afterwards) will result if an interrupt occurs before the subl ..., 
%rsp has been done.

gcc provides a compile flag, -mno-red-zone, that must be used when compiling kernel 
code with gcc, both under Solaris and Linux. It makes sure gcc allocates stackspace 
before attempting to use it.

For application code, the use of the stack redzone is not a problem in either Solaris or 
Linux – the AMD64 UNIX ABI guarantees its availability to applications.
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3.7.3.for() loop example
Sourcecode:

extern int get_a_num(void);

long loopit(int times)
{

long tmp = 123;
int i;

for (i = 10; i < times; i++) {
tmp += get_a_num();
tmp -= get_a_num();

}
return (tmp);

}

Disassembler output:

x86 32bit binary, Sun Workshop cc x86 32bit binary, GNU gcc 3.4.3

loopit:       pushl  %ebp
loopit+0x1:   movl   %esp,%ebp
loopit+0x3:   andl   $0xfffffff0,%esp
loopit+0x6:   pushl  %ebx
loopit+0x7:   pushl  %esi
loopit+0x8:   pushl  %edi
loopit+0x9:   movl   0x8(%ebp),%edi
loopit+0xc:   movl   $0x7b,%esi
loopit+0x11:  cmpl   $0xa,%edi
loopit+0x14:  jle          <loopit+0x2e>
loopit+0x16:  movl   $0xa,%ebx
loopit+0x1b:  call   get_a_num
loopit+0x20:  addl   %eax,%esi
loopit+0x22:  call   get_a_num
loopit+0x27:  subl   %eax,%esi
loopit+0x29:  incl   %ebx
loopit+0x2a:  cmpl   %edi,%ebx
loopit+0x2c:  jl           <loopit+0x1b>
loopit+0x2e:  movl   %esi,%eax
loopit+0x30:  popl   %edi
loopit+0x31:  popl   %esi
loopit+0x32:  popl   %ebx
loopit+0x33:  movl   %ebp,%esp
loopit+0x35:  popl   %ebp
loopit+0x36:  ret

loopit:       pushl  %ebp
loopit+0x1:   movl   %esp,%ebp
loopit+0x3:   movl   0x8(%ebp),%eax
loopit+0x6:   pushl  %esi
loopit+0x7:   cmpl   $0xa,%eax
loopit+0xa:   pushl  %ebx
loopit+0xb:   movl   $0x7b,%esi
loopit+0x10:  jle          <loopit+0x29>
loopit+0x12:  leal   -0xa(%eax),%ebx
loopit+0x15:  leal   0x0(%esi),%esi
loopit+0x18:  call   get_a_num
loopit+0x1d:  addl   %eax,%esi
loopit+0x1f:  call   get_a_num
loopit+0x24:  subl   %eax,%esi
loopit+0x26:  decl   %ebx
loopit+0x27:  jne          <loopit+0x18>
loopit+0x29:  popl   %ebx
loopit+0x2a:  movl   %esi,%eax
loopit+0x2c:  popl   %esi
loopit+0x2d:  leave
loopit+0x2e:  ret

Compiler differences are obvious here:

• The Workshop compiler uses three nonvolatile registers, %edi, %esi and %ebx, for 
the three variables times, tmp and i, and counts the loop forward, starting at 10.

• The GNU C compiler eliminates i as a variable and instead counts (times-10) 
downwards to zero. It therefore only uses %esi for tmp and %ebx for the inverted 
counter. It also interleaves the pushl operations in the prologue with instructions 
that don't access memory.
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x86 64bit binary, Sun Workshop cc x86 64bit binary, GNU gcc 3.4.3

loopit:       pushq  %rbp
loopit+0x1:   movq   %rsp,%rbp
loopit+0x4:   pushq  %rbx
loopit+0x5:   pushq  %r12
loopit+0x7:   pushq  %r13
loopit+0x9:   pushq  %r14
loopit+0xb:   movl   %edi,%r13d
loopit+0xe:   movq   $0x7b,%r14
loopit+0x15:  movl   $0xa,%ebx
loopit+0x1a:  cmpl   $0xa,%r13d
loopit+0x1e:  jle          <loopit+0x44>
loopit+0x20:  xorl   %eax,%eax
loopit+0x22:  call   get_a_num
loopit+0x27:  movslq %eax,%r12
loopit+0x2a:  addq   %r14,%r12
loopit+0x2d:  xorl   %eax,%eax
loopit+0x2f:  call   get_a_num
loopit+0x34:  movslq %eax,%r8
loopit+0x37:  movq   %r12,%r14
loopit+0x3a:  subq   %r8,%r14
loopit+0x3d:  incl   %ebx
loopit+0x3f:  cmpl   %r13d,%ebx
loopit+0x42:  jl           <loopit+0x20>
loopit+0x44:  movq   %r14,%rax
loopit+0x47:  popq   %r14
loopit+0x49:  popq   %r13
loopit+0x4b:  popq   %r12
loopit+0x4d:  popq   %rbx
loopit+0x4e:  movq   %rbp,%rsp
loopit+0x51:  popq   %rbp
loopit+0x52:  ret

loopit:       pushq  %rbp
loopit+0x1:   cmpl   $0xa,%edi
loopit+0x4:   movq   %rsp,%rbp
loopit+0x7:   pushq  %r12
loopit+0x9:   movl   $0x7b,%r12d
loopit+0xf:   pushq  %rbx
loopit+0x10:  jle          <loopit+0x2d>
loopit+0x12:  leal   -0xa(%rdi),%ebx
loopit+0x15:  call   get_a_num
loopit+0x1a:  cltq   
loopit+0x1c:  addq   %rax,%r12
loopit+0x1f:  call   get_a_num
loopit+0x24:  cltq   
loopit+0x26:  subq   %rax,%r12
loopit+0x29:  decl   %ebx
loopit+0x2b:  jne          <loopit+0x15>
loopit+0x2d:  popq   %rbx
loopit+0x2e:  movq   %r12,%rax
loopit+0x31:  popq   %r12
loopit+0x33:  leave  
loopit+0x34:  ret

The 64bit code shows the ABI differences; both compilers do:

• access the (only) argument via %edi (not %rdi – the argument is type int)

• clear %rax (not %eax – remember 32bit operations zero-extend) before calling 
get_a_num() before making a function call. This is mandated by the 64bit ABI.

• Workshop cc uses xorl for the purpose

• gcc chooses cltq. (clear-to-quad, zeroes both %eax and %edx).

The gcc 64bit code looks almost identical to the 32bit code otherwise. But the Sun 
Workshop compiler has chosen to use four registers (not three as in 32bit), using two 
registers for the intermediate values of tmp.
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3.7.4.switch() statements
Sourcecode:

#include <stdio.h>

extern void func_a(int);
extern void func_b(int);
extern void func_c(void);
extern void func_d(int);
extern void func_e(long);
extern void func_default(int);

void disp(long code)
{

switch (code) {
case 280:

func_a(1);
break;

case 880:
func_b(2);
break;

case 92:
func_c();
break;

case 101:
func_d(3);
break;

case 237:
func_e(code);
break;

default:
func_default(4);
break;

}
printf("dispatch done for %ld\n", code);

}

This is the most-complicated example in this section.

There are multiple ways how compilers can create assembly code for such source. Sun 
Workshop cc and gcc actually aren't that dissimilar here, both, in 32bit as in 64bit, 
create sequences of cmp/je instructions followed by a direct jmp to the reach the end 
of the switch {} statement.

Depending on the exact structure of the switch {}, and the values case: check for, 
many optimizations are possible of course, and one cannot expect a generic, real-world 
sourcecode to result in assembly code as easy to read as that given on the following 
pages. This is one example of how assembly code for switch {} can look like – but 
reality will often be more complex.
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x86 32bit binary, Sun Workshop cc x86 32bit binary, GNU gcc 3.4.3

disp:      pushl  %ebp
disp+0x1:  movl   %esp,%ebp
disp+0x3:  andl   $0xfffffff0,%esp
disp+0x6:  pushl  %ebx
disp+0x7:  movl   0x8(%ebp),%ebx
disp+0xa:  cmpl   $0x5c,%ebx
disp+0xd:  je           <disp+0x67>
disp+0xf:  cmpl   $0x65,%ebx
disp+0x12: je           <disp+0x5b>
disp+0x14: cmpl   $0xed,%ebx
disp+0x1a: je           <disp+0x50>
disp+0x1c: cmpl   $0x118,%ebx
disp+0x22: je           <disp+0x44>
disp+0x24: cmpl   $0x370,%ebx
disp+0x2a: je           <disp+0x38>
disp+0x2c: pushl  $0x4
disp+0x2e: call   func_default
disp+0x33: addl   $0x4,%esp
disp+0x36: jmp          <disp+0x6c>
disp+0x38: pushl  $0x2
disp+0x3a: call   func_b
disp+0x3f: addl   $0x4,%esp
disp+0x42: jmp          <disp+0x6c>
disp+0x44: pushl  $0x1
disp+0x46: call   func_a
disp+0x4b: addl   $0x4,%esp
disp+0x4e: jmp          <disp+0x6c>
disp+0x50: pushl  %ebx
disp+0x51: call   func_e
disp+0x56: addl   $0x4,%esp
disp+0x59: jmp          <disp+0x6c>
disp+0x5b: pushl  $0x3
disp+0x5d: call   func_d
disp+0x62: addl   $0x4,%esp
disp+0x65: jmp          <disp+0x6c>
disp+0x67: call   func_c
disp+0x6c: pushl  %ebx
disp+0x6d: pushl  $printf_arg1
disp+0x72: call   printf
disp+0x77: addl   $0x8,%esp
disp+0x7a: popl   %ebx
disp+0x7b: movl   %ebp,%esp
disp+0x7d: popl   %ebp
disp+0x7e: ret

disp:      pushl  %ebp
disp+0x1:  movl   %esp,%ebp
disp+0x3:  pushl  %ebx
disp+0x4:  pushl  %eax
disp+0x5:  movl   0x8(%ebp),%ebx
disp+0x8:  cmpl   $0xed,%ebx
disp+0xe:  je           <disp+0x60>
disp+0x10: jle          <disp+0x48>
disp+0x12: cmpl   $0x118,%ebx
disp+0x18: je           <disp+0x6f>
disp+0x1a: cmpl   $0x370,%ebx
disp+0x20: je           <disp+0x82>
disp+0x22: subl   $0xc,%esp
disp+0x25: pushl  $0x4
disp+0x27: call   func_default
disp+0x2c: addl   $0x10,%esp
disp+0x2f: subl   $0x8,%esp
disp+0x32: pushl  %ebx
disp+0x33: pushl  $printf_arg1
disp+0x38: call   printf
disp+0x3d: addl   $0x10,%esp
disp+0x40: movl   -0x4(%ebp),%ebx
disp+0x43: leave  
disp+0x44: ret
disp+0x45: leal   0x0(%esi),%esi
disp+0x48: cmpl   $0x5c,%ebx
disp+0x4b: je           <disp+0x7b>
disp+0x4d: cmpl   $0x65,%ebx
disp+0x50: jne          <disp+0x22>
disp+0x52: subl   $0xc,%esp
disp+0x55: pushl  $0x3
disp+0x57: call   func_d
disp+0x5c: jmp          <disp+0x2c>
disp+0x5e: movl   %esi,%esi
disp+0x60: subl   $0xc,%esp
disp+0x63: pushl  $0xed
disp+0x68: call   func_e
disp+0x6d: jmp          <disp+0x2c>
disp+0x6f: subl   $0xc,%esp
disp+0x72: pushl  $0x1
disp+0x74: call   func_a
disp+0x79: jmp          <disp+0x2c>
disp+0x7b: call   func_c
disp+0x80: jmp          <disp+0x2f>
disp+0x82: subl   $0xc,%esp
disp+0x85: pushl  $0x2
disp+0x87: call   func_b
disp+0x8c: jmp          <disp+0x2c>

Note that this code shows a difference in how Workshop cc and gcc pass arguments. 
While Workshop cc uses pushl/call/addl to put arguments onto the stack and remove 
exactly this amount from the stack again after the function call, GNU gcc allocates 16 
bytes of stackspace for args even if the called function uses less than that.
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x86 64bit binary, Sun Workshop cc x86 64bit binary, GNU gcc 3.4.3

disp:      pushq  %rbp
disp+0x1:  movq   %rsp,%rbp
disp+0x4:  subq   $0x8,%rsp
disp+0x8:  pushq  %r12
disp+0xa:  movq   %rdi,%r12
disp+0xd:  cmpq   $0x5c,%r12
disp+0x11: je           <disp+0x78>
disp+0x13: cmpq   $0x65,%r12
disp+0x17: je           <disp+0x6a>
disp+0x19: cmpq   $0xed,%r12
disp+0x20: je           <disp+0x5e>
disp+0x22: cmpq   $0x118,%r12
disp+0x29: je           <disp+0x50>
disp+0x2b: cmpq   $0x370,%r12
disp+0x32: je           <disp+0x42>
disp+0x34: movl   $0x4,%edi
disp+0x39: xorl   %eax,%eax
disp+0x3b: call   func_default
disp+0x40: jmp          <disp+0x7f>
disp+0x42: movl   $0x2,%edi
disp+0x47: xorl   %eax,%eax
disp+0x49: call   func_b
disp+0x4e: jmp          <disp+0x7f>
disp+0x50: movl   $0x1,%edi
disp+0x55: xorl   %eax,%eax
disp+0x57: call   func_a
disp+0x5c: jmp          <disp+0x7f>
disp+0x5e: movq   %r12,%rdi
disp+0x61: xorl   %eax,%eax
disp+0x63: call   func_e
disp+0x68: jmp          <disp+0x7f>
disp+0x6a: movl   $0x3,%edi
disp+0x6f: xorl   %eax,%eax
disp+0x71: call   func_d
disp+0x76: jmp          <disp+0x7f>
disp+0x78: xorl   %eax,%eax
disp+0x7a: call   func_c
disp+0x7f: leaq   printf_arg1(%rip),%rdi
disp+0x86: movq   %r12,%rsi
disp+0x89: xorl   %eax,%eax
disp+0x8b: call   printf
disp+0x90: popq   %r12
disp+0x92: movq   %rbp,%rsp
disp+0x95: popq   %rbp
disp+0x96: ret

disp:      pushq  %rbp
disp+0x1:  movq   %rsp,%rbp
disp+0x4:  pushq  %rbx
disp+0x5:  movq   %rdi,%rbx
disp+0x8:  subq   $0x8,%rsp
disp+0xc:  cmpq   $0xed,%rdi
disp+0x13: je           <disp+0x68>
disp+0x15: jle          <disp+0x50>
disp+0x17: cmpq   $0x118,%rdi
disp+0x1e: je           <disp+0x87>
disp+0x20: cmpq   $0x370,%rdi
disp+0x27: je           <disp+0xa2>
disp+0x29: movl   $0x4,%edi
disp+0x2e: nop
disp+0x30: call   func_default
disp+0x35: addq   $0x8,%rsp
disp+0x39: movq   %rbx,%rsi
disp+0x3c: movl   $printf_arg1,%edi
disp+0x41: popq   %rbx
disp+0x42: leave
disp+0x43: xorl   %eax,%eax
disp+0x45: jmp    printf
disp+0x4a: nop
disp+0x4d: nop
disp+0x50: cmpq   $0x5c,%rdi
disp+0x54: je           <disp+0x93>
disp+0x56: cmpq   $0x65,%rdi
disp+0x5a: jne          <disp+0x29>
disp+0x5c: movl   $0x3,%edi
disp+0x61: call   func_d
disp+0x66: jmp          <disp+0x35>
disp+0x68: movl   $0xed,%edi
disp+0x6d: call   func_e
disp+0x72: addq   $0x8,%rsp
disp+0x76: movq   %rbx,%rsi
disp+0x79: movl   $printf_arg1,%edi
disp+0x7e: popq   %rbx
disp+0x7f: leave
disp+0x80: xorl   %eax,%eax
disp+0x82: jmp    printf
disp+0x87: movl   $0x1,%edi
disp+0x8c: call   func_a
disp+0x91: jmp          <disp+0x35>
disp+0x93: call   func_c
disp+0x98: nop
disp+0x9c: nop
disp+0xa0: jmp          <disp+0x35>
disp+0xa2: movl   $0x2,%edi
disp+0xa7: call   func_b
disp+0xac: nop
disp+0xb0: jmp          <disp+0x35>

Both compilers generated similar code compared to their 32bit output. Note that 
Workshop cc by used %rip-relative (position independent) for loading the address of 
printf()'s format string, while gcc uses tail-call optimization and jmp's to printf().
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3.8.Accessing data structures
The various addressing modes suppported by x86 are frequently used in compiled 
code. They match very well with the way the C programming language implements 
structures and arrays. The following section will demonstrate:

• how global and local variables differ, and where arguments fit in

• what consequences to the assembly output it has if the compiler is instructed to 
create position-independent code.

Variations of the following sourcecode will be used:

#include <string.h>

typedef struct st_s {
        char    s_c;
        long    s_l;
        short   s_s;
        int     s_i;
        char    s_name[23];
        struct st_s *s_nxt;
} sts_t;

/*
 * Variant A:
 * structure to be initialized is passed as an argument
 */
void initstruct(
    sts_t *initme,
    char i_c,
    long i_l,
    short i_s,
    int i_i,
    char *i_name
)
{
        initme->s_c = i_c + 1;
        initme->s_l = i_l + 2;
        initme->s_s = i_s + 3;
        initme->s_i = i_i + 4;
        strcpy(initme->s_name, i_name);
        initme->s_name[20] = 'A'
        initme->s_nxt = NULL;
}

3.8.1.Arguments, types, structure access
32/64bit ABI comparison
The above-shown sourcecode is designed to show ABI differences. Since arguments are 
used/typed in a way simple enough to identify, any change in 32/64bit wrt. to:

• argument access

• data structure member alignment

• sizes of data types

• function calling

become immediately obvious.
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A different color coding than before is used:

• red are (input) arguments

• green are local variables (on the stack – local variables in registers aren't marked)

• blue are global variables

• thin italics red are output arguments, i.e. values passed to a called function

32bit binary, Sun Workshop cc 64bit binary, Sun Workshop cc

initstruct:      pushl  %ebp
initstruct+0x1:  movl   %esp,%ebp
initstruct+0x3:  andl   $0xfffffff0,%esp
initstruct+0x6:  pushl  %ebx
initstruct+0x7:  movsbl 0xc(%ebp),%eax
initstruct+0xb:  incl   %eax
initstruct+0xc:  movl   0x8(%ebp),%ebx
initstruct+0xf:  movb   %al,(%ebx)
initstruct+0x11: movl   0x10(%ebp),%eax
initstruct+0x14: addl   $0x2,%eax
initstruct+0x17: movl   %eax,0x4(%ebx)
initstruct+0x1a: movswl 0x14(%ebp),%eax
initstruct+0x1e: addl   $0x3,%eax
initstruct+0x21: movw   %ax,0x8(%ebx)
initstruct+0x25: movl   0x18(%ebp),%eax
initstruct+0x28: addl   $0x4,%eax
initstruct+0x2b: movl   %eax,0xc(%ebx)
initstruct+0x2e: pushl  0x1c(%ebp)
initstruct+0x31: leal   0x10(%ebx),%eax
initstruct+0x34: pushl  %eax
initstruct+0x35: call <strcpy>
initstruct+0x3a: addl   $0x8,%esp
initstruct+0x3d: movb   $0x41,0x24(%ebx)
initstruct+0x41: movl   $0x0,0x28(%ebx)
initstruct+0x48: popl   %ebx
initstruct+0x49: movl   %ebp,%esp
initstruct+0x4b: popl   %ebp
initstruct+0x4c: ret

initstruct:      pushq  %rbp
initstruct+0x1:  movq   %rsp,%rbp
initstruct+0x4:  subq   $0x8,%rsp
initstruct+0x8:  pushq  %r12
initstruct+0xa:  movq   %rdi,%r12
initstruct+0xd:  movq   %rdx,%r10
initstruct+0x10: movsbl %sil,%eax
initstruct+0x14: incl   %eax
initstruct+0x16: movb   %al,(%r12)
initstruct+0x1a: addq   $0x2,%r10
initstruct+0x1e: movq   %r10,0x8(%r12)
initstruct+0x23: movswl %cx,%eax
initstruct+0x26: addl   $0x3,%eax
initstruct+0x29: movw   %ax,0x10(%r12)
initstruct+0x2f: addl   $0x4,%r8d
initstruct+0x33: movl   %r8d,0x14(%r12)
initstruct+0x38: movq   %r12,%rdi
initstruct+0x3b: addq   $0x18,%rdi
initstruct+0x3f: movq   %r9,%rsi
initstruct+0x42: xorl   %eax,%eax
initstruct+0x44: call <strcpy>
initstruct+0x49: movb   $0x41,0x2c(%r12)
initstruct+0x4f: movq   $0x0,0x30(%r12)
initstruct+0x58: popq   %r12
initstruct+0x5a: movq   %rbp,%rsp
initstruct+0x5d: popq   %rbp
initstruct+0x5e: ret

Differences:

1. Size of basic data types has changed. arg3 (of type long) is 32bit in 32bit mode but 
64bit in 64bit mode. Sizes of pointers also changed, of course. ILP32 vs. LP64.

2. Alignment of basic types changed. long and char* (s_l and s_name) are 4-Byte 
aligned in 32bit but 8-Byte aligned in 64bit mode. Access to sts_t looks like:

struct st_s { 32bit access 64bit access
    char s_c; movb %al,     (%ebx) movb %al,     (%r12)
    long s_l; movl %eax, 0x4(%ebx) movq %r10, 0x8(%r12)
    short s_s; movw %ax,  0x8(%ebx) movw %ax, 0x10(%r12)
    int s_i; movl %eax, 0xc(%ebx) movl %r8d,0x14(%r12)
    char s_name[23]; leal      0x10(%ebx),%eax addq     $0x18,%rdi
    sts_t *s_nxt; movl $0x0,0x28(%ebx) movq $0x0,0x30(%r12)
}

3. Argument passing – input arguments all on the stack in 32bit mode, first six in 
registers in 64bit mode:

argument 32bit access 64bit access
#0: sts_t *initme movl    0x8(%ebp),%ebx movq   %rdi,%r12
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argument 32bit access 64bit access
#1: char i_c movsbl  0xc(%ebp),%eax movsbl %sil,%eax
#2: long i_l movl   0x10(%ebp),%eax movq   %rdx,%r10
#3: short i_s movswl 0x14(%ebp),%eax movswl %cx,%eax
#4: int i_i movl   0x18(%ebp),%eax movl   %r8d,0x14(%r12)
#5: char *i_name pushl  0x1c(%ebp) movq   %r9,%rsi

4. Argument passing – output arguments (to strcpy()) all on the stack in 32bit mode, 
in %rsi/%rdi in 64bit mode.
Additionally, 64bit mode clears %eax before making a function call.

In short, apart from the changes in argument passing we note that data type sizes 
have changed. 32bit x86 is ILP32 (int, long, and pointers all being 32bit), while the 
64bit mode is LP64 (long and pointers are 64bit). The size change goes in line with a 
change in alignment of data structures – long and pointer types are aligned at a 
multiple of four bytes in 32bit x86, while in 64bit mode they're both at a multiple of 
eight bytes.

3.8.2.Argument access vs. local variables
The following code modifies the previously-shown sample program so that 
init_struct() initializes a local instance of sts_t before copying the contents thereof 
into the passed-in address:

void initstruct(
    sts_t *initme,
    char i_c,
    long i_l,
    short i_s,
    int i_i,
    char *i_name
)
{
        sts_t localcopy; 

        localcopy.s_c = i_c + 1;
        localcopy.s_l = i_l + 2;
        localcopy.s_s = i_s + 3;
        localcopy.s_i = i_i + 4;
        strcpy(localcopy.s_name, i_name);
        localcopy.s_name[20] = 'A';
        localcopy.s_nxt = NULL;
        memcpy(initme, &localcopy, sizeof(sts_t));
}

This allows us to see how access to local variables and arguments differs in compiled 
code. Let's compare the previously-shown code that initializes the members of *initme 
directly with the new version that initializes a local instance and copies that to 
*initme at the end.
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First, 32bit code:

initializing via arg, cc, 32bit using local variable, cc, 32bit

initstruct:      pushl  %ebp
initstruct+0x1:  movl   %esp,%ebp
initstruct+0x3:  andl   $0xfffffff0,%esp
initstruct+0x6:  pushl  %ebx
initstruct+0x7:  movsbl 0xc(%ebp),%eax
initstruct+0xb:  incl   %eax
initstruct+0xc:  movl   0x8(%ebp),%ebx
initstruct+0xf:  movb   %al,(%ebx)
initstruct+0x11: movl   0x10(%ebp),%eax
initstruct+0x14: addl   $0x2,%eax
initstruct+0x17: movl   %eax,0x4(%ebx)
initstruct+0x1a: movswl 0x14(%ebp),%eax
initstruct+0x1e: addl   $0x3,%eax
initstruct+0x21: movw   %ax,0x8(%ebx)
initstruct+0x25: movl   0x18(%ebp),%eax
initstruct+0x28: addl   $0x4,%eax
initstruct+0x2b: movl   %eax,0xc(%ebx)
initstruct+0x2e: pushl  0x1c(%ebp)
initstruct+0x31: leal   0x10(%ebx),%eax
initstruct+0x34: pushl  %eax
initstruct+0x35: call <strcpy>
initstruct+0x3a: addl   $0x8,%esp
initstruct+0x3d: movb   $0x41,0x24(%ebx)
initstruct+0x41: movl   $0x0,0x28(%ebx)
initstruct+0x48: popl   %ebx
initstruct+0x49: movl   %ebp,%esp
initstruct+0x4b: popl   %ebp
initstruct+0x4c: ret

initstruct:      pushl  %ebp
initstruct+0x1:  movl   %esp,%ebp
initstruct+0x3:  subl   $0x30,%esp
initstruct+0x6:  andl   $0xfffffff0,%esp
initstruct+0x9:  movsbl 0xc(%ebp),%eax
initstruct+0xd:  incl   %eax
initstruct+0xe:  movb   %al,0x4(%esp)
initstruct+0x12: movl   0x10(%ebp),%eax
initstruct+0x15: addl   $0x2,%eax
initstruct+0x18: movl   %eax,0x8(%esp)
initstruct+0x1c: movswl 0x14(%ebp),%eax
initstruct+0x20: addl   $0x3,%eax
initstruct+0x23: movw   %ax,0xc(%esp)
initstruct+0x28: movl   0x18(%ebp),%eax
initstruct+0x2b: addl   $0x4,%eax
initstruct+0x2e: movl   %eax,0x10(%esp)
initstruct+0x32: leal   0x14(%esp),%eax
initstruct+0x36: pushl  0x1c(%ebp)
initstruct+0x39: pushl  %eax
initstruct+0x3a: call <strcpy>
initstruct+0x3f: addl   $0x8,%esp
initstruct+0x42: movb   $0x41,0x28(%esp)
initstruct+0x47: movl   $0x0,0x2c(%esp)
initstruct+0x4f: pushl  $0x2c
initstruct+0x51: leal   0x8(%esp),%eax
initstruct+0x55: pushl  %eax
initstruct+0x56: movl   0x8(%ebp),%eax
initstruct+0x59: pushl  %eax
initstruct+0x5a: call <memcpy>
initstruct+0x5f: movl   %ebp,%esp
initstruct+0x61: popl   %ebp
initstruct+0x62: ret

This shows that the workshop compiler, in this case, has chosen to access arguments 
via +...(%ebp), i.e. relative to the beginning of the function's stackframe, while the 
second version shows it accesses local variables via +...(%esp), relative to the end of 
the stackframe.

While arguments in 32bit mode, if there is a framepointer, will always be accessed via 
+...(%ebp), it's common to see both +...(%esp) and -...(%ebp) for local variables.

The following comparison between 32bit cc/gcc output shows this clearly – the Sun 
Workshop compiler for the given example code has generated assembly which 
accesses local variables relative to the stackpointer, +...(%esp), while gcc for the 
same sources creates assembly code that uses negative offsets relative to the 
framepointer, -...(%ebp) for the same.
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No matter what – in 32bit code that uses framepointers, the following is always true:

• Arguments: before the start of the stackframe, and accessed via +8(%ebp) onwards.

• Local variables: Below %ebp, above %esp. Access via -...(%ebp) or +...(%esp).

local variables, 32bit, Workshop cc local variables, 32bit, GNU gcc

initstruct:      pushl  %ebp
initstruct+0x1:  movl   %esp,%ebp
initstruct+0x3:  subl   $0x30,%esp
initstruct+0x6:  andl   $0xfffffff0,%esp
initstruct+0x9:  movsbl 0xc(%ebp),%eax
initstruct+0xd:  incl   %eax
initstruct+0xe:  movb   %al,0x4(%esp)
initstruct+0x12: movl   0x10(%ebp),%eax
initstruct+0x15: addl   $0x2,%eax
initstruct+0x18: movl   %eax,0x8(%esp)
initstruct+0x1c: movswl 0x14(%ebp),%eax
initstruct+0x20: addl   $0x3,%eax
initstruct+0x23: movw   %ax,0xc(%esp)
initstruct+0x28: movl   0x18(%ebp),%eax
initstruct+0x2b: addl   $0x4,%eax
initstruct+0x2e: movl   %eax,0x10(%esp)
initstruct+0x32: leal   0x14(%esp),%eax
initstruct+0x36: pushl  0x1c(%ebp)
initstruct+0x39: pushl  %eax
initstruct+0x3a: call <strcpy>
initstruct+0x3f: addl   $0x8,%esp
initstruct+0x42: movb   $0x41,0x28(%esp)
initstruct+0x47: movl   $0x0,0x2c(%esp)
initstruct+0x4f: pushl  $0x2c
initstruct+0x51: leal   0x8(%esp),%eax
initstruct+0x55: pushl  %eax
initstruct+0x56: movl   0x8(%ebp),%eax
initstruct+0x59: pushl  %eax
initstruct+0x5a: call <memcpy>
initstruct+0x5f: movl   %ebp,%esp
initstruct+0x61: popl   %ebp
initstruct+0x62: ret

initstruct:      pushl %ebp
initstruct+0x1:  movl  %esp,%ebp
initstruct+0x3:  pushl %ebx
initstruct+0x4:  subl  $0x3c,%esp
initstruct+0x7:  movb  0xc(%ebp),%al
initstruct+0xa:  incl  %eax
initstruct+0xb:  movb  %al,-0x38(%ebp)
initstruct+0xe:  movl  0x10(%ebp),%eax
initstruct+0x11: addl  $0x2,%eax
initstruct+0x14: movl  %eax,-0x34(%ebp)
initstruct+0x17: movl  0x14(%ebp),%eax
initstruct+0x1a: addl  $0x3,%eax
initstruct+0x1d: movw  %ax,-0x30(%ebp)
initstruct+0x21: movl  0x18(%ebp),%eax
initstruct+0x24: addl  $0x4,%eax
initstruct+0x27: pushl 0x1c(%ebp)
initstruct+0x2a: movl  %eax,-0x2c(%ebp)
initstruct+0x2d: leal  -0x28(%ebp),%eax
initstruct+0x30: pushl %eax
initstruct+0x31: call <strcpy>
initstruct+0x36: addl  $0xc,%esp
initstruct+0x39: pushl $0x2c
initstruct+0x3b: leal  -0x38(%ebp),%ebx
initstruct+0x3e: pushl %ebx
initstruct+0x3f: pushl 0x8(%ebp)
initstruct+0x42: movb  $0x41,-0x14(%ebp)
initstruct+0x46: movl  $0x0,-0x10(%ebp)
initstruct+0x4d: call <memcpy>
initstruct+0x52: addl  $0x10,%esp
initstruct+0x55: movl  -0x4(%ebp),%ebx
initstruct+0x58: leave  
initstruct+0x59: ret

The 64bit version doesn't show conceptual differences, what holds true for local 
variables in 32bit mode still applies to 64bit mode.
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3.8.3.Global variables
Again changing the sourcecode slightly:

extern sts_t glob_st;

void initstruct(
    sts_t *i_nxt,
    char i_c,
    long i_l,
    short i_s,
    int i_i,
    char *i_name
)
{
        glob_st.s_c = i_c + 1;
        glob_st.s_l = i_l + 2;
        glob_st.s_s = i_s + 3;
        glob_st.s_i = i_i + 4;
        strcpy(glob_st.s_name, i_name);
        glob_st.s_name[20] = 'A';
        glob_st.s_nxt = i_nxt;
}

This example serves well to show the difference between local variables (on the stack) 
and global variables (on the heap). It also illustrates the difference between position-
independent and regular code for accessing globals.

Sun Workshop cc, 32bit, non-PIC Sun Workshop cc, 32bit, -Kpic

initstruct:      pushl  %ebp
initstruct+0x1:  movl   %esp,%ebp
initstruct+0x3:  andl   $0xfffffff0,%esp
initstruct+0x6:  movsbl 0xc(%ebp),%eax
initstruct+0xa:  incl   %eax
initstruct+0xb:  movb   %al,<g_s>
initstruct+0x10: movl   0x10(%ebp),%eax
initstruct+0x13: addl   $0x2,%eax
initstruct+0x16: movl   %eax,<g_s+0x4>
initstruct+0x1b: movswl 0x14(%ebp),%eax
initstruct+0x1f: addl   $0x3,%eax
initstruct+0x22: movw   %ax,<g_s+0x8>
initstruct+0x28: movl   0x18(%ebp),%eax
initstruct+0x2b: addl   $0x4,%eax
initstruct+0x2e: movl   %eax,<g_s+0xc>
initstruct+0x33: pushl  0x1c(%ebp)
initstruct+0x36: pushl  $<g_s+0x10>
initstruct+0x3b: call <strcpy>
initstruct+0x40: addl   $0x8,%esp
initstruct+0x43: movb   $0x41,0x24
initstruct+0x4a: movl   0x8(%ebp),%eax
initstruct+0x4d: movl   %eax,<g_s+0x28>
initstruct+0x52: movl   %ebp,%esp
initstruct+0x54: popl   %ebp
initstruct+0x55: ret

initstruct: pushl  %ebp
+0x1:  movl   %esp,%ebp
+0x3:  andl   $0xfffffff0,%esp
+0x6:  pushl  %ebx
+0x7:  pushl  %esi
+0x8:  call <initstruct+0xd>
+0xd:  popl   %ebx
+0xe:  addl   $_GLOBAL_OFFSET_TABLE_+1,
              %ebx
+0x14: movsbl 0xc(%ebp),%eax
+0x18: incl   %eax
+0x19: movl   g_s@GOT(%ebx),%esi
+0x1f: movb   %al,(%esi)
+0x21: movl   0x10(%ebp),%eax
+0x24: addl   $0x2,%eax
+0x27: movl   %eax,0x4(%esi)
+0x2a: movswl 0x14(%ebp),%eax
+0x2e: addl   $0x3,%eax
+0x31: movw   %ax,0x8(%esi)
+0x35: movl   0x18(%ebp),%eax
+0x38: addl   $0x4,%eax
+0x3b: movl   %eax,0xc(%esi)
+0x3e: pushl  0x1c(%ebp)
+0x41: leal   0x10(%esi),%eax
+0x44: pushl  %eax
+0x45: call <strcpy>
+0x4a: addl   $0x8,%esp
+0x4d: movb   $0x41,0x24(%esi)
+0x51: movl   0x8(%ebp),%eax
+0x54: movl   %eax,0x28(%esi)
+0x57: popl   %esi
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Sun Workshop cc, 32bit, non-PIC Sun Workshop cc, 32bit, -Kpic

+0x58: popl   %ebx
+0x59: movl   %ebp,%esp
+0x5b: popl   %ebp
+0x5c: ret

Regular code (not explicitly position-independent) in 32bit x86 uses direct addressing 
(i.e. 32bit pointers) to access global variables.

The key point to understanding position-independent code in 32bit is the Global Offset 
Table (GOT). This is the memory location where PIC code stores global data structures. 
We see in the code:

1. Since PIC code can be put anywhere into memory without the dynamic linker/loader 
having to do relocation, a PIC function will need to:

• determine its own load address. The shown code does this via:
call <initstruct+0xd>
popl   %ebx
This “call yourself” is typical for position-independent code on architectures that 
don't allow the use of the program counter (%eip in 32bit x86) for relative 
addressing. The code simply reads out the current program counter.

• add the offset between code location and GOT location to that. That's why it does:
addl   $_GLOBAL_OFFSET_TABLE_+1,%ebx
This code puts the base address of the Global Offset Table into %ebx – and it will 
be kept there over the lifetime of this function (at least). 

2. Once the GOT location has been determined, addresses of global variables that are 
now within the GOT can be calculated relative to %ebx. We see in the example:
movl   g_s@GOT(%ebx),%esi
After that, the start address of the global data structure is known. Members within 
are updated relative to +...(%esi).

Due to this overhead, and the need to keep the GOT address in %ebx (loosing one 
general-purpose register), PIC code in 32bit x86 is significantly slower than non-PIC.

64bit x86 on the other hand knows %rip-relative addressing. This simplifies PIC code 
so much that both gcc and Sun Workshop cc will always create position-independent 
code for 64bit x86, even without explicitly requesting it:

64bit, Sun Workshop cc 64bit, GNU gcc

initstruct:      pushq  %rbp
initstruct+0x1:  movq   %rsp,%rbp
initstruct+0x4:  subq   $0x8,%rsp
initstruct+0x8:  pushq  %r12
initstruct+0xa:  movq   %rdi,%r12
initstruct+0xd:  movq   %rdx,%r10
initstruct+0x10: movsbl %sil,%eax
initstruct+0x14: incl   %eax
initstruct+0x16: movb   %al,g_s(%rip)
initstruct+0x1c: addq   $0x2,%r10
initstruct+0x20: movq   %r10,
                        g_s+0x8(%rip)
initstruct+0x27: movswl %cx,%eax
initstruct+0x2a: addl   $0x3,%eax
initstruct+0x2d: movw   %ax,
                        g_s+0x10(%rip)
initstruct+0x34: addl   $0x4,%r8d

initstruct:      pushq  %rbp
initstruct+0x1:  incl   %esi
initstruct+0x3:  addq   $0x2,%rdx
initstruct+0x7:  addl   $0x3,%ecx
initstruct+0xa:  addl   $0x4,%r8d
initstruct+0xe:  movq   %rsp,%rbp
initstruct+0x11: pushq  %rbx
initstruct+0x12: movq   %rdi,%rbx
initstruct+0x15: movq   $g_s+0x18,%rdi
initstruct+0x1c: subq   $0x8,%rsp
initstruct+0x20: movb   %sil,g_s(%rip)
initstruct+0x27: movq   %r9,%rsi
initstruct+0x2a: movq   %rdx,
                        g_s+0x8(%rip)
initstruct+0x31: movw   %cx,
                        g_s+0x10(%rip)
initstruct+0x38: movl   %r8d,
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64bit, Sun Workshop cc 64bit, GNU gcc

initstruct+0x38: movl   %r8d,
                        g_s+0x14(%rip)
initstruct+0x3f: leaq   g_s+0x18(%rip),
                        %rdi
initstruct+0x46: movq   %r9,%rsi
initstruct+0x49: xorl   %eax,%eax
initstruct+0x4b: call <strcpy>
initstruct+0x50: movb   $0x41,
                        g_s+0x2c(%rip)
initstruct+0x57: movq   %r12,
                        g_s+0x30(%rip)
initstruct+0x5e: popq   %r12
initstruct+0x60: movq   %rbp,%rsp
initstruct+0x63: popq   %rbp
initstruct+0x64: ret

                        g_s+0x14(%rip)
initstruct+0x3f: call <strcpy>
initstruct+0x44: movq   %rbx,
                        g_s+0x30(%rip)
initstruct+0x4b: movb   $0x41,
                        g_s+0x2c(%rip)
initstruct+0x52: addq   $0x8,%rsp
initstruct+0x56: popq   %rbx
initstruct+0x57: leave  
initstruct+0x58: ret

The Sun Workshop cc code is fully PIC, while gcc's code generator probably contains a 
small bug in this case. The instruction used by gcc:

initstruct+0x15: movq   $g_s+0x18,%rdi

which loads the first argument for strcpy() is NOT using %rip-relative addressing. The 
version the Sun Workshop compiler uses:

initstruct+0x3f: leaq   g_s+0x18(%rip),%rdi

achieves the same – but in the desirable position-independent way.

For Sun Workshop cc, (not) using -kpic makes no difference to the generated code in 
64bit x86. For GNU gcc, -fpic resorts to the (bad) 32bit-style behaviour of 
referencing global data relative to +...(%ebx), and only replaces the load of the GOT 
base address with %rip-relative addressing.
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3.9.Compiler help for debugging AMD64 code
The biggest difference between AMD64 and i386 assembly code is the way arguments 
are passed.

• i386 passes arguments on the stack, in descending order.
A function (or a debugger, post-mortem) can access its arguments relative to the 
framepointer, at 4*argN(%ebp).

• AMD64 passes the first six arguments in registers %rdi, %rsi, %rdx, %rcx, %r8 
and %r9. Only arguments past the sixth end up on the stack, at 8*argN-6(%rbp).
It's up to the function where it keeps its arguments, i.e. whether it leaves them 
in the argument registers, moves them to nonvolatile registers, or puts them 
onto the stack.
A debugger has no simple way of figuring out where in the stack the arguments 
finally end up (if at all).

Source-level debugging for applications of course solves this problem, since complete 
source-level debugging data contains the information about stackframe layout. But this 
is too heavyweight for many purposes, and inappropriate for kernel debugging.

The section on “Register Lifecycle” has already shown that argument passing in 
registers doesn't necessarily remove the need to have copies of these arguments in the 
stack somewhere during the “lifetime” of the function to which a given argument was 
passed to. In the vast majority of cases, anything but very simple wrapper functions 
will end up having their arguments in the stack, because:

1. The function uses its argument(s) again after having called another function 
itself and therefore needs to make them “permanent” - making function calls 
destroys the contents of the argument registers.

2. The function's active working set of variables is larger than the number of 
available registers, and it therefore moves the arguments out of the way in 
order to use the argument registers for other purposes.

So there often is need for AMD64 assembly code to save its arguments into the stack 
somewhere. And this can be taken advantage of.

In order to make this usable for a debugger to find function arguments automatically, 
we need to instruct the compiler to:

• make somewhere into a defined place within the stackframe of the function

• always perform argument saving at entry to the function.

In fact, Microsoft for the Windows/x64 ABI has specified this behaviour, by defining 
that the first four arguments are passed in registers, but the calling function also has 
to reserve stackspace for them. I.e. the Windows/x64 ABI specifies: “If you want to 
save your argument registers to the stack, save them right here - the caller has 
allocated this space for you...”

The UNIX ABI for AMD64 does not mandate such behaviour. Implementing it is 
therefore up to the compiler (which is not required to do it) – and the space where the 
arguments will be put in must be in the “local variables” section of the stackframe, not 
in the “arguments” section as on Windows/x64, because the prerequisite for the caller 
to reserve space for the arguments doesn't exist on UN*X/AMD64.

Recent UN*X compilers for x64 (Sun Workshop 10.1, and gcc via patches since August 
2005) can be instructed to create function prologue code that saves argument 
registers into the stack, at the beginning of a function's stackframe.

The big problem one is faced with when debugging AMD64 code on assembly level, 
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namely finding arguments in stacktraces, becomes almost as trivial as with classical 
32bit i386 code - when the -save_args compiler option (-msave_args on gcc) has 
been used.

All arguments are accessible at known locations relative to the framepointer for the 
function:

argument 32bit / i386 -save_args, 64bit / amd64

first (0)

second (1)

third (2)

fourth (3)

fifth (4)

sixth (5)

seventh (7)

eigth (7)

... (N)

0x8(%ebp)

0xc(%ebp)

0x10(%ebp)

0x14(%ebp)

0x18(%ebp)

0x1c(%ebp)

0x20(%ebp)

0x24(%ebp)

0x4*(N+1)(%ebp)

-0x8(%rbp)         %rdi

-0x10(%rbp)        %rsi

-0x18(%rbp)        %rdx

-0x20(%rbp)        %rcx

-0x28(%rbp)        %r8

-0x30(%rbp)        %r9

0x10(%rbp)

0x18(%rbp)

0x8*(N-5)(%rbp)

Compiling code with -save_args allows backtraces with arguments even from simple 
debuggers that don't do code flow tracing to locate the arguments.
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Illustration 12 - AMD64 Stack Layout, requesting the compiler to save args to the 
stack
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3.9.1.Code samples with and without -save_args
As an illustration how this behaviour changes function prologues, let's look at an 
example.

amd64 binary, with -save_args amd64 binary, “classical”

hsfs_getpage:       pushq %rbp
hsfs_getpage+1:     movq %rsp,%rbp
hsfs_getpage+4:     subq $0x28,%rsp
hsfs_getpage+8:     pushq %rbx
hsfs_getpage+9:     pushq %r12
hsfs_getpage+0xb:   pushq %r13
hsfs_getpage+0xd:   pushq %r14
hsfs_getpage+0xf:   pushq %r15
hsfs_getpage+0x11:  movq %rdi,-0x8(%rbp)
hsfs_getpage+0x15:  movq %rdi,%r14
hsfs_getpage+0x18:  movq %rsi,-
0x10(%rbp)
hsfs_getpage+0x1c:  movq %rsi,%r13
hsfs_getpage+0x1f:  movq %rdx,-
0x18(%rbp)
hsfs_getpage+0x23:  movq %rdx,%r12
hsfs_getpage+0x26:  movq %rcx,-
0x20(%rbp)
hsfs_getpage+0x2a:  movq %rcx,%r15
hsfs_getpage+0x2d:  movq %r8,-0x28(%rbp)
hsfs_getpage+0x31:  movq %r8,-0x38(%rbp)
hsfs_getpage+0x35:  movq %r9,-0x30(%rbp)
hsfs_getpage+0x39:  movq %r9,-0x48(%rbp)
hsfs_getpage+0x3d:  movq 0x10(%r14),%rbx
hsfs_getpage+0x41:  movl 0x20(%rbp),%eax
[ ... ]
hsfs_getpage+0xfb:  movq 0x10(%rbp),%r8
hsfs_getpage+0xff:  movq 0x18(%rbp),%r9
hsfs_getpage+0x103: movq 0x28(%rbp),%r10
[ ... ]

hsfs_getpage:      pushq %rbp
hsfs_getpage+1:    movq %rsp,%rbp
hsfs_getpage+4:    subq $0x58,%rsp
hsfs_getpage+8:    pushq %rbx
hsfs_getpage+9:    pushq %r12
hsfs_getpage+0xb:  pushq %r13
hsfs_getpage+0xd:  pushq %r14
hsfs_getpage+0xf:  pushq %r15

hsfs_getpage+0x11: movq %rdi,%r14

hsfs_getpage+0x14: movq %rsi,%r13

hsfs_getpage+0x17: movq %rdx,%r12

hsfs_getpage+0x1a: movq %rcx,%r15

hsfs_getpage+0x1d: movq %r8,-0x8(%rbp)

hsfs_getpage+0x21: movq %r9,-0x18(%rbp)
hsfs_getpage+0x25: movq 0x10(%r14),%rbx
hsfs_getpage+0x29: movl 0x20(%rbp),%eax
[ ... ]
hsfs_getpage+0xe3: movq 0x10(%rbp),%r8
hsfs_getpage+0xe7: movq 0x18(%rbp),%r9
hsfs_getpage+0xae: movq 0x28(%rbp),%r10
[ ... ]

Code generated by the same compiler without and with the -save_args option only 
differs in

• the amount of space allocated on the stack
(6 more words, 0x30 bytes for the six argument registers),

• the instructions that save the argument registers into the stack
• the %rbp-relative offsets used for local variables, which are shifted by 0x30.
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4.Memory and Privilege 
Management on x86
From “The Tao of Programming”:

Thus spake the master programmer:
"When program is being tested, it is too late to make design changes."

Advanced operating systems separate several concurrently running applications from 
each other, and keep the operating system kernel isolated from applications.

This puts two basic requirements on the CPU:

1. Configurable address spaces (“Contexts”). Two applications may not access the 
same memory unless an explicit “sharing” request was made. And likewise, 
applications may not usually access the operating system kernel's data, nor should 
unless deliberately requested the kernel modify memory in use by a given 
application.
In short, modern operating systems require a MMU.

2. Privileged execution. Applications cannot be allowed to modify CPU state that is 
critical to the operating system. Only the kernel and its device drivers know how to 
access hardware, and only the kernel may grant memory/device access to 
applications via controlled interfaces. In other words, we need:

• Privilege levels.
The kernel will run in privileged mode and have access to all CPU instructions / 
all hardware including those that are crucial to system integrity.
Applications, on the other hand, will run unprivileged and be prevented from 
“messing up” the system.

• Privilege switching mechanisms.
Controlled interfaces (system calls, exceptions, interrupts) are required to pass 
execution from unprivileged mode (applications) to privileged (kernel).

CPUs in the x86 family provide the abovementioned features if operating in the 
Protected Mode.
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4.1.The x86 protected mode – privilege management
Intel was late to introduce a model for program execution at different privilege levels.

Not until 1982 when the 80286 was released did Intel-compatible CPUs know about a 
fully-functional model for stopping user code from executing arbitrary instructions or 
performing other critical actions that could compromise e.g. the integrity of an 
operating systems. The concept of user/supervisor mode that other architectures had 
for a long time already even back in 1982 has not been a designed part of the x86 
architecture.

When Intel finally implemented privileges they chose a multi-layer model for it, 
allowing for two intermediate privilege levels between user mode and fully-privileged 
supervisor mode.

Intel calls this model Protected Mode. It theoretically allows for fine-grained control 
about who can execute instructions that modify critical system state, or modify 
memory/peripheral state whose consistency is crucial for the integrity of an operating 
system.

The Intel term for these execution modes is Rings. There are four:

• Ring 0
This mode allows unrestricted access to all CPU/hardware capabilities/resources.

• Ring 1
This is meant to be used for drivers that can get by with unrestricted access to a 
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limited set of CPU/hardware capabilities/resources.

• Ring 2
This is supposed to be used by services of the operating system which can be 
implemented e.g with the use of privileged instructions but without privileged 
access to hardware/memory on a large scale.

• Ring 3
Application programs that need strong isolation against each other will use ring 3.

Intel wasn't the first to introduce a fine-privileges execution model - a US military CPU 
design from the late 70s (MIL-STD-1750) has 16 (!) privilege levels. It never gained 
momentum. On paper, the idea of building sandboxes even for operating-system code 
has some benefits. But the actual hardware implementation for the US military's CPU 
was too complex/heavyweight for its time, while the stripped-down model by Intel 
reached market far too late. Intel introduced rings of execution at a time when most 
operating systems were already designed around hardware that only had the all-or-
nothing user/supervisor model. That's one reason why all modern operating systems 
for x86 collapse ring 0..2 and use only two modes:

• Ring 0 - operating system, drivers

• Ring 3 - application programs

Additionally, what may well have contributed to the fact that the fine-grained privilege 
control of the Protected Mode was never really used to its full capabilities is the actual 
implementation of these features.

4.1.1.Evolution of privilege and memory management 
on x86
The 8086 16bit CPU had no concept of privilege whatsoever. Every code was allowed 
to use all instructions and modify CPU state that normally would be considered to 
“belong” to an operating system only.

But the 8086 had a rudimentary memory management concept. The CPU and all its 
registers, as well as direct address offsets, were 16bit only (64kB) but yet the 
processor could handle 1MB of physical memory.

Many 16bit CPUs had such capabilities – implemented via a mechanism usually called 
bank switching. One would program a memory controller register with “the bank of 
memory” (i.e. the 64kB window out of the larger physical addressing range) that 16bit 
memory accesses could map to.

This is inflexible if multiple 16bit chunks are concurrently in use. Consider copying 
memory: switch to bank A, move 16bit from mem to register, switch to bank B, move 
register to mem, switch to bank A, ...

Intel therefore provided segmentation and in the 8086. This does mean nothing else 
than subdividing the >16bit physical address space into an array of 16bit (64kB) banks 
which Intel decided to call segments, and making multiple of these accessible 
concurrently by the use of segment registers. In other words: The 8086's memory 
controller supported multiple banks/segments of memory at the same time.

Three of them use very common terms:

• code segment, %cs - instruction addresses (code locations).

• data segment, %ds - data addresses (direct or indirect via %ax/%bx/%cx/%dx)

• stack segment, %ss - the stack (base for %sp/%bp-relative addresses)

4.Memory and Privilege Management on x86 79



The fourth one was associated with specific instructions implementing many of the 
mem.../str... function family in hardware:

• string segment, %es - data addresses (indirect via string src/dest %si/%di)

In the 8086, the segment registers would simply contain the high 4 bit of the physical 
address, and the mapping between segment ID (contents of a segment register) and 
physical memory location of the 64bit segment was static 1:1.

In addition to the above implicit use of the segment registers, the 8086 allowed 
explicit segment overrides. This is useful for segment-to-segment copy, which was then 
done using a method like:

movw %es:(%dx),%ax
movw %ax,(%dx)

which copies the value at offset %dx from the (non-default, therefore %es: prefix) 
string segment to the default data segment. As said, unlike other 16bit CPUs, no bank 
switching was needed.

The notation segment:offset is called far pointer by Intel.

The segmentation mechanism in the 8086 wasn't programmable, i.e. an operating 
system couldn't relocate segments. Of course, due to the lack of privileges neither was 
there a concept of write protection or privileged-only access.

Intel provided these capabilities in  the 80286 via the Protected Mode. The protected 
mode:

• replaced the static segment numbers that were the contents of segment registers on 
the 8086 with so-called segment selectors.

• made the association between segments and physical memory programmable via 
mapping tables – the segment numbers now index a table, and the entry there 
provides the actual segment base address. 

• allowed “requestors” (code using the segment register) to specify a privilege level 
for memory access through this segment (selector)

• allowed “requestors” to select which of the two translation tables (local or global) 
the CPU should use to get the physical location of the segment.

This is, in generic terms, of course a memory management unit with two contexts. 
Since the CPU was still 16bit and therefore no more than 64kB were accessible 
without using the segmentation mechanism, this seemed like a straightforward way of 
implementing virtual memory management capabilities.
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Illustration 2 - “memory management” on the 8086 processor
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But unfortunately Intel tied CPU privilege management to these Descriptor Tables. 
These are not only used for programmable segmentation as memory management 
mechanism, but the descriptor table entries, called segment descriptors, are also used 
for privilege management. Segment descriptors:

• declare the segment privilege level (i.e. which ring this is accessible from)

• define access attributes (present, r/w or readonly, executable, ...)

• are aliased to data structures called gate descriptors that redirect execution 
between code segments (i.e. executable segments) of different privilege levels.

This leads to the odd situation that x86 descriptor tables contain two very different 
kinds of entries:

• segment descriptors (which provide base address, size and privilege level) for 
memory management and privilege declaration, and

• gate descriptors (which supply a call destination: %cs:function) for privilege 
switching.

A 16bit protected mode setup uses hundreds of segments – for the MMU functionality.

4.1.2.32bit Protected Mode
In 32bit mode, the memory management facilities of the protected mode turned 
inapplicable for two reasons:

• Registers, addresses and address offsets were now 32bit wide, there was no point 
anymore to force programmers into using and managing segment registers for 
accessing more than 16bit/64kB of continuous memory.

• The single-indirection table method that seemed still applicable for translating 
between “virtual” 16bit far pointers to physical addresses via the descriptor tables 
of course breaks down if the system can support 4GB physical memory. The way the 
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Illustration 3 - 16bit protected mode on the i80286
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segment selector is laid out (two bits for privilege, the table type bit, and 13 bit for 
the table index) does only allow 8192 descriptor table entries, but at 64kB per 
segment one needs 65535 (64k) to cover the entire 32bit physical address space.

32bit programs therefore were supplied with a wholly separate 32bit MMU which will 
be described in section 3.3. Segmentation is no longer used for address space 
separation, the new (32bit) MMU takes over this task.

Segment descriptors in 32bit mode are supposed to be set up to allow flat addressing, 
where the “near” 32bit part of the 48bit logical address (i.e. the far pointer including 
the implicitly used segment register) maps 1:1 to the 32bits of the virtual address. This 
trick is accomplished by setting the base address to NULL and the segment size to 
4GB in those segment descriptors.

The effect is to bypass segmentation:

The protected mode in 32bit is therefore reduced to:

1. Declare the privilege levels to use. Each ring to be used needs two segment 
descriptors:

• one flat code segment descriptor, and

• one flat data segment descriptor.

All applications would share the same set of code/data segment descriptors. Since 
all these segments were flat (and therefore overlap), the segment registers contain, 
at all times, only one out of two configurations:

Segment Register value in kernel mode value in user mode

%cs ring 0 code segment ring 3 code segment
%ds/%es/%ss ring 0 data segment ring 3 data segment
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Illustration 4 - creating flat (unsegmented) 32bit address spaces on the 80386
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2. Provide a privilege switching mechanism, i.e. at least one system call gate.

A typical 32bit protected mode setup therefore is very simple:

Even using a Local Descriptor Table at all is optional – it's possible to put both user 
and kernel mode code/data segments and syscall gate into the Global Descriptor Table.

Note that on x86, executability is a property of the code segment. The classical 32bit 
x86 MMU does not have an attribute bit for “is this page executable ?” - only post-
AMD64 MMUs know about a “NX” page attribute bit. A certain memory location is 
executable if there exists a code segment that covers it. Consequently, if we let code 
and data segments overlap (and there are very good reasons for this – do you want 
function addresses to be conceptually different from any other address ?), everything 
is executable.

On classic x86 platforms using the 32bit protected mode with flat segments, every 
address is executable !

4.1.3.System segments
The Protected mode uses two special segment descriptor types (system descriptors) for 
control purposes:

1. The Logical Descriptor Table in fact is a (non-flat) segment. %ldtr therefore doesn't 
contain a memory location (like %gdtr does), but a segment selector – the local 
descriptor table register is a segment register, with a special rule that it may only 
contain selectors whose TT bit is clear (i.e. which index the GDT).
The original idea was to use the GDT for kernel segments and the LDT for those of 
applications, and operating systems keeping track of these user contexts by creating 
one LDT per application.

2. The Task State Struct (TSS) is another type of system descriptor.

TSS embodies the idea of a “context” in hardware.

In the limited way how most operating systems set up the protected mode, the role of 
the TSS is to supply the CPU with stackpointer locations for the various rings of 
privilege.

• The 32bit mode TSS is more complicated because it contains a backing store space 
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Illustration 5 - typical 32bit protected mode setup
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for the general-purpose and segment register set as well as the set of stackpointers 
for the various privilege levels:

struct tss {
        uint16_t        tss_link;       /* 16-bit prior TSS selector */
        uint16_t        tss_rsvd0;      /* reserved, ignored */
        uint32_t        tss_esp0;
        uint16_t        tss_ss0;
        uint16_t        tss_rsvd1;      /* reserved, ignored */
        uint32_t        tss_esp1;
        uint16_t        tss_ss1;
        uint16_t        tss_rsvd2;      /* reserved, ignored */
        uint32_t        tss_esp2;
        uint16_t        tss_ss2;
        uint16_t        tss_rsvd3;      /* reserved, ignored */
        uint32_t        tss_cr3;
        uint32_t        tss_eip;
        uint32_t        tss_eflags;
        uint32_t        tss_eax;
        uint32_t        tss_ecx;
        uint32_t        tss_edx;
        uint32_t        tss_ebx;
        uint32_t        tss_esp;
        uint32_t        tss_ebp;
        uint32_t        tss_esi;
        uint32_t        tss_edi;
        uint16_t        tss_es;
        uint16_t        tss_rsvd4;      /* reserved, ignored */
        uint16_t        tss_cs;
        uint16_t        tss_rsvd5;      /* reserved, ignored */
        uint16_t        tss_ss;
        uint16_t        tss_rsvd6;      /* reserved, ignored */
        uint16_t        tss_ds;
        uint16_t        tss_rsvd7;      /* reserved, ignored */
        uint16_t        tss_fs;
        uint16_t        tss_rsvd8;      /* reserved, ignored */
        uint16_t        tss_gs;
        uint16_t        tss_rsvd9;      /* reserved, ignored */
        uint16_t        tss_ldt;
        uint16_t        tss_rsvd10;     /* reserved, ignored */
        uint16_t        tss_rsvd11;     /* reserved, ignored */
        uint16_t        tss_bitmapbase; /* io permission bitmap base 
address */
};

• The 64bit TSS is “reduced” to the simple role of providing stackpointers – one for 
each higher-privileged ring of execution, and a selectable table of seven interrupt 
stackpointers, the IST[]:

#pragma pack(4)
struct tss {
        uint32_t        tss_rsvd0;      /* reserved, ignored */
        uint64_t        tss_rsp0;       /* stack pointer CPL = 0 */
        uint64_t        tss_rsp1;       /* stack pointer CPL = 1 */
        uint64_t        tss_rsp2;       /* stack pointer CPL = 2 */
        uint64_t        tss_rsvd1;      /* reserved, ignored */
        uint64_t        tss_ist1;       /* Interrupt stack table 1 */
        uint64_t        tss_ist2;       /* Interrupt stack table 2 */
        uint64_t        tss_ist3;       /* Interrupt stack table 3 */
        uint64_t        tss_ist4;       /* Interrupt stack table 4 */
        uint64_t        tss_ist5;       /* Interrupt stack table 5 */
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        uint64_t        tss_ist6;       /* Interrupt stack table 6 */
        uint64_t        tss_ist7;       /* Interrupt stack table 7 */
        uint64_t        tss_rsvd2;      /* reserved, ignored */
        uint16_t        tss_rsvd3;      /* reserved, ignored */
        uint16_t        tss_bitmapbase; /* io permission bitmap base 
address */
};
#pragma pack()

Since in the 64bit mode, all implicitly-used segments (%cs/%ds/%es/%ss) are flat, it's 
unnecessary to provide values for %ss in any privilege level.

Intel originally introduced the TSS for hardware task switching. The current task is, 
like the %ldtr, a special segment register called task register (%tr). The selector in 
there indexes the GDT. An operating system could have multiple (one per process) TSS 
segments in the GDT, and “switch” between them by reloading %tr. Such a task switch 
would save the current state (registers) to the current TSS, and then reload that (i.e. 
all register/segment register contents) from the new TSS, making that current.

While a given task is running (i.e. a certain TSS being active), the TSS provides the 
CPU with the information where to find kernel stackpointers when doing a privilege 
switch.

Hardware task switching has proven troublesome over time:

• the TSS provides no means for saving/restoring floating point registers or other 
register extensions that were introduced in the x86 family post-80386.

• the TSS provides no means for an operating system to attach “OS state” to a task.

• hardware task switching is CISC at its worst – it's a single CPU instruction but 
executing this is horribly slow. It's in fact much slower than saving/restoring the 
register set manually using simple sequences of instructions.

• hardware task switching doesn't scale to large numbers of processes.
Descriptor Tables have size limitations – the index part of a segment selector is only 
13bit and the GDT therefore cannot be larger than 8192 entries. But TSS segments 
must be in the GDT, and a limit of ~few thousands of threads is below what x86 
CPUs have been able to handle for some generations by now, even in 32bit.

This is why even Intel's manuals today discourage the use of hardware task switching. 
AMD in devising the 64bit extension therefore decided to limit the use of the TSS 
when running in 64bit mode to its remaining core purposes:

1. Provide stackpointers for the various privilege levels.

2. Provide a mechanism for interrupts to run on separate stacks.

Hardware task switching is no longer possible in 64bit mode – there's always one task 
only, and the operating system will need to change kernel stackpointers within that 
single TSS if it wishes to use e.g. per-thread kernel stacks.

4.1.4.Privilege switching
The x86 protected mode, very much unlike other CPU architectures, does not know 
any implicit privilege switching. There is no instruction at all, and no interrupt, trap or 
other event which will end up in privileged mode – unless the CPU was programmed 
for the specific event to redirect execution to a handler function running with higher 
privileges.

All privilege switching on x86 platforms happens through gates. Which means the 
“rings” model probably should better be drawn like this:
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A gate is a descriptor (i.e. an entry of a descriptor table) which, instead of base 
address and size specifies a gate handler address and a target code segment selector.

Gates therefore:

• redirect execution to a specific location (the gate handler) in the target %cs.

• switch privileges if the target %cs privilege level is not equal to the current %cs 
privilege level.

Privilege switching is done by calling a gate. Gate calls can be:

• explicit, by using the far call instruction, lcall, and specifying the segment selector 
that indexes the desired gate in the GDT or LDT.

• implicit, via the Interrupt Descriptor Table (IDT). The IDT is special in the sense 
that it only may contain gate descriptors, and must have exactly 255 entries (one for 
each x86 interrupt number). All hardware exceptions, faults, traps and interrupts on 
x86 are routed via the IDT.

More details on privilege switching will be given in section 3.2.2.
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4.1.5.64bit Protected Mode
The 64bit protected mode is highly simplified. In fact, the already-described common 
practice of setting up the (32bit) protected mode as follows:

• All implicitly used segments (%cs and %ds/%es/%ss) are flat

• one code and one data segment for ring 0 – kernel

• one code and one data segment for ring 3 – usermode

• Segment regs %ds/%es/%ss are equal at all times.

• Both %cs and %ds/%es/%ss can only have one of two set of values: kernel/user.

is made mandatory in 64bit mode.

The 64bit protected mode doesn't care about descriptor base/size values as far as the 
corresponding segment selectors are in %cs/%ds/%es/%ss. These segments are 
implicitly flat, and the CPU will only use/check the privilege level bits – and the type of 
the segment. A typical 64bit x86 protected mode setup uses:

• a 64bit code and a data segment (one each) for ring 0, the kernel

• one data segment for ring 3, applications (shared by 32/64bit applications)

• one 64bit code segment for ring 3, used by 64bit applications

• one 32bit code segment for ring 3, used by 32bit applications (compatibility mode)

All these segments are implicitly flat – the 64bit x86 CPU ignores base/size values in 
these descriptors.

System call and trap handling changes slightly – see section 3.2.

4.1.6.Segment and Gate Descriptor Formats

4.1.7.The role of segment registers %fs and %gs
The x86 architecture suffers from the lack of general-purpose registers – as shown, 
there are only eight of them in 32bit mode, and 16 in 64bit mode, and their contents 
are shared between all functions in a program, and between the different levels of 
privileges (a privilege switch doesn't change any of the general-purpose registers 
except for %esp/%rsp).

But there often is need to keep some fixed reference, like a pointer to thread-specific 
data, in a location that's quickly accessible.

CPU architectures with many registers at their disposal usually specify in the ABI that 
one register is supposed to be set aside for this use; SPARC, for example, gives %g7 on 
every CPU to hold the address of the current thread.

Doing that on x86 is bad – it'd slow down code significantly. Consider e.g. the i386 
UNIX ABI, which already specifies fixed roles for %esp/%ebp (the stack-/framepointer) 
and %ebx (for the location of the global offset table in position-independent code). 
Taking %ebx is bad enough and, as shown in chapter 2, slows down position-
independent code significantly. But taking yet another of the general-purpose registers 
away for thread-specific data is a very bad idea, not only because it'd reduce the 
number of registers available to only four, but also because it'd prevent running code 
from being able to use the full x86 instruction set. All remaining five registers 
(%eax/%ecx/%edx/%esi/%edi) are used implicitly in some contexts (%ecx is the counter 
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register for loop/rep, %eax/%edx are preferred operand registers for 32 64 
multiplication/division, and %esi/%edi are operand registers for string instructions) are 
implicitly used somewhere.

This means another solution is required. Intel had seen the need for this, and in fact 
provides a way out of the problem by supplying two segment registers that are not 
implicitly used for anything - %fs and %gs.

There are two related concepts that can be implemented using global segments:

1. thread-specific data / thread-local storage (TSD/TLS). This means a per-thread key is 
used to locate a piece of data that's global to a given thread and accessible under 
the same key from all functions within this thread.
Different threads use different keys to locate “their” data. All descriptor tables (on 
all CPUs) will contain a common set of segment descriptors (one per key) that locate 
the various data sets.

2. CPU-local data in multiprocessor systems.
The same key is used by code indifferent of what CPU it is running on but 
depending on that a different set of data is provided, by putting different segment 
descriptors into each CPU's descriptor table at the index specified by the common 
selector value.
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4.2.Traps, Interrupts, System Calls, Contexts

4.2.1.The Interrupt Descriptor Table
As mentioned before, x86 CPUs do not know any instruction nor any other event that 
implicitly would switch the CPU from nonprivileged into privileged execution. Instead, 
all events that on other CPUs commonly involve a switch into supervisor mode :

• hardware interrupts

• traps and machine exceptions

• code execution errors (arithmetic faults, undefined/illegal opcodes, breakpoints)

• privilege violation attempts (executing privileged instructions / accessing privileged 
memory from unprivileged code)

are programmable on x86 – they are routed through the Interrupt Descriptor Table.

The IDT is different from GDT/LDT in that it can only contain gate descriptors. In 
addition to that, it always contains 255 entries – one for each interrupt vector known 
to the x86 CPU. 

4.2.2.Privilege switches and stacks

4.2.3.Fast system call interfaces
“Classical” x86 system calls using a call gate in the LDT and the lcall instruction 
have a long latency due to the various descriptor table lookups that are needed:

• A segment lookup is performed to extract the LDT base address from the LDT 
segment descriptor in the GDT.

• A segment lookup is performed to extract the gate descriptor from the LDT

• A segment lookup is performed to extract the kernel code segment base address 
from the GDT.

Only then can execution be transferred into the kernel, and the handler be dispatched.

A faster method to perform a system call is using an interrupt gate in the IDT and an 
int instruction to issue the system call. Since the IDT is no segment, but located 
directly in memory via its base address in %idtr, this involves one less descriptor table 
lookup. Using int instead of lcall is therefore a preferable way how to perform 
system calls on x86 machines and yields lower latency syscalls.

But even that is still burdened with the overhead of segmentation and descriptor table 
lookup.

In a flat memory model as it is used in 32bit and 64bit protected mode, a far pointer 
kernel_code_segment:syscall_handler contains all of the information required to 
perform the privilege switch and call the kernel entry point. The target (kernel) code 
segment's privilege bits determine that a privilege switch is requested, and since the 
kernel code segment is flat no base address needs to be added to the handler, 
segmentation memory translation is a no-op. No descriptor table lookups at all are 
necessary to derive this.

What's needed therefore is a way to tell the CPU: For performing a syscall, call a 
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specific predefined far pointer, i.e.:

• switch to the kernel code segment (and raise privileges as requested)

• run the kernel's system call handler given its address.

Both Intel and AMD independently introduced fast system call mechanisms in their 
x86 CPUs that allow this simple “switch to privileged mode and call that handler” 
approach – sysenter from Intel, and syscall by AMD.

The syscall instruction, if available (Intel CPUs only know it if they have the AMD64-
compatible EM64T extension), is the preferrable solution because it automatically 
saves usermode return addresses and stackpointers on entry, and the corresponding 
sysret instruction can resume execution in userland after the system call from there 
directly. Intel's sysenter/sysexit instructions require the caller to pass return 
addresses and usermode stackpointers in registers, and the kernel must manually 
restore them before being able to issue sysexit to return from the system call.

Apart from these implementation differences, the actual mechanism to control fast 
system calls are similar between the two. As an example, the syscall/sysret method 
will be described here.
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4.3.Virtual Memory Management on x86
The 8086 16bit CPU did not support any form of memory management – the mapping 
between the upper 16bits of a “logical” (far) address, i.e. the segment ID, and the 
upper 16bits of the 32bit (well – 20bit) physical address was static, 1:1. In addition, as 
mentioned before, the 8086 had no notion of privilege and operating systems could 
neither establish separate address spaces between nonprivileged user applications and 
privileged kernel code, nor prevent application code from executing instructions that 
would modify “critical” state.

With the 80286, Intel both introduced a mechanism for privilege management and 
made the mapping between segment IDs (the far part of an address, i.e. the upper 
16bit) and physical address programmable. In the 80286 and following CPUs operating 
in 16bit mode, the protected mode allowed for privilege and address space separation 
by declaring (non-overlapping) user/kernel code and data segments. Since the 
association between segment IDs and their (physical) location in memory is fully 
programmable, the 16bit protected mode implemented a simple one-level MMU, with 
the GDT/LDT functioning as translation table for virtual/physical memory access. In 
other words: In 16bit mode, segmentation actually performs the role of the MMU, and 
logical addresses (far pointers) are virtual addresses.

4.3.1.The classical 32bit x86 MMU
The use of segmentation for virtual/physical translation may have been appropriate 
when x86 CPUs were 16bit only. But for 32bit mode, the reliance on far pointers, or 
explicitly segmented memory access, causes severe problems. Why should anybody 
want to fiddle with multiple segments in applications/operating systems if a single 
32bit pointer can locate every byte of physical memory in a machine ?

In other words: If the segment offset alone (lower parts of a logical address, now a 
32bit value) can address every piece of physical memory in a machine, why bother 
with multiple segments (and 48bit far pointers) at all ? What's needed for 32bit 
operation is a flat address space – unsegmented, with addresses starting at zero and 
ending at 4GB.

The 32bit Protected Mode allows to create such flat segments, which start at zero and 
cover all of the 32bit address space. But doing that reduces the 32bit protected mode 
to a vehicle for supplying privileges only. By using a pair of flat segments  for 
application code and data (running in ring 3), and another such flat pair for kernel 
code and data (running in ring 0), both user and kernel code can run in a flat address 
space.

But clearly doing so removes memory management from the Segmentation MMU. The 
descriptor tables are now programmed in such a way that any memory translation 
capabilities via descriptor tables are bypassed. There's again a 1:1 mapping between 
logical address (i.e. far pointer) and the result of the segmentation translation step, 
and the unit-of-memory, the segment size, is 4GB.

In a flat 32bit mode, a logical address cannot be translated to a physical address 
directly. Logical and virtual addresses are no longer equal, and a memory granularity 
of 4GB is inappropriate. Result of the segmentation translation will be a virtual 
address now, and a new mechanism to translate this to the actual physical address is 
required.

This means for 32bit mode, the 80386 had to supply a new memory management unit 
as a 2nd stage of address translation – to convert from a 32bit virtual address to a 32bit 
physical address.
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The 32bit MMU performs address lookups using simple hashing. In C pseudo code, its 
operation can be expressed as:

register paddr_t ***cr3; /* pagedir base address in %cr3 */
paddr_t tables[][];
#define TABLESZ (1 << 10) /* 1024 */
#define PAGESZ (1 << 12) /* 4096 */
#define PAGEDIR_IDX(vaddr) ((vaddr >> 22) & (TABLESZ – 1))
#define PAGETBL_IDX(vaddr) ((vaddr >> 12) & (TABLESZ – 1))
#define PAGE_OFFSET(vaddr) (vaddr & (PAGESZ – 1))
#define VA_TO_PA(va) tables[PAGEDIR_IDX(va)][PAGETBL_IDX(va)] \

+ PAGE_OFFSET(va)

In other words, the virtual address is split (hashed) into three parts:

• bits [31..22] supply the index into the level 1 table: The page directory (table).
Entries in the page directory locate page tables in physical memory.

• bits [21..12] supply the index into the level 0 table: The page table.
Entries in the page table locate the actual physical pages.

• bits [11..0] for the offset within the physical page.

Both page directory and page tables are sparse arrays of (no more than) 1024 32bit 
values. A specific index can therefore locate a physical page if the table contains a non-
NULL pagetable entry that supplies sufficient permissions for the running code the 
access this page.

Otherwise, the MMU will cause a pagefault (#PF trap). This happens if:

• the pagetable entry is NULL, as indicator of unmapped memory

• the pagetable entry present bit has been cleared by the operating system to indicate 
e.g. a swapped-out page

• the running code executes at ring 3/0 but the user/supervisor bit in the pagetable 
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entry indicates that this page is supposed to be accessible from the “other” mode 
only.

The #PF trap has its own pagefault address register - %cr2. Virtual memory (i.e. 
paging) can easily be implemented via this mechanism. Whenever a pagefault occurs, 
the handler will find the virtual address that caused the fault in %cr2. It will explicitly 
perform the table lookup and inspect the pagetable entry at this position. If the entry 
doesn't exist, it can e.g. choose to create it (giving semantics of MAP_ANON mmap). If it 
exists but the page present bit is clear, it may decide to e.g. load the page from swap.

The illustration and the examples given so far already indicate that page directory and 
page table entries are not just 32bit physical addresses. And they need not be – they 
locate pages, and because the page size is a fixed 4kB a 20bit number, the page frame 
number, is sufficient to enumerate all 4kB pages on a machine that allows for 4GB of 
physical memory. Pagetable entries therefore contain the PFN – and attributes for that 
page. Some of them were already mentioned, the page present and the user/supervisor 
attributes. But there are more. <vm/hat_pte.h> on Solaris 10/x86 names them:

#define PT_VALID        (0x001) /* a valid translation is present */
#define PT_WRITABLE     (0x002) /* the page is writable */
#define PT_USER         (0x004) /* the page is accessible by user mode */
#define PT_WRITETHRU    (0x008) /* write back caching is disabled (non-PAT) */
#define PT_NOCACHE      (0x010) /* page is not cacheable (non-PAT) */
#define PT_REF          (0x020) /* page was referenced */
#define PT_MOD          (0x040) /* page was modified */
#define PT_PAGESIZE     (0x080) /* above level 0, indicates a large page */
#define PT_PAT_4K       (0x080) /* at level 0, used for write combining */
#define PT_GLOBAL       (0x100) /* the mapping is global */
#define PT_SOFTWARE     (0xe00) /* available for software */

The upper 20bits of a pagetable entry will of course contain the page frame number. 
PTEs therefore have the following format:

As shown, there are no spare/reserved attribute bits left – all are used. This wasn't so 
in the 80386, which did not have global or large pages nor caching attributes. These 
MMU features, as usual with x86, have to be detected and activated before use, and 
CPUID is required to find out whether a given x86-compatible CPU has these features.

What's noticeably missing from the 32bit MMU is an attribute for page executability. 
“Classical” x86 has this in the segmentation MMU only, in form of code segments. This 
means that in flat address spaces, a page is executable if it is readable !

4.Memory and Privilege Management on x86 93

Illustration 8 - 32bit pagetable entry
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4.3.2.Physical Addressing Extension (PAE)
Ten years after the introduction of the 80386, x86-based systems had evolved far 
enough (and far beyond what Intel had anticipated) that the need for big server 
systems capable of accessing more than 4GB of physical memory became evident. 
Competing 32bit architectures of that time, like sun4d/32bit sun4u, PA-RISC 7xxx or 
MIPS 3xxx which were all used in server systems by various vendors, have had MMUs 
that allowed the operating system to hold several 32bit programs including all of their 
4GB address space in system memory concurrently. This requires MMU translation 
modes that convert 32bit virtual addresses into more-than-32bit physical addresses.

The 32bit x86 MMU had no provisions for that. There are no spare/reserved bits in 
32bit pagetable entries, so the page frame number couldn't simply be extended. In 
addition to that, the size of a pagetable had to be one physical page (4kB), so Intel 
neither could just double the size of pagetable entries.

Intel therefore had to:

• increase the size of a pagetable entry from 32bit to 64bit, using (some of) the new 
spare bits for a larger page frame number

• half the size of page table/page directory table from 1024 entries to 512 entries so 
that the total size of the table would stay 4kB.

But halving the table size to 512 of course means that the virtual address can no 
longer be split 10:10:12 – but 2:9:9:12, necessitating:

• the introduction of a third translation table.

This so-called Page Directory Pointer Table can, given that there are only two bits for 
its index, only contain four entries of course.

This MMU mode, called Physical Addressing Extension (PAE), was introduced with the 
PentiumPro/II CPUs and uses three levels of translation tables:
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Illustration 9 - Physical Address Extension: allow 64GB memory in 32bit mode
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• the page directory pointer table (four entries only)

• the page directory table (which now has 512 entries)

• the page table.

The format of pagetable entries is twice the size as before, but uses the same format 
including all of the attribute bits with two exceptions:

1. The page frame number is now (at least) 24bits.

2. If the CPU supports it, bit 63 is a new page attribute “NX” - not executable.

The NX bit got introduced by AMD in the Opteron processors, but it's not 64bit 
specific. As usual with x86 extensions, the presence of the NX bit can be queried by 
the operating system using the CPUID instruction.

CPUs that have the NX bit the long-missing capability in (32bit) x86 to protect areas of 
memory from being executed. The feature is also called Data Execution Protection 
(DEP) by Microsoft, and Enhanced Virus Protection (EVP) by AMD Marketing – though 
the latter is a technically a misleading term, since the “only” thing NX protects against 
are simple-written stack overflow exploits.
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Illustration 10 - 64bit pagetable entry, 36bit PAE mode
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4.3.3.The AMD64 64bit MMU
The major reason for going to 64bit, whatever CPU vendor, has always been to allow 
concurrent access to large virtual address spaces. This of course mandated a new 
MMU mode – both the classical 32bit x86 MMU and the PAE mode are only supporting 
32bit virtual addresses.

AMD in designing the 64bit mode retained all existing x86 characteristics. It's 
therefore not surprising that the 64bit MMU mode is simply an extension of PAE mode 
to 64bit virtual addresses. PAE mode properties also found in the 64bit MMU are:

• pages are 212 bytes, 4kB.

• Page directory entries can point to large pages of 221 bytes, 2MB.

• pagetable entries use the PAE format (64bit wide, attribute bits identical to PAE)

• translation tables contain 29 (512) entries.

The big deficit of PAE mode, unbalanced translation tables because of the use of only 
2 bits for the page directory pointer table index, of course is solved because 64bit 
virtual addresses supply enough bits to make that table, like all others, 512 entries. 
AMD additionally added a fourth table, simply called “Page Map Level 4”. The 64bit 
MMU therefore looks like this:

Pagetable entries, as mentioned, use the PAE format – except, of course, the PFN 
which is no longer 24bit as in 32bit PAE mode, but 40bit now.

This allows the 64bit MMU to access 252 bytes of memory, 4PB in total.

The 64bit MMU of course supplies the NX bit that AMD introduced with the Opteron 
and Athlon64 CPU series. 64bit pagetable entries use the following format:
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Illustration 11 - 64bit x86 MMU
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What needs explanation of course is the question what the virtual address bits that are 
not used for page offset and table indices are supposed to be. Simple arithmetics tells 
us that the MMU uses 12+9+9+9+9 = 48 bit for address translation only. What's the 
state of the upper 16 bits of a virtual address ?

The answer to that is that the MMU will only perform address translation if the upper 
16bits are either all zero or all one, depending on the state of bit 47.

If we consider the 64bit virtual address space to be unsigned and to extend from 0 to 
264-1, this splits the addressable virtual memory into two ranges of 247 bytes (128TB) 
each, one at the bottom and one at the top of the virtual address space:

The upper and lower address spaces are separated by an address space hole.

Translateable virtual addresses that match the condition of bits 63..47 inclusively are 
either all zero or all one, i.e. that the address is either within the low 128TB or the 
high 128TB of the virtual address space, are called canonical addresses. Virtual 
addresses in the hole are noncanonical and their use causes #GP faults.

Virtual address spaces with holes are not new in 64bit environments. For example, 
UltraSPARC-I and II also had an address space hole (but they were even more limited 
than AMD64 – with only 2x1TB of virtual address space).

There is a different way of understanding 64bit MMUs which use a canonical mode. 
Consider the virtual address to be a signed 48bit value. I.e. virtual addresses range 
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Illustration 13 - Address space hole in AMD64
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from -247...247-1 bytes (i.e. ±128TB). The upper bits of the 64bit address are therefore 
derived by sign extension.

In this signed representation, there is no address space hole. Allowed virtual addresses 
are continuous over a 256TB range, while virtual addresses outside of that range are 
undefined and cause #GP faults when used.

The terms negative address range and upper address range describe the same thing, 
and are often used interchangeably.
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Illustration 14 - signed virtual addresses
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4.3.4.Large Pages
For accessing very large amounts of memory, 4kB pages are inconvenient and slow for 
obvious reasons:

• Having the operating system create e.g. 1 million pagetable entries to allocate a 
4GB chunk of memory takes a while.

• Cached translations (TLB/translation lookaside buffer entries) will show heavy 
contention when so many translations need to be done all the time.

In order to speed up the use of large amounts of memory, large pages are being used. 
The common mechanism for creating a large page is to use a higher-level translation 
table entry as “large PTE” and make the size of large pages the sum of the sizes of all 
pages in the next lower-level table. In x86 terms, a page directory entry that has the 
largepage attribute bit set will not point to a pagetable, but directly to the physical 
location of the large page. Since pagetables contain 512 entries, the size of a large 
page will be 512x4kB, 2MB (if using the classical 32bit MMU mode: 1024x4kB, 4MB).

The capability to support large pages, as all of the post-80386 features, again must be 
detected using a CPUID instruction, and selectively enabled. All 64bit-capable x86 
CPUs support large pages, but not necessarily all 32bit “x86 compatibles”.

At this time, there is no support for >2MB large pages (the next logical size would be 
512x2MB, 1GB) in the x86 MMU. It's likely, though, that if this is ever introduced that 
it'll be done the same way – by making a page directory pointer table entry refer to a 
“huge page” of 1GB then, or even a “giant page” of 512GB, if ever the page map level 
4 table may point directly to a page...

In any case, turning around the concept of large pages:
A NULL as table entry means:
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Illustration 15 - using large pages
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• an unmapped area of 512GB if in the PML4 table

• an unmapped area of 1GB if in a page directory pointer table

• an unmapped area of 2MB if in a page directory table

• an unmapped page of 4kB if in a page table.
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4.4.Advanced System Programming Techniques on 
x86

4.4.1.DMA using virtual addresses – IOMMU

4.4.2.Using the Protected Mode for Hardware 
Virtualization
Modern system architectures often allow to run multiple operating system instances 
on the same physical machine. Domaining / hardware partitioning / virtualization are 
the terms used to describe this capability. Supporting this requires
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5.Interrupt handling, Device 
Autoconfiguration
5.1.Interrupt Handling and Interrupt Priority 
Management
x86 processors alone know only interrupt vectors (indices into the IDT) and a bit in the 
processor status register EFLAGS/RFLAGS that says “interrupts enabled”. The CPU 
knows no concept of interrupt priorities. To a x86 CPU, all 255 (resp. all user-available 
223) interrupt vectors are equal. The processor has pins that connected peripheral 
devices can use to “cause interrupts”, but apart from “ignore all” (IE bit clear – after a 
cli instruction) and “accept all” (IE bit set, after a sti instruction) it hasn't the ability 
to  selectively block interrupts, e.g. from a low-prio disk device if a handler for a high-
prio network interrupt is just running. All of the following:

• Binding hardware interrupt sources to CPU interrupt vectors,

• classifying interrupts on peripheral devices into different priority classes, and

• selectively blocking out specific devices or specific interrupt priorities

• manage interrupt state (interrupt active/pending)

has, on x86 platforms, always been the task of a device called Programmable Interrupt 
Controller (PIC). The “classical” x86 PIC is the Intel i8259A.
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5.2.APIC and IOAPIC features

5.2.1.Overview
In a multiprocessor environment, interrupt handling becomes significantly more 
complicated than before. The interrupt controller in SMP systems must provide all the 
capabilities of interrupt management and prioritization as the simple PIC, but in 
addition to that, a SMP-capable interrupt controller must be able to:

• route interrupts. It's highly undesirable on a multiprocessor system to bother all 
CPUs at once with handling a specific device interrupt.

• support inter-processor interrupts, i.e. a CPU itself being the interrupt source of 
another CPU.

With the introduction of the Pentium (P5) microprocessor architecture, Intel 
integrated SMP support on chip, with an interrupt arbitrator / coherency controller 
subsystem called the Advanced Programmable Interrupt Controller, APIC.

Every modern x86 processor contains a local APIC, whose tasks are:

• Receive and dispatch local interrupts (from devices directly connected to CPU 
interrupt pins)

• Dispatch CPU-internal interrupts (APIC timer, temperature sensors,  performance 
monitoring events)

• Receive and dispatch external interrupts (from the IOAPIC, a system/peripheral bus 
component that routes peripheral interrupts via the APIC protocols)

• Receive and dispatch inter-processor interrupts, IPIs  (IA32 term for crosscall).
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Illustration 1 - APIC functionality
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• Manage interrupt priorities.

The chipset will contain an external or I/O APIC, which is then used as a 
programmable dispatch facility for hardware interrupts to the various local APICs of 
the processors in the system.

The APIC routes external (IOAPIC) and local (see above) interrupt sources to IA32 
interrupt numbers in a user-programmable way. APIC registers used for this purpose 
contain the IA32 int# to dispatch on event in their lowest 8 bits.

The APIC groups interrupt vector numbers (0..255) into 16 priority groups, with the 
priority of an interrupt given by int#/16. Priority 0 and 1 are highest (hardware 
exceptions), and can neither be created nor blocked by the APIC. Priorities 2..15 are 
available to APIC interrupts. The Task Priority Register, TPR, allows to block interrupts 
of low priority, while the read-only Processor Priority Register, PPR, reflects the 
current settings.

CPU-CPU communication is executed via Inter-Processor Interrupt, IPI, the x86 term 
for "crosscall". To generate IPIs, the Interrupt Control Register, ICR, is written. The 
ICR alone enables the programmer to:

• dispatch a programmable int# to a single other CPU (targeted IPI)

• broadcast a programmable int# to all CPUs, including/excluding the sending CPU

Additional APIC registers, the Local Destination Register, LDR, and the Destination 
Format Register, DFR, allow even for multicast IPIs (restricting broadcasts to a 
selected set of CPUs).

The APIC is programmed like a memory-mapped device; base address for the mapping 
is the machine-specific IA32_APIC_BASE register, any APIC registers are offset 
relatively to the base. To read or write an APIC register, simply access memory at the 
corresponding offset relative to the APIC base address.

The IOAPIC is a “doubly indirect” mapped device. It has two registers (IOREGSEL and 
IOWIN) that are accessed relative to the Southbridge's APIC_BASE. (this is not the same 
as the CPUs IA32_APIC_BASE !) IOWIN maps to one of the actual IOAPIC registers 
depending on the value in IOREGSEL. I.e. to program an IOAPIC register, the register 
number is put into IOREGSEL first, and the actual IOAPIC register is then accessed via 
IOWIN.

5.2.2.APIC interrupt registers
APIC registers, whether IOAPIC (Intel 82093AA) or CPU-local APIC, use a common 
format for all registers associated with interrupt delivery:

The bits have the following meaning:

• 0..7: INT#
the x86 interrupt vector to dispatch to the target CPU(s) on event

• 8..11, delivery mode / destination mode (only in registers for nonlocal delivery)
decides which CPUs are targeted in broadcast/multicast routing modes

• 12: DS (delivery status)
indicates whether an interrupt of this type is pending (queued) due to higher-
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Illustration 2 - APIC Register format, for interrupt-dispatch related registers
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prioritized interrupt handlers running

• 16: MSK (mask)
can be used to selectively block generation of interrupts from interrupt sources 
(devices) controlled by the given (IO)APIC register.

• 56..63: destination APIC ID (only in registers for non-local delivery, i.e. the IOAPIC 
redirection table and the local APIC's Interrupt Command Register) determines the 
interrupt target CPU set, together with the delivery / destination mode bits and two 
APIC control registers (logical destination register, destination format register).

The main APIC registers related to interrupt creation/dispatch are on Pentium-IV 
systems (others may not have all of the P-IV's LVT[] registers – again, ask via CPUID):

APIC base 
+...

Register Description

0x320 LVT[0] timer register.
Program high-resolution timer interrupts here.

0x380/90
0x3e0

CCR, ICR, DCR current count/initial count/divide configuration register.
Additional state for the APIC timer.

0x330 LVT[1] thermal monitor register.
Create interrupts on danger of overheating.

0x340 LVT[2] performance counter register.
Interrupts for profiling.

0x350
0x360

LVT[3]
LVT[4]

local device 0 register
local device 1 register

0x370 LVT[5] APIC error register.
Create interrupt if APIC encounters an error.

0x280 ESR Error status register.
Auxilliary (readonly) information on APIC errors.

0x300
0x310

ICR Interrupt Command Register (64bit)
Create inter-processor interrupts.

 0xd0
 0xe0

LDR, DFR Logical Destination / Destination Format Register.
Used to clarify destination CPUs for IPIs.

The IOAPIC uses a set of 24 registers called I/O Redirection Table that uses the 
mentioned format to dispatch events on the peripheral bus via the APIC mechanism.
The IOREDIR[] registers use the described generic register format to select interrupt 
vector and target CPU.
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5.2.3.Interrupt priorities, %cr8
The APIC (as well as the older i8257 PIC) uses a simple mapping between interrupt 
priorities and x86 interrupt vectors:

• Interrupt Priority : vector# / 16

• Priority subclass : vector# % 16

I.e. high-priority interrupts get high interrupt vector numbers.

This mapping is not configurable; what the APIC allows to do is to block/queue 
interrupts not only based on the interrupt source & MSK bit, but also based on 
priority. For that purpose, the APIC provides a “priority register” which comes in two 
flavours:

Register Name Description

Task Priority Register,
TPR

Write-only register. Offset 0x80
Used to set the current IPL (Interrupt Privilege Level).

Processor Priority Register,
PPR

Read-only register. Offset 0xa0
Used to query the current IPL.

Recent x86 CPUs map the APIC Interrupt Priority register directly to a new CPU 
control register. %cr8, if available, serves both purposes, to query and set the current 
IPL.
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5.2.4.APIC interrupt processing flow
The APIC runs concurrently with and asynchronously to the CPU, in a state machine 
similar to the following:

Three additional APIC registers are involved with this flow:

• Interrupt Request Register, %IRR.
The %IRR is a 256bit-wide bitmap – a pending but not-yet-dispatched interrupt will 
result in a bit being set in the %IRR.
The APIC permanently monitors (active, i.e. not masked) interrupt sources and 
automatically manages the bitmap in %IRR.
The register occupies 256bit of memory, offsets 0x200..0x270 to the base. Software 
can read this for debug purposes (but not write it).

• In-Service Register, %ISR.
The APIC uses %ISR to indicate which interrupt is currently being serviced by the 
CPU. The %ISR contains the vector number. It's again a 256bit-wide register, but 
unlike the %IRR it can only contain exactly one bit set. The APIC automatically 
moves the highest-priority bit from %IRR to %ISR and dispatches the interrupt vector 
to the CPU if %ISR gets cleared.
Again, 256bit of memory at offsets 0x100..0x170 map the %ISR. It's also readonly.

• End-of-Interrupt Register, %EOI.
This register is writeonly and used as a trigger. The interrupt service routine 
running on the CPU writes to %EOI to indicate completion. Writing %EOI clears %ISR 
and causes the APIC to continue interrupt dispatch if there are interrupts queued 
via %IRR. The value written to %EOI is irrelevant – as said, it's a pure trigger.
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Illustration 3 - APIC interrupt processing workflow
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6.Solaris/x86 architecture
From “The Tao of Programming”:

The warlord asked the programmer:
"Which is easier to design: an accounting package or an operating system?"

"An operating system," replied the programmer.

The warlord uttered an exclamation of disbelief.
"Surely an accounting package is trivial next to the complexity of an

operating system," he said.

"Not so," said the programmer, "when designing an accounting package, the 
programmer operates as a mediator between people having different ideas:

how it must operate, how its reports must appear,
and how it must conform to the tax laws.

By contrast, an operating system is not limited by outside appearances.
When designing an operating system,

the programmer seeks the simplest harmony between machine and ideas.
This is why an operating system is easier to design."

The warlord of Wu nodded and smiled.
"That is all good and well, but which is easier to debug?"

The programmer made no reply.

To be covered here:

Solaris Internals
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6.1.Kernel and user mode

The way how Solaris/x86 sets up the 64bit protected mode is subject to the following 
constraints:

• The use of a bootloader and the use of BIOS services requires thunking interfaces 
between the (64bit) kernel and the 64/32bit parts of the bootloader that supply the 
bootops services. This is why the descriptor table contains a set of privileged 
code/data descriptors for calling into bootloader/BIOS during system startup.

• Using fast system call mechanisms (syscall and/or sysenter) mandates the shown 
ordering of code/data segments (i.e. the kernel data segment must directly follow 
the kernel code segment in the descriptor table, because this assumption is implicit 
in the way fast syscalls are set up).

•
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Illustration 1 - Solaris 10/x86 64bit protected mode
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6.2.Entering the Solaris/x86 kernel
Many hardware- and software-initiated events in Solaris require handling by the 
kernel. The following events enter the kernel via gates in the IDT:

• All x86 interrupts, whether created by hardware (via APIC and/or IOAPIC) or via an 
explicit int ... instruction, call a handler in the kernel.

• All x86 hardware traps are redirected to the kernel.

• Debugging utilities (mdb/kmdb and other debuggers as well as DTrace) use 
explicitly trapping instructions (ud2, int ...) to control other programs.

• Legacy (classical 32bit) system calls use the lcall $0x27,0 instruction to call a 
gate in the LDT.
This requires using a call gate which has disadvantages: call gates don't save FLAGS, 
and neither can they disable interrupts before dispatch. Interrupt gates do both, but 
they must be in the IDT.
In order to use an interrupt gate, the following trick is used: The “segment present” 
attribute in the LDT's syscall gate is cleared. On the attempt to call that gate, a #NP 
trap is raised and the legacy syscall is “doubly redirected” to the #NP trap handler 
from the IDT.

• The early adopter version of the Linux Application Environment (“Janus”) for Solaris 
provides a handler for classical Linux syscalls, which are done using the int $80 
instruction.

Solaris 10 uses fast system calls if the CPU model it's running on provides them. The 
fast system call mechanisms don't require gate descriptors. Instead, kernel %cs/%ss 
and %rsp/%rip (kernel stack pointer and system call handler address) are programmed 
using the machine-specific registers described in section 3.2.3.

The following system call mechanisms are supported:

• 32bit compatibility/legacy system calls via lcall $0x27,0.
The 64bit kernel is redirects this to #NP by clearing the seg present bit.
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Illustration 2 - Entering the Solaris/10 kernel on x86 platforms
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• 32bit system calls via syscall instruction (on AMD CPUs that support it)

• 32bit system calls via sysenter instruction (on Intel CPUs that support it)

• 64bit system call via syscall instruction (all 64bit x86 CPUs have syscall)

Solaris 9/x86 and below do not use fast system calls.

The Interrupt Descriptor Table on Solaris 10/x86 contains the following entries in 
64bit mode:

echo "idt0,0t256/an16+" | mdb -k | sed -e 's/:/::gate_desc/g' |
mdb 24 | nawk '$1=="HANDLER" && f==1 {next} $1=="HANDLER" {f=1} {print}'

HANDLER                        SEL  DPL P TYP IST
div0trap                         28  0  + int  0
dbgtrap                          28  0  + int  0
nmiint                           28  0  + int  0
brktrap                          28  3  + int  0
ovflotrap                        28  3  + int  0
boundstrap                       28  0  + int  0
invoptrap                        28  0  + int  0
ndptrap                          28  0  + int  0
syserrtrap                       28  0  + int  1
resvtrap                         28  0  + int  0
invtsstrap                       28  0  + int  0
segnptrap                        28  0  + int  0
stktrap                          28  0  + int  0
gptrap                           28  0  + int  0
pftrap                           28  0  + int  0
resvtrap                         28  0  + int  0
ndperr                           28  0  + int  0
achktrap                         28  0  + int  0
mcetrap                          28  0  + int  0
xmtrap                           28  0  + int  0
invaltrap                        28  0  + int  0
[ ... ]
invaltrap                        28  0  + int  0
ivct32                           28  0  + int  0
[ ... ]
ivct125                          28  0  + int  0
dtrace_fasttrap                  28  3  + int  0
dtrace_ret                       28  3  + int  0
ivct128                          28  0  + int  0
[ ... ]
ivct209                          28  0  + int  0
fasttrap                         28  3  + int  0
ivct211                          28  0  + int  0
[ ... ]
ivct255                          28  0  + int  0

As can be seen, all of these gates have the present bit set (“+”). Which as mentioned 
the LDT compatibility system call gate has not:

> ldt0_default+0x20::gate_desc
HANDLER                        SEL  DPL P TYP IST
sys_lcall32                      28  3      c  1

This means the compatibility syscall will cause a #NP trap and enter the kernel via 
segnptrap(). So the stub sys_lcall32 can never be entered; if it yet would happen:

> sys_lcall32::dis
sys_lcall32:                    pushq  $0x0
sys_lcall32+2:                  pushq  %rbp
sys_lcall32+3:                  movq   %rsp,%rbp
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sys_lcall32+6:                  leaq   0x7(%rip),%rdi
sys_lcall32+0xd:                xorl   %eax,%eax
sys_lcall32+0xf:                call   +0x40ff1 <panic>
> sys_lcall32+0xd+7/S
0xfffffffffb8018e4:             sys_lcall32: shouldn't be here!

All other hardware exceptions have a similar structure:

• CPU dispatches the gate handler

• the gate handler may or may not do low-level work; in the end, it pushes a spoofed 
error code (if the gate itself didn't create a real one) and the exception number to 
the stack and calls cmntrap().

An example:

> pftrap::dis
pftrap:                         pushq  $0xe
pftrap+2:                       jmp    -0x2b1b2 <_cmntrap>
> div0trap::dis
div0trap:                       pushq  $0x0
div0trap+2:                     pushq  $0x0
div0trap+4:                     jmp    -0x2a7c4 <_cmntrap>

The #PF trap entry has already been called with an error code on the stack, while the 
CPU doesn't push one for #DIV traps. This makes sure that the common trap handler 
starts with the same stack layout no matter how it is entered:

0xfffffe800074bfb8:             0xb             trap number
0xfffffe800074bfc0:             0x24            error code (may be spoofed)
0xfffffe800074bfc8:             0xbff0ff8c      %rip/%eip that caught the trap
0xfffffe800074bfd0:             0x3b            %cs at time of trap
0xfffffe800074bfd8:             0x10202         RFLAGS/EFLAGS before trap
0xfffffe800074bfe0:             0x8047b9c       %rsp/%esp at time of trap
0xfffffe800074bfe8:             0x43            %ss at time of trap

The bottom two values, as is the behaviour of gates on x86, are only present if:

• The CPU was operating in 64bit mode

• The CPU was operating in 32bit mode and the trap occurred while in usermode.

Remember, on 32bit x86  traps and interrupts which occurred when the CPU already 
was running in kernel do not record the kernel %ss/%esp – their values are implicitly 
known and the CPU “optimizes” gate dispatch by not recording these values.

Section 6.3 gives details what this means.

Interrupts (vectors 32..255) do something very similar:

> ivct32::dis
ivct32:                         pushq  $0x0
ivct32+2:                       pushq  $0x0
ivct32+4:                       jmp    -0x2a624 <_interrupt>
> ivct33::dis
ivct33:                         pushq  $0x0
ivct33+2:                       pushq  $0x1
ivct33+4:                       jmp    -0x2a634 <_interrupt>
> ivct255::dis
ivct255:                        pushq  $0x0
ivct255+2:                      pushq  $0xdf
ivct255+7:                      jmp    -0x2b417 <_interrupt>

which means that the same “input” stack layout is used for both _cmntrap() and 
_interrupt()., except that an interrupt number (starting at 0, ending at 0xdf = 233) 
replaces the trap number.
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The reason for this behaviour is that the Solaris kernel creates a common trapframe 
format for all possible ways to enter the kernel.

Compare the 64bit code for _cmntrap() and _interrupt():

entering kernel via _cmntrap() entering kernel via _interrupt()

_cmntrap:      subq  $0xa8,%rsp
_cmntrap+7:    movq  %r15,0x70(%rsp)
_cmntrap+0xc:  movq  %r14,0x68(%rsp)
_cmntrap+0x11: movq  %r13,0x60(%rsp)
_cmntrap+0x16: movq  %r12,0x58(%rsp)
_cmntrap+0x1b: movq  %r11,0x50(%rsp)
_cmntrap+0x20: movq  %r10,0x48(%rsp)
_cmntrap+0x25: movq  %rbp,0x40(%rsp)
_cmntrap+0x2a: movq  %rbx,0x38(%rsp)
_cmntrap+0x2f: movq  %rax,0x30(%rsp)
_cmntrap+0x34: movq  %r9,0x28(%rsp)
_cmntrap+0x39: movq  %r8,0x20(%rsp)
_cmntrap+0x3e: movq  %rcx,0x18(%rsp)
_cmntrap+0x43: movq  %rdx,0x10(%rsp)
_cmntrap+0x48: movq  %rsi,0x8(%rsp)
_cmntrap+0x4d: movq  %rdi,0x0(%rsp)
_cmntrap+0x52: xorl  %ecx,%ecx
_cmntrap+0x54: movw  %gs,%cx
_cmntrap+0x57: movq  %rcx,0xa0(%rsp)
_cmntrap+0x5f: movw  %fs,%cx
_cmntrap+0x62: movq  %rcx,0x98(%rsp)
_cmntrap+0x6a: movw  %es,%cx
_cmntrap+0x6d: movq  %rcx,0x90(%rsp)
_cmntrap+0x75: movw  %ds,%cx
_cmntrap+0x78: movq  %rcx,0x88(%rsp)
[ ... ]
_cmntrap+0xa4: cmpw  $0x28,0xc0(%rsp)
_cmntrap+0xad: je <_cmntrap+0xb2>
_cmntrap+0xaf: swapgs
[ ... ]
_cmntrap+0xd2: movq %rsp,%rbp

_interrupt:      subq  $0xa8,%rsp
_interrupt+7:    movq  %r15,0x70(%rsp)
_interrupt+0xc:  movq  %r14,0x68(%rsp)
_interrupt+0x11: movq  %r13,0x60(%rsp)
_interrupt+0x16: movq  %r12,0x58(%rsp)
_interrupt+0x1b: movq  %r11,0x50(%rsp)
_interrupt+0x20: movq  %r10,0x48(%rsp)
_interrupt+0x25: movq  %rbp,0x40(%rsp)
_interrupt+0x2a: movq  %rbx,0x38(%rsp)
_interrupt+0x2f: movq  %rax,0x30(%rsp)
_interrupt+0x34: movq  %r9,0x28(%rsp)
_interrupt+0x39: movq  %r8,0x20(%rsp)
_interrupt+0x3e: movq  %rcx,0x18(%rsp)
_interrupt+0x43: movq  %rdx,0x10(%rsp)
_interrupt+0x48: movq  %rsi,0x8(%rsp)
_interrupt+0x4d: movq  %rdi,0x0(%rsp)
_interrupt+0x52: xorl  %ecx,%ecx
_interrupt+0x54: movw  %gs,%cx
_interrupt+0x57: movq  %rcx,0xa0(%rsp)
_interrupt+0x5f: movw  %fs,%cx
_interrupt+0x62: movq  %rcx,0x98(%rsp)
_interrupt+0x6a: movw  %es,%cx
_interrupt+0x6d: movq  %rcx,0x90(%rsp)
_interrupt+0x75: movw  %ds,%cx
_interrupt+0x78: movq  %rcx,0x88(%rsp)
[ ... ]
_interrupt+0xa4: cmpw  $0x28,0xc0(%rsp)
_interrupt+0xad: je <_interrupt+0xb2>
_interrupt+0xaf: swapgs
[ ... ]
_interrupt+0xb5: movq %rsp,%rbp

This is of course common code; on entry, the sequence of instructions does:

• write the general-purpose registers to the stack

• put segment registers %ds/%es/%fs/%gs on the stack (these have not yet been pushed 
by the CPU before dispatching the gate, like %cs/%ss were)

• (not shown) puts %fsb and %gsb to the stack

• determine whether the trap/interrupt happened in kernel (by looking at %cs from 
the trap frame).
If not, call swapgs and (not shown) reinitialize the segment regs, completing the 
context switch to kernel mode.

• In the end, initialize the framepointer with the trap frame address.

In summary, all functions that enter the Solaris kernel write a common trap frame 
format. More examples on this will be given in chapter 6.

6.2.1.The double fault handler
The #DF handler (trap type 0x8) is special. Double faults occur if the CPU attempts a 
privilege switch, but finds the kernel (ring 0) stackpointer invalid so that the attempt 
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to write the trap return information (the bottom/HW part of the trapframe with the 
registers %cs/%rip/RFLAGS/%ss/%rsp) would cause a pagefault. Kernel stackpointer 
corruptions or kernel stack overflows cause double faults.

The gate that dispatches the #DF handler therefore must be special. Solaris uses:

• a task gate in 32bit mode. The hardware task switch “fixes” the kernel stackpointer 
by recreating it from t_esp0 of the double fault TSS:

• the 64bit Interrupt Stack Table (IST) mechanism in 64bit mode. The 64bit TSS 
provides an array of seven alternate stackpointers that trap/interrupt gates can 
select from. The use of the IST[] forces a stack switch even if the trap/interrupt is 
not associated with a privilege switch, i.e. if it occurred in kernel.

> idt0+80::gate_desc
HANDLER                        SEL  DPL P TYP IST
syserrtrap                       28  0  + int  1

Both mechanisms ensure that the double fault handler starts with a known-good stack.

6.2.2.Fast system calls in Solaris
Architecture-optimzed libc
Solaris 10 on x86 platforms detects the best available system call mechanism and 
actually allows entry into the kernel via one of the following methods:

• 64bit platforms are guarenteed to have the syscall/sysret instructions available. 
They're therefore used for system calls in 64bit mode.

• 32bit x86 CPUs by AMD (Athlon and upwards) have syscall/sysret.
A specific 32bit libc that uses syscall is provided for these CPUs.

• 32bit x86 CPUs by Intel (Pentium-II and upwards) and other vendors have 
sysenter/sysexit. A specific 32bit libc that uses sysenter is provided for these.

• All 32bit x86 CPUs are guaranteed to allow the “classical” x86 UNIX system call 
mechanism via the lcall $0x27,0 gate. This is supported as fallback.

6.Solaris/x86 architecture 117



6.3.Solaris/x86 VM architecture – x86 HAT layer
The role of the Solaris HAT (hardware address translation) layer is to provide 
architecture-dependent backend support for the virtual memory subsystem. On all 
architectures Solaris supports, the following functions declared in <vm/hat.h> will be 
called from the generic parts of the VM subsystem - they must be provided by the HAT. 
HAT functionality falls into one of the following categories:

1. operations on whole address spaces.
Functions that allocate, free, swap in/out, duplicate per-as hat structures or query 
usage statistics per address space fall into that category.

2. operations on parts of address spaces (ranges of virtual addresses).
Functions to map/unmap (termed load/unload) physical/device memory, functions 
that lock/unlock physical pages corresponding to a given virtual address range, 
query/modify VM attributes or pagesizes, retrieve physical addresses (PFNs) and 
share/unshare mappings between two HATs fall into this category.

3. operations on pages.
Functions to query/modify attribute bits of a page, functions to translate and 
synchronize between VM attributes and architecture-dependent MMU attributes, 
and support for softlocking belong here.

4. HAT initialization and feature detection.
The kernel during startup will call into these functions to initialize the architecture-
dependent part of the VM subsystem, and to query for support of large pages, 
NUMA, (intimate) shared memory, and other features.

The HAT layer therefore decides how Solaris VM concepts (address spaces, segments, 
pages) are mapped to a given MMU architecture:

• Its initialization is responsible for creating the kernel address space, enumerate 
physical and device memory, and thereby also determines how the kernel virtual 
address space for a given architecture will look like.

• For a user virtual address space, the ABI for the architecture decides where code, 
data, mappings or stacks shall go, and of course the HAT's hooks for address space 
duplication/creation actually implement these rules when process contexts are 
created.

Given that context switching between processes and/or kernel also needs support from 
the HAT to “activate” a MMU context, the HAT will supply hooks to context switching 
for this. Since context switching is also architecture-dependent, this is not a standard 
(architecture-independent) HAT interface, but directly called from the context 
switching code for a specific architecture.

6.3.1.the 32bit x86 HAT before Solaris 10

6.3.2.post-S10 HAT
Both the port to the 64bit architecture and the need to support “modern” Solaris VM 
features on x86 platforms required a rewrite of the low-level VM support routines in 
Solaris 10. The result was a VM architecture that both scales to terabytes of physical 
memory and provides the following features which were not available on pre-S10 
versions of Solaris/x86:

• unified code/binary – no more separate mmu32/mmu36 modules to support the 
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classical and PAE MMU modes. The x86 HAT is now integrated in unix/genunix.

• MMU context management is highly simplified. Instead of the threshold-based 
context generation and per-thread %cr3, the new HAT layer dynamically creates the 
MMU context register %cr3.

• support for ISM and DISM (flags SHM_SHARE_MMU and SHM_PAGEABLE)

• MPSS (multiple page sizes) support. The architecture allows 4kB and 2MB (4MB in 
non-PAE mode). This is accessible via the mechanisms mentioned in mpss.so.1(1).

• MPO (NUMA, latency groups) support.
The Hypertransport-based memory architecture of the AMD Opteron CPUs is non-
uniform because access latency depends on the number of HT links and hops to the 
addressed memory bank. Users can access these features via liblgrp(3LIB).

• support for PROT_EXEC. AMD Opteron CPUs know the “NX” page attribute bit to 
disable executability of a page of memory – which is something that classical x86 
CPUs could not do due to “executability” being an attribute of the code segment – 
not the MMU page. Classical x86 therefore ignored PROT_EXEC. See chapter 3.
On CPUs that support it, the S10 HAT will automatically use and enforce it.

The support for PROT_EXEC can break legacy x86 applications that (being broken) 
assume every address to be executable even though PROT_EXEC wasn't requested for 
a mapping. Such applications should be fixed, but in cases where this is not possible 
the HAT honours a tunable in /etc/system to disable PROT_EXEC enforcement. Add 
“set disable_NX=1” in /etc/system and reboot.

Additionally, the NX bit is only available if the MMU is operating in PAE mode. 
Since this is the only option in 64bit mode it can't cause problems there. But even in 
32bit mode the S10 HAT will default to using PAE if it is available, in order to be 
able to support PROT_EXEC, while in S9 and below, PAE only was enabled if either 
requested explicitly or if the system had more then 4GB of physical memory. 
Incompatibilities e.g. with device drivers (or VMware – a well-known limitation of 
the latter is that it doesn't provide a guest OS with PAE support) may require to 
switch off PAE use in 32bit mode. This is possible by adding “set 
force_pae_off=1” to /etc/system.

• The x86 HAT supports segkpm, i.e. the ability of the Solaris kernel to create a 
complete in-kernel mapping for all of physical memory in order to speed up 
user/kernel data exchange and I/O.
The support for segkpm is not 100% complete – segmap (the VM layer used to 
buffer filesystem I/O) is not yet using segkpm in the first-released version of S10.

Most operations on the HAT involve creating/locating/modifying pagetable entries (i.e. 
page attributes) for a given virtual/physical address (forward and reverse searches).

The x86 MMU itself is a multi-level hashtable (two levels for the classical 32bit MMU 
mode, three levels for PAE in 32bit mode and four levels for the 64bit MMU mode), so 
searching the physical page for a given virtual address could be done by walking the 
MMU hash directly (doing a forward search).

But this is both inefficient and insufficient:

• Walking the pagetable linkage requires up to five memory lookups and four hash 
calculations to get the table indices (assuming the 64bit mode with four tables). 
Given that in most cases, the higher-level tables (PML4, PDPT, PDT) will be sparse, 
it'd be desirable to have a faster way to look up the physical location for a virtual 
address.

• Pagetable addresses (page frame numbers) are physical – not virtual. In order to 
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search the pagetables directly, one would've to map them into virtual memory first.

• A reverse search (find the virtual address a given physical page is mapped to within 
a specific MMU context / address space) is not possible using the x86 pagetables.

The Solaris/x86 HAT solves these problems by introducing an abstraction layer on top 
of the physically-mapped page tables – the HTable mechanism.

• Unlike MMU tables which are sparse, HTables are dense .

• There's one HTable for every non-NULL slot in the level 3/2/1 MMU tables.

• HTables count the number of mapped entries, i.e. the number of non-NULL PTEs in 
their associated page table.

• HTables allow reverse searches – a level 0 htable (corresponding to a MMU 
pagetable) has an ht_parent pointer at its level 1 htable, and so on.

• HTables are single-index hashed for fast mapping lookups.

HTables allow fast forward searches (VA PA) via the HAT's htable hash, and (slower) 
reverse searches (PA VA) via the ht_parent linkage.
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Illustration 3 - Entering the Solaris/10 kernel on x86 platforms
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6.4.Virtual Memory Layout
Both the 32bit and 64bit kernel on x86 share the address space between kernel and 
applications (i.e. a KERNELBASE parameter exists). For the 32bit virtual memory 
layout, nothing has changed in Solaris 10 vs. Solaris 9. If running on a 64bit kernel, 
though, 32bit applications are now able to use (almost) all of the 4GB virtual memory 
available to them.

The 64bit virtual memory layout (kernel/apps) looks like this:

> ::mappings ! tail -r
                              BASE            LIMIT             SIZE NAME  
[ ARGSBASE   ffffffffffc00000 ................ ]
SEGDEBUGBASE  ffffffffff800000 ffffffffffc00000         400000 kdebugseg
KERNEL_TEXT   fffffffffe800000 ffffffffff0bc000         8bc000 ktextseg
valloc_base   fffffffffa200000 fffffffffe000000        3e00000 kvalloc
core_base   ffffffffc0000000 fffffffffa200000       3a200000 kvseg_core
segkmap_start ffffffffbf000000 ffffffffc0000000        1000000 kmapseg
segkp_base   ffffffffb2800000 ffffffffbf000000        c800000 kpseg
kernelheap   fffffe8000000000 ffffffffb2800000    17fb2800000 kvseg
SEGKPM_BASE   fffffe0000000000 fffffe007feef000       7feef000 kpmseg
[ KERNELBASE  fffffd8000000000 fffffe0000000000 ] user/kernel red zone

(unmapped)
> ffffffff850a0cf8::context; ::mappings ! tail -r

  fffffd7fffdfb000 fffffd7fffe00000           5000 [ anon ]
[ many many more libraries and anon segments ... ] mappings and thread stacks

application stacks/mappings grow
downwards towards VA hole

[   0000800000000000 ffff800000000000 ] address space hole

application heap grows upwards towards VA hole

(application heap) 48a000           aef000         665000 [ anon ]
(application static data) 479000           48a000          11000 /usr/bin/amd64/mdb
(application text) 400000           469000          69000 /usr/bin/amd64/mdb
[                  0           400000 ] lower red zone (unmapped)

See <sys/machparam.h> for a detailed explanation. The main elements are:

• At the bottom end of the user 64bit address space is an unmapped 2MB page. This 
is specified by the AMD64 UNIX ABI – application text load address is 2MB, 
0x400000.

• Solaris has chosen to give the majority of the 64bit VA range to the application.

• The user heap will start after the application text/data segments and grows 
upwards into the VA hole.

• The user stacks and file mappings are created below KERNELBASE and grow 
down into the VA hole.

Over all, a 64bit application on Solaris 10 can map up to ~250TB of memory.

• At the top end of the user address space is another unmapped 2MB page.

• The kernel address space begins at KERNELBASE – with an unmapped 'huge' page, 
i.e. a NULL PML4 entry, 512GB. Kernel segments extend above that. The kernel 
itself currently occupies four slots in the PML4 table, i.e. 2TB virtual memory.
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6.5.Context switching
Taking a running thread off the CPU and resuming a previously sleeping one is done 
by the architecture-dependent function resume() in Solaris. On x86 platforms, this 
executes code as given in the following flow diagram:

The code is fully preemptive. When resume() is entered, the old onproc thread is 
already quiesced (its user registers have been saved), but the stack we're running on 
still belongs to old. Actions executed by resume() in sequence are:

1. If the old thread (i.e. the one currently marked T_ONPROC for this CPU) has context 
ops installed (old->t_ctx != NULL), the savectx() function from there will be 
called. If the thread hasn't an extended context this can be bypassed.
A thread will have context ops e.g. if it used floating point registers. On first use of 
the FPU by a newly-started thread, a trap will occur and the trap handler installs 
context ops for the thread that save/restore the floating point context.

2. Because processes are free to create segments in their Local Descriptor Table, the 
kernel has to change the LDT segment descriptor in the CPU's Global Descriptor 
Table so that its base address matches that of the new thread's LDT.

3. The VM/MMU context (user mappings) is still that of the old thread. In order to 
initialize the MMU in preparation for running new, hat_setup4thread() is called. 
This creates and activates the MMU context register %cr3 from new's HAT.

4. Floating point context saves (fxsave instruction) on x86 platforms are 
asynchronous. If the context ops have kicked off a floating point context save, we'll 
now wait for that to finish (fwait instruction).
There is no “waitctx()” context op ... so this is inlined.
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Illustration 4 - steps in context switching
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5. In order to remove dependency on the old thread's kernel stackpointer, which is 
still in use by interrupts occurring during resume(), the stackpointer %esp/%rsp is 
temporarily changed to that of this CPU's idle thread.

6. All of the state of the old thread is now saved and it can be put off the CPU. 
T_ONPROC will be removed from its t_flags, and the thread lock can be released.
For speed, the code to do this is inlined.

7. Threads currently executing on the CPU are locked, so resume() now performs, 
again inlined, a thread_lock() on new. Once done, it marks the thread T_ONPROC.

8. curthread aka CPU->cpu_thread still point to the old thread. This is now changed.

9. The new threads kernel stackpointer is read from new->t_sp and put into the CPU's 
TSS, as well as into %esp/%rsp. We're no longer running with idle()'s stack now, 
from here on interrupts occuring will use new's stack.

10.The return address is put on the stack and execution of new (in kernel mode) is 
resumed via ret instruction. resume() is done.

11.Once the kernel stack is unwinded, system call and/or trap exit handling does 
iret/sysret/sysexit (whatever appropriate) to continue execution in user mode.
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6.6.Supporting Multiple CPUs

6.6.1.Locking Primitives and Atomic Operations

6.6.2.SMP Interrupt Management and Crosscalls

6.6.3.NUMA
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6.7.isaexec – Creating 32/64bit-specific applications
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7.Solaris/x86 Crashdump Analysis
From “The Tao of Programming”:

Thus spake the master programmer:

"When you have learned to snatch the error code from
the trap frame, it will be time for you to leave."

7.1.Debugging tools for core-/crashdump analysis
Solaris/x86, having been the ugly duckling for the longer part of its history, received 
much less attention by engineers doing debugging work on kernel-level than its 
SPARC brethren. The choice of debugging tools for Solaris/x86 therefore is much more 
limited than for Solaris/SPARC – unbundled (i.e. not distributed with Solaris itself) 
debugging tools used to be very uncommon, and still not all packages that see 
frequent use on SPARC have been ported to Solaris/x86. Most notably, the SolarisCAT 
(scat) kernel debugger that is very popular both inside and outside of Sun is not (yet) 
available under Solaris/x86.

Fortunately, the set of debugging utilities shipped with Solaris by default is available 
for x86 and SPARC architectures alike, with comparable functionality – which has 
grown significantly in Solaris 10 compared with what was available at the time of 
Solaris 8. Useful utilities for kernel debugging or core- and crashdump analysis under 
Solaris 10 include:

• The modular debugger, mdb.
mdb is the main tool used for crashdump analysis on Solaris 10/x86. The default 
feature set of mdb is generic and identical on SPARC and x86 architectures. Since 
mdb is extensively documented in the standard Solaris manuals, the reader is 
referred to those for details on mdb usage.
All examples given in the following sections will use mdb.
There are special-purpose versions of mdb available:

• The runtime kernel debugger, kmdb. This version runs in kernel context and 
allows things like kernel break- and watchpoints. kmdb is bundled with Solaris – in 
fact, enabling it at runtime can be done by calling mdb with the '-K' option.

• Enhanced mdb – mdb+. This is a feature-extended mdb that is distributed 
internally at Sun as part of the kenv debugging suite. 
For those having to analyze crashdumps of Solaris 8/x86 or Solaris 9/x86 systems, 
the kenv package and mdb+ have the advantage of supplying (most of) the 
functionality that is there in mdb on Solaris 10 but not on older bundled versions.

• Automated Crash Tool – act. This package includes a loadable mdb module that 
extends mdb with several dcmds, among them a ::findstack workalike that can 
display function arguments – even in 64bit mode. Examples later.

• The dynamic tracing framework, dtrace.
While dtrace itself isn't targeted specifically at post-mortem analysis, it's of course 
available on Solaris/x86 – the feature set is generic, i.e. dtrace scripts will mostly be 
portable between Solaris/SPARC and Solaris/x86. mdb is able to extract dtrace 
records from crashdumps, in case the system paniced during tracing.

• The proc tools. Some of them (e.g. pmap) operate on crash- and/or coredumps while 
others are again targeted at runtime application analysis. Again, the ptools are 
generic and available for 32/64bit SPARC/x86.

• For application coredump analysis only, the dbx (Sun Workshop) and gdb (GNU) 
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debuggers are both available in 32bit and 64bit versions for Solaris 10/x86. People 
familiar with either won't need to re-learn when looking at application coredumps.

• The default disassembler, /usr/ccs/bin/dis. To inspect compiler-generated 
assembly code in binaries or dumps, dis can be a useful tool, but it isn't usable 
interactively and won't see much use in post-mortem analysis. Its biggest advantage 
is that it allows simple inspection of machine code along with the disassembler 
output, since by default it displays instruction binary code and mnemonic side by 
side.

This selection is biased towards crashdump analysis and kernel debugging and by no 
means complete. Please refer to material on generic low-level troubleshooting on 
Solaris for more choice ...

7.1.1.The Solaris/x86 boot debugger before Solaris 10
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7.2.Troubleshooting system hangs on Solaris/x86
Machines based on x86 CPUs do not have the SPARC-style OBP interface that allows 
low-level system interaction from the “ok prompt”. This of course means that there is 
no equivalent on x86 platforms for either the <Stop+A> key combination to enter OBP 
interaction mode or the sync OBP command that forces a system crashdump to be 
written.

By default, Solaris/x86 machines have no capability for “break”ing the system. The 
machine ignores keyboard or serial line break sequences.

The presence of the kernel debugger, kadb (pre-Solaris 10), kmdb (Solaris 10 and 
later), is therefore a prerequisite.

7.2.1.Loading the kernel debugger – kadb/kmdb
The kernel debugger on Solaris/x86 can be automatically loaded during boot using the 
eeprom(1M) command:

• On Solaris 9 and below:
eeprom boot-file=kadb

• On Solaris 10 and above:
eeprom boot-file=kmdb
eeprom boot-args=-k (suggested)

The disadvantage to this is that it requires a reboot in order to activate the kernel 
debugger. On Solaris 10, one of the enhancements in kmdb therefore is the ability to 
load the kernel debugger at runtime. Use:

mdb -K

(capital K) as root user to load kmdb at any time. The system will drop to the kmdb 
prompt and can be continued, :c, to resume execution. 

Once the debugger is loaded via either of the above ways, it will catch <F1+A> (if a 
graphics console is used – there is no <Stop> key on PC keyboards), resp. serial breaks 
(if a serial console is used). 
Also, the alternate break sequence, kdb -a, can then be set.

Note that on x86 systems, few graphics drivers support switching to textmode when 
the user presses <F1+A> to enter the kernel debugger. The system will appear hung, 
but kadb/kmdb is sitting invisibly in the background waiting for input. It may be 
necessary to type debugger commands blindly !

7.2.2.Forcing system crashdumps
In order to create forced crashdumps from hung Solaris/x86 systems, the following 
methods are possible:

• If the system is soft hung and still allows interaction e.g. via console or network 
logins, savecore -L (to create a live crashdump without rebooting the machine) or 
reboot -d (to force a reboot together with a crashdump being written) can be used.

• If interaction is no longer possible, the kernel debugger (kadb/kmdb) must be used. 
On Solaris/x86, console (screen) logins use <F1+A> as the keyboard break 
sequence, and serial consoles accept breaks – provided the kernel debugger has 
been loaded.
On the kernel debugger's prompt, a crashdump can be forced using e.g. the 
following method:
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Write a NULL into the %eip/%rip register, and continue:

0>eip;:c (32bit), or
0>rip;:c (64bit).

The machine panics immediately and drops to the debugger prompt again.
Continue another time,

:c

to write the crashdump and have the system reboot.
This is documented in Sun InfoDoc #15553.

7.2.3.Hard hangs on x86
There are cases where the attempt to enter the kernel debugger fails – the system is 
then hard hung. Breaking out of hard hangs and forcing a crashdump from one is not 
always possible, but the following techniques can be applied:

• Enable the deadman timer. If the following option is set in /etc/system:

set snooping=1

the high-resolution timer interrupt on the machine will count down a watchdog 
timer that is reset periodically by the Solaris clock() (low-resolution timer) code. If 
clock processing / scheduling is stuck, deadman will time out and cause a system 
panic.
This is described in Sun InfoDoc #13258.

• Some machines may have an XIR/NMI (eXternally-Initiated / Non-Maskable 
Interrupt) switch. If the system has a NMI switch, Solaris can be told to use it via 
the following /etc/system parameters:

set pcplusmp:apic_panic_on_nmi=1 create a crashdump on NMI

set pcplusmp:apic_kmdb_on_nmi=1 enter kmdb interactively on NMI

Since NMI interrupts cannot be blocked (except by the CPU disabling all 
interrupts), this may break out of hard hangs that not even deadman (which relies 
on the high-resolution timer interrupt) can help with.

• In the future, Sun may provide a configurable NMI facility, to allow optionally using 
the system's power button as NMI switch on machines that support ACPI.
To inquire about this, contact the Solaris developers via the mailing lists on 
http://www.opensolaris.org.

7.2.4.Setting up the serial console on Solaris/x86
Some x86 systems (server type mainboards, for the most part) support serial consoles 
on BIOS level. This is usually called console redirection, and if it is available it allows 
interaction with the machine during the entire early stages of the boot process – until 
the Solaris 2nd stage bootloader takes over.

The Solaris bootloader and kernel must be told to use serial consoles – Solaris/x86 
platforms will not default to using the serial line if no keyboard is found. The required 
steps to set up a serial console on Solaris/x86 machines are as follows.

• Configure, if available, the serial console redirection in the BIOS. Since PC BIOSses 
don't use the same defaults as SPARC systems , it's advisable to set the parameters 
to the usual defaults of Solaris serial consoles, 9600 Baud, 8bit, no parity.

• Connect a serial line and test whether you can interact with the BIOS.
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• Next, boot Solaris, into the Device Configuration Assistant (DCA).
Once the following messages appear on the screen:

If the system hardware has changed, or to boot from a different 
device, interrupt the autoboot process by pressing ESC.

press <ESC> to enter the DCA.

• Progress through the DCA to the “Boot Solaris“ screen.

• Select the F4_Boot_Tasks option, then select the View/Edit Property Settings 
option from the menu and use F2_Continue.
Some serial terminals don't have function keys or don't submit the keycodes 
properly on the serial line. In this case, <ESC> followed by a digit can be used.

• Scroll down the menu and select input-device, then use the F3_Change key to 
change it to ttya.

• Do the same for output-device, then go back to “Boot Tasks“ using F2_Back.

• Return to “Boot Solaris” via F3_Back, and continue there.

If your BIOS does not allow serial console redirection, Solaris can still be configured to 
use the serial line for in/output – starting with the DCA.

5. Open the file bootenv.rc with a text editor.
On a Solaris/x86 that was installed using screen/keyboard, it can be found in
 /boot/solaris/bootenv.rc.
For a system that should be installed with Solaris using a serial console, edit 
bootenv.rc on the DCA floppy, or in the PXE boot environment if network boot is 
used.

6. Search for the following two lines and have them refer to ttya:

setprop output-device='ttya'
setprop input-device='ttya'

This enables the serial console from the point on where the Solaris boot loader has 
been started. BIOS interaction is not possible on such systems, but the serial console 
under Solaris will be operable.
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7.3.32bit kernel crashdump analysis – a well-known 
example
Before we dig deep and use real-world examples of crashdumps from actual reported 
and fixed bugs, we'll create a crashdump in a well-known, controlled way. On a Solaris 
10/x86 system running a 32bit kernel, panic the system using the following command:

mdb -kw <<END
rootdir/W 0
END

7.3.1.Panic messages
The system very shortly after is going to panic with messages similar to these:

After rebooting, the crashdump is created and can be analyzed.

The panic message consists of the following three parts:

• The panic string itself. This tells which thread (and on what CPU) was running when 
the system encountered the panic. In addition to that, it gives a “panic oneliner” 
that's either a deliberate message from callers of cmn_err(CE_PANIC,...), or the 
generic BAD TRAP: ... message that's printed during unexpected kernel faults. Bad 
traps give the location of where the general purpose registers were saved at the 
time of the trap (the trap frame address) in the rp=... field:

panic[cpu0]/thread=d0055600:
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module 
"unix" due to a NULL pointer dereference

• A printout of general-purpose and CPU control register contents at the time of the 
panic. This is only meaningful for BAD TRAPs, and also only shown for BAD TRAPs. 

132 7.Solaris/x86 Crashdump Analysis

Illustration 1 - Solaris/x86 panic messages on a 32bit kernel

panic[cpu0]/thread=d0055600: 
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module
"unix" due to a NULL pointer dereference

in.routed: 
#pf Page fault
Bad kernel fault at addr=0x0
pid=92, pc=0xfe82080d, sp=0xfe8c08f4, eflags=0x10246
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6f8<xmme,fxsr,pge,mce,pae,pse,de>
cr2: 0 cr3: 4601020
         gs: d00401b0  fs: d0140000  es:      160  ds: d0130160
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
        ebx:        0 edx: d0055600 ecx:        0 eax:        0
        trp:        e err:        2 eip: fe82080d  cs:      158
        efl:    10246 usp: fe8c08f4  ss:        0

d010dce8 unix:die+a7 (e, d010dd88, 0, 0)
d010dd74 unix:trap+fd1 (d010dd88, 0, 0)
d010dd88 unix:_cmntrap+83 ()
d010dde4 unix:mutex_enter+d (d010de10, 0, 1, 0, )
d010de68 genunix:lookupnameat+54 (ceb50d00, 0, 1, 0, )
d010df0c genunix:vn_openat+6c (ceb50d00, 0, 1, 6, )
d010df70 genunix:copen+24f (ffd19553, ceb50d00,)
d010df88 genunix:open+18 (ceb50d00, 0, 6, fec)

three different
stackpointers ?!?!

panicing instruction

backtrace:
• framepointers
• return addresses
• arguments

address of saved registers

panic[cpu0]/thread=d0055600: 
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module
"unix" due to a NULL pointer dereference

in.routed: 
#pf Page fault
Bad kernel fault at addr=0x0
pid=92, pc=0xfe82080d, sp=0xfe8c08f4, eflags=0x10246
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6f8<xmme,fxsr,pge,mce,pae,pse,de>
cr2: 0 cr3: 4601020
         gs: d00401b0  fs: d0140000  es:      160  ds: d0130160
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
        ebx:        0 edx: d0055600 ecx:        0 eax:        0
        trp:        e err:        2 eip: fe82080d  cs:      158
        efl:    10246 usp: fe8c08f4  ss:        0

d010dce8 unix:die+a7 (e, d010dd88, 0, 0)
d010dd74 unix:trap+fd1 (d010dd88, 0, 0)
d010dd88 unix:_cmntrap+83 ()
d010dde4 unix:mutex_enter+d (d010de10, 0, 1, 0, )
d010de68 genunix:lookupnameat+54 (ceb50d00, 0, 1, 0, )
d010df0c genunix:vn_openat+6c (ceb50d00, 0, 1, 6, )
d010df70 genunix:copen+24f (ffd19553, ceb50d00,)
d010df88 genunix:open+18 (ceb50d00, 0, 6, fec)



It's a prettyprint version of the saved registers at rp=.... The following comparison 
shows this clearly.

• First, the register dump from the panic message:

in.routed: 
#pf Page fault
Bad kernel fault at addr=0x0
pid=92, pc=0xfe82080d, sp=0xfe8c08f4, eflags=0x10246
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6f8<xmme,fxsr,pge,mce,pae,pse,de>
cr2: 0 cr3: 4601020
         gs: d00401b0  fs: d0140000  es:      160  ds: d0130160
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
        ebx:        0 edx: d0055600 ecx:        0 eax:        0
        trp:        e err:        2 eip: fe82080d  cs:      158
        efl:    10246 usp: fe8c08f4  ss:        0

• Second, explicitly printing the address given via rp=... as struct regs:

> d010dd88::print -a "struct regs"
{
    d010dd88 r_gs = 0xd00401b0
    d010dd8c r_fs = 0xd0140000
    d010dd90 r_es = 0x160
    d010dd94 r_ds = 0xd0130160
    d010dd98 r_edi = 0xd010de10
    d010dd9c r_esi = 0xcfa379f0
    d010dda0 r_ebp = 0xd010dde4
    d010dda4 r_esp = 0xd010ddb8
    d010dda8 r_ebx = 0
    d010ddac r_edx = 0xd0055600
    d010ddb0 r_ecx = 0
    d010ddb4 r_eax = 0
    d010ddb8 r_trapno = 0xe
    d010ddbc r_err = 0x2
    d010ddc0 r_eip = 0xfe82080d
    d010ddc4 r_cs = 0x158
    d010ddc8 r_efl = 0x10246
    d010ddcc r_uesp = 0xfe8c08f4
    d010ddd0 r_ss = 0
}

• The contents of the general-purpose/segment register dump from the panic message 
and the trap frame are obviously identical. But the register dump contains more 
information.

• It repeats what the BAD TRAP panic string already showed – it's a pagefault, #PF / 
type 0xe in x86 terms, attempting to dereference a NULL pointer, addr=0. The 
process that happened to be executing the code was in.routed and it ran under 
PID 92. That's complementary information to the panicing thread's address that 
the panic message already has shown.
For a pagefault, as mentioned in chapter 3, the pagefault address register, %cr2, 
will contain the fault address. This therefore must be identical with the addr=... 
field – if the bad trap was a pagefault. The two values won't necessarily be equal 
for bad traps of some other type.

• We also are given the address of the assembly instruction that actually caused the 
bad trap. It's explicitly printed as pc=..., and, since on x86 the program counter 
is a register, the same value of course also found in the register dump/trap frame 
under eip. Unfortunately, the symbol name/offset is not given, so look manually:

> 0xfe82080d/ai
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mutex_enter+0xd:lock cmpxchgl %edx,(%ecx)

• Several stackpointers are given, sp=..., esp, and usp.
The fields sp=... and usp are actually found to be equal.

But none of them is the stackpointer at the time of the panic !
The attempt to backtrace from either of them fails – no output:

> 0xd010ddb8$C
> 0xfe8c08f4$C

• We also notice that the value of the saved %esp register actually is the address of 
the r_trapno field within the trapframe ! This value can't have been the kernel's 
%esp before the trap if it points at a location that only was accessed after the trap 
actually occurred.

• This obviously needs some further explanation. How can one, in a 32bit Solaris/x86 
crashdump, find the stackpointer at the time when the trap occurred ?

• Chapter 3 has already given the answer – x86 CPUs, when encountering a trap 
while already running in privileged mode, won't save %esp/%ss when writing a 
hardware trap frame – because the CPU doesn't need to switch stacks as it didn't do 
a privilege switch. It uses whatever the kernel stackpointer was and puts the trap 
return information there. The first thing that is written is eflags – not %uesp/%ss – 
and the value of the stackpointer at the time of the panic must be deduced – as the 
address of the word on the stack immediately before that. More on that later.

• The third part is the panic backtrace:

d010dce8 unix:die+a7 (e, d010dd88, 0, 0)
d010dd74 unix:trap+fd1 (d010dd88, 0, 0)
d010dd88 unix:_cmntrap+83 ()
d010dde4 unix:mutex_enter+d (d010de10, 0, 1, 0, )
d010de68 genunix:lookupnameat+54 (ceb50d00, 0, 1, 0, )
d010df0c genunix:vn_openat+6c (ceb50d00, 0, 1, 6, )
d010df70 genunix:copen+24f (ffd19553, ceb50d00,)
d010df88 genunix:open+18 (ceb50d00, 0, 6, fec)

12.Again, several of the values in there have already been seen on previous parts of 
the panic message:

BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module[ 
... ]
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
[ ... ]
        trp:        e err:        2 eip: fe82080d  cs:      158
[ ... ]
d010dd88 unix:_cmntrap+83 ()
d010dde4 unix:mutex_enter+d (d010de10, 0, 1, 0, )

1. The address of the saved registers, rp=..., is reported as the framepointer of 
_cmntrap(). This is why it is called trap frame.

2. The saved framepointer %ebp from the panic registers is also reported in the 
stacktrace as the framepointer of the line in the backtrace after the trapframe.

3. So is the faulting instruction's address, %eip, for which the corresponding 
symbol+offset is shown in the backtrace as well.

13.Finally, we note that in the stacktrace, different numbers of arguments are printed 
by the debugger for different functions – e.g. four are shown for open(), two for 
copen(), none for _cmntrap() or three for trap().
How does can the debugger know how many arguments a function has ?
Will it be correct about this, and how would we verify ?
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7.3.2.Immediate cause for the panic
Repetitorium on 32bit x86 traps
Looking at the data from the panic messages, we find that the panic happened 
executing just the third instruction of mutex_enter():

mutex_enter: movl   %gs:0x10,%edx
mutex_enter+7: movl   0x4(%esp),%ecx
mutex_enter+0xb: xorl   %eax,%eax
mutex_enter+0xd: lock cmpxchgl %edx,(%ecx)

Let's try to understand this code – what does it do ?

First thing to notice is that this isn't a function like most others – it doesn't have a 
function prologue where it'd initialize a framepointer or allocate stackspace for itself. 
This obviously is performance-critical, handwritten assembly code. First thing is does 
is to load the word at address %gs:0x10 into %edx. As chapter 5 has shown, Solaris 
uses the %gs segment for the current CPU structure, and offset 0x10 there is 
cpu_thread. So %gs:0x10 is simply the Solaris/x86 assembly version of curthread. But 
let's verify this again, just to crosscheck. We get %gs from the panic messages:

panic[cpu0]/thread=d0055600: 
[ ... ]
         gs: d00401b0  fs: d0140000  es:      160  ds: d0130160

Remember segment registers contain 16bit values only – the upper 16bits of the 
reported %gs contents therefore are irrelevant. Our %gs is 0x1b0. Since the lower three 
bits are clear, this is a privileged segment within the GDT, so we need to find the GDT 
for the panicing CPU. As the panic message tells it's CPU 0, so we can look into 
struct cpu for this and find the GDT location from there:

> ::cpuinfo
 ID ADDR     FLG NRUN BSPL PRI RNRN KRNRN SWITCH THREAD   PROC
  0 fec22364  1b    0    0  59   no    no t-0    d0055600 in.routed
> ::offsetof cpu_t cpu_m
offsetof (cpu_t, cpu_m) = 0x4cc
> fec22364+0x4cc::print "struct machcpu" mcpu_gdt
mcpu_gdt = gdt0
> gdt0+1b0::print user_desc_t usd_hibase usd_midbase usd_lobase             
usd_hibase = 0xfe
usd_midbase = 0xc1
usd_lobase = 0xe88c
> 0xfec1e88c::whattype
fec1e88c is fec1e88c+0, struct cpu [1]
> 0xfec1e88c+10/X | ::whatis  
d0055600 is d0055600+0, allocated as a thread structure

This fits – the segment descriptor obviously points at the CPU structure, and the 
onproc thread for this CPU is the panic thread. %edx from the panic registers,

        ebx:        0 edx: d0055600 ecx:        0 eax:        0

also confirms our analysis so far. The next instructions are:

mutex_enter+7: movl   0x4(%esp),%ecx
mutex_enter+0xb: xorl   %eax,%eax

The xorl obviously zeroes %eax. The instruction before is not so obvious, but we still 
know what it does. It loads the first argument of mutex_enter() from the stack. 
Remember chapter 2:

• Before calling somebody else, a function in 32bit x86 puts arguments on the stack.

• The call instruction itself puts a return address onto the stack.
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• At the time execution starts at the called function, (%esp) is the return address, and 
+4(%esp), +8(%esp) and so on will be the arguments.

In common functions, the prologue will initialize a framepointer and argument access 
after that is then done via %ebp – but as indicated, mutex_enter() doesn't bother with 
this and therefore uses %esp directly.

And there we are again – how can I know what the stackpointer was ? The messages 
show the NULL in %ecx, but none of the “stackpointers” in the panic messages is 
consistent with that:

[ ... ]
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module "unix" 
due to a NULL pointer dereference
[ ... ]
pid=92, pc=0xfe82080d, sp=0xfe8c08f4, eflags=0x10246
[ ... ]
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
        ebx:        0 edx: d0055600 ecx:        0 eax:        0
[ ... ]
> 0xfe8c08f4+4/X
lookuppnat+0x93:e8530c43        
> d010ddb8+4/X
0xd010ddbc:     2

At 4(%esp), neither gives NULL so something isn't right here – these addresses aren't 
stackpointers.

As mentioned before and in chapter 3, the reason for this is the way 32bit x86 CPUs 
create trapframes if trap handler and trapping instruction are running at the same 
privilege level. In 32bit x86:

The stackpointer at the time of the bad trap must be deduced indirectly.

Revisit chapter 3 and how trap handling in x86 works.

• a trap (hardware exception) occurs.

• the x86 CPU checks the corresponding gate in its Interrupt Descriptor Table and 
from there determines both:

• the address of the trap handler

• the privilege level the handler will run at. For Solaris, that's ring 0 – kernel mode.

• If and only if the trap occurred while the CPU was executing code at a different 
privilege level, the CPU will switch stacks.
In other words: If the trap occurred in user mode, the CPU loads the kernel stack 
pointer (and the kernel stack segment register) from its TSS structure and switches 
to that.
In that case only, it writes the previous privilege level's (user) %ss and (user) %esp 
to the kernel stack.

• But this wasn't the case here. The trap occurred in kernel mode, and we already 
have a valid kernel stack to start with. No stack switch is done.

• Before the CPU finally dispatches execution to the trap handler, it writes to the 
stack the information needed to resume execution after handling it:

• the contents of the EFLAGS register (processor condition codes and state)

• the %cs register and the address of the trapping instruction, %eip.

• Since this was a pagefault, an error code is written as auxilliary information.
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• Only then will the gate entry point be kicked off.

This means that the hardware part of the trap frame, EFLAGS/%cs/%eip, is written 
directly to wherever the kernel stackpointer was at the time of the trap.

What happens next ? Let's find out by looking into the IDT for the #PF (type 0xe) trap:

> ::offsetof cpu_t cpu_m              
offsetof (cpu_t, cpu_m) = 0x4cc
> ::offsetof "struct machcpu" mcpu_idt
offsetof (struct machcpu, mcpu_idt) = 0x58
> 0xfec1e88c+0x4cc+0x58/X | ::whatis
fec1f160 is idt0+0 in unix's data segment
> fec1f160+(8*e)::gate_desc 
HANDLER                        SEL  DPL P TYP STK
pftrap                          158  0  + int  0
> pftrap::dis
pftrap: pushl  $0xe
pftrap+2: jmp    -0x1d9c2 <_cmntrap>

So the handler is pftrap(), which just pushes the trap number onto the stack and 
then calls _cmntrap(). That's the one writing the trap frame:

> _cmntrap::dis
_cmntrap: pushal
_cmntrap+1: subl   $0x10,%esp
_cmntrap+4: movw   %ds,0xc(%esp)
_cmntrap+8: movw   %es,0x8(%esp)
_cmntrap+0xc: movw   %fs,0x4(%esp)
_cmntrap+0x10: movw   %gs,0x0(%esp)
_cmntrap+0x14: cmpw   $0x1b0,0x0(%esp)
_cmntrap+0x1b: je     +0x16    <_cmntrap+0x31>
_cmntrap+0x1d: movw   $0x160,%ax
_cmntrap+0x21: movw   $0x0,%cx
_cmntrap+0x25: movw   $0x1b0,%dx
_cmntrap+0x29: movw   %eax,%ds
_cmntrap+0x2b: movw   %eax,%es
_cmntrap+0x2d: movw   %ecx,%fs
_cmntrap+0x2f: movw   %edx,%gs
_cmntrap+0x31: movl   %esp,%ebp
[ ... ]
_cmntrap+0x7e: call   +0x176f7 <trap>
_cmntrap+0x83: addl   $0xc,%esp

This code saves all eight general-purpose registers to the stack using pushal, then 
reserves four more words of stackspace and stuffs the not-yet-saved segment registers 
%ds..%fs into there (remember, %cs and, if necessary, %ss has already been saved by 
the CPU before dispatching the gate handler).

It doesn't write more to the stack, and a little later initializes its framepointer. This of 
course explains why the panic messages:

BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module “unix”
[ ... ]
d010dd88 unix:_cmntrap+83 ()

show the address of the saved registers, rp=..., and the framepointer of _cmntrap() 
to be equal.

Now the answer to “what was the stackpointer at the time of the trap” is easy. Dump 
the stack, starting at the trapframe, but this time simply as data. All is there:

• the segment registers %ds..%fs explicitly put there by _cmntrap()
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• the general-purpose registers %eax..%edi written via pushal by _cmntrap()

• the trap number, 0xe, pushed by the gate entry, pftrap()

• EFLAGS/%cs/%eip and the pagefault error code written by the CPU

• values pushed before the trap – the last one indicating the stackpointer we want !

> d010dd88,40/nap
0xd010dd88:     0xd00401b0      segment registers %ds ...%fs
0xd010dd8c:     0xd0140000      explicitly written to the stack
0xd010dd90:     0x160           by _cmntrap()
0xd010dd94:     0xd0130160      
0xd010dd98:     0xd010de10      
0xd010dd9c:     0xcfa379f0      
0xd010dda0:     0xd010dde4      
0xd010dda4:     0xd010ddb8      pushal
0xd010dda8:     0               1st instruction _cmntrap()
0xd010ddac:     0xd0055600      
0xd010ddb0:     0               
0xd010ddb4:     0               
0xd010ddb8:     0xe             written by pftrap()
0xd010ddbc:     2               
0xd010ddc0:     mutex_enter+0xd saved to the stack by the CPU
0xd010ddc4:     0x158           before dispatching trap handler
0xd010ddc8:     0x10246         
0xd010ddcc:     lookuppnat+0x8f last pre-trap word on the stack
0xd010ddd0:     0               
0xd010ddd4:     0               
0xd010ddd8:     0               
0xd010dddc:     0xceb50d00      
0xd010dde0:     0               
0xd010dde4:     0xd010de68      
0xd010dde8:     lookupnameat+0x54
[ ... ]

Comparing this with struct regs shows that the values there for %ss/%usp (and also for 
sp=... in the panic messages) are false positives. In fact, they are the very last two 
words written to the stack before the panic:

raw data on the stack saved registers – struct regs

> d010dd88,40/nap
0xd010dd88:     
0xd010dd88:     0xd00401b0      
0xd010dd8c:     0xd0140000      
0xd010dd90:     0x160           
0xd010dd94:     0xd0130160      
0xd010dd98:     0xd010de10      
0xd010dd9c:     0xcfa379f0      
0xd010dda0:     0xd010dde4      
0xd010dda4:     0xd010ddb8      
0xd010dda8:     0               
0xd010ddac:     0xd0055600      
0xd010ddb0:     0               
0xd010ddb4:     0               
0xd010ddb8:     0xe             
0xd010ddbc:     2               
0xd010ddc0:     mutex_enter+0xd 
0xd010ddc4:     0x158           
0xd010ddc8:     0x10246         
0xd010ddcc:     lookuppnat+0x8f 

> d010dd88::print -a "struct regs"
{
    d010dd88 r_gs = 0xd00401b0
    d010dd8c r_fs = 0xd0140000
    d010dd90 r_es = 0x160
    d010dd94 r_ds = 0xd0130160
    d010dd98 r_edi = 0xd010de10
    d010dd9c r_esi = 0xcfa379f0
    d010dda0 r_ebp = 0xd010dde4
    d010dda4 r_esp = 0xd010ddb8
    d010dda8 r_ebx = 0
    d010ddac r_edx = 0xd0055600
    d010ddb0 r_ecx = 0
    d010ddb4 r_eax = 0
    d010ddb8 r_trapno = 0xe
    d010ddbc r_err = 0x2
    d010ddc0 r_eip = 0xfe82080d
    d010ddc4 r_cs = 0x158
    d010ddc8 r_efl = 0x10246
    d010ddcc r_uesp = 0xfe8c08f4
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raw data on the stack saved registers – struct regs

0xd010ddd0:     0
[ ... ]

    d010ddd0 r_ss = 0
}

The stackpointer before the panic therefore must have been 0xd010ddcc. At the 
location we were interested in, 4(%esp), there is a NULL and this is consistent with 
what we see in the panic registers. It's therefore clear now that the code:

mutex_enter: movl   %gs:0x10,%edx
mutex_enter+7: movl   0x4(%esp),%ecx
mutex_enter+0xb: xorl   %eax,%eax
mutex_enter+0xd: lock cmpxchgl %edx,(%ecx)

had to panic when the atomic compare-and-exchange instruction tried to swap the 
contents of the mutex with curthread. Obviously, a NULL pointer was passed as mutex 
address.

7.3.3.How to get there – understanding the stacktrace
The next step in analysis of this crashdump is to examine where this NULL pointer 
came from. Since we wrote NULL into rootdir, we know the answer to that already of 
course, but what remains to be explained is how this action of ours explains the 
symptoms seen in the crashdump.

The task therefore is to walk back the call history and identify where the NULL that was 
passed as an argument to mutex_enter() was taken from, and ultimately whether 
what we find is consistent with the corruption of rootdir we created deliberately. The 
history of the panic lies in the call path that lead to it, and that in turn is contained in 
the stacktrace.

What is a stacktrace ? Strictly speaking, the word is incorrect and what should be used 
is call trace or backtrace. It contains the list of functions called by a thread up to a 
certain point in time – in the case of the panicing thread, of course, from the making 
the system call to the panic. As chapter 2 has shown, function calling in x86 via 
call/ret uses the stack to save return addresses. Because most CPU architectures do 
this, the words call trace, backtrace and stacktrace are used synonymously, and they 
describe using the saved return addresses from the stack to reconstruct the calling 
sequence that lead to, in this case, the panic.

A stacktrace was already printed as part of the panic messages:

d010dce8 unix:die+a7 (e, d010dd88, 0, 0)
d010dd74 unix:trap+fd1 (d010dd88, 0, 0)
d010dd88 unix:_cmntrap+83 ()
d010dde4 unix:mutex_enter+d (d010de10, 0, 1, 0, )
d010de68 genunix:lookupnameat+54 (ceb50d00, 0, 1, 0, )
d010df0c genunix:vn_openat+6c (ceb50d00, 0, 1, 6, )
d010df70 genunix:copen+24f (ffd19553, ceb50d00,)
d010df88 genunix:open+18 (ceb50d00, 0, 6, fec)

The builtin $C command of mdb allows us to reprint the panic stack:

> $C
d010dde4 mutex_enter+0xd(d010de10, 0, 1, 0, d010df00, 0)
d010de68 lookupnameat+0x54(ceb50d00, 0, 1, 0, d010df00, 0)
d010df0c vn_openat+0x6c(ceb50d00, 0, 1, 6, d010df6c, 0)
d010df70 copen+0x24f()
d010df88 open+0x18()
d010dfb4 sys_sysenter+0xe0()

The $C dcmd also accepts a framepointer as an argument, to start backtracing 
arbitrary (not just the panic thread's) stacks. If we give it the saved %ebp from the 
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panic registers, it gives:

[ ... ]
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module “unix”
[ ... ]
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
[ ... ]
> d010dde4$C
d010de68 lookupnameat+0x54(ceb50d00, 0, 1, 0, d010df00, 0)
d010df0c vn_openat+0x6c(ceb50d00, 0, 1, 6, d010df6c, 0)
d010df70 copen+0x24f()
d010df88 open+0x18()
d010dfb4 sys_sysenter+0xe0()

These three stacktraces are identical in the bottom part but different for the top few 
frames that they show. Before we address the question why these are different and 
which one (if any) is right, let's first investigate two more basic things:

1. How does backtracing work at all ? How does the debugger do it, and what is the 
meaning of the addresses and function names/offsets reported ?

2. How can the debugger know what function arguments are – and, as it seems, how 
many arguments a function takes ? Also, are these to be trusted ?

Stack backtracing requires that function return addresses (i.e. code locations within a 
function where another function was called, or where execution is supposed to resume 
once the called function returns) are present in the stack. That's a given on the x86 
architecture because of the way call/ret works – by pushing/popping return address 
to/from the stack. But the information “where in function X was function Y called” 
alone isn't sufficient. Once a return address has been located in the stack, a hint is 
required to find the next one – the debugger cannot, all by itself, know how many bytes 
of stackspace separate two consecutive return addresses. The stack is simply an array 
of stackframes that vary in size.

There are in principle two ways how this can be solved:

1. Make the packed array of variable-sized stackframes into a linked list, i.e. add a 
“next” pointer to every stackframe.
In order to perform a backtrace then, the debugger only needs to locate the linkage 
field and follow that.
This method will work with 32bit x86 stacks that use framepointers. More below.

2. Provide external information (debugging stabs) to the debugger about the frame 
size for a given function.
To perform a backtrace in this case, the debugger needs to lookup the framesize 
information for a return address found, and add (stacks grow downward) that to the 
stack location of the return address in order to find the next return address.
The advantage of this method of backtracing is that it can be made to work even if 
stackframes aren't linked, i.e. that do not use framepointers. The disadvantage 
clearly is that it requires external information that may or may not be available.

We'll defer 2. till later when talking about AMD64 backtracing. As mentioned, the 
presence of framepointers, i.e. the way the function prologue on 32bit x86 works:

lookupnameat: pushl  %ebp save caller's framepointer
lookupnameat+1: movl   %esp,%ebp our %ebp now points to caller's %ebp
[ ... ]

establishes a linkage between stackframes – every framepointer in itself points to the 
framepointer of the caller, and so on. When we dump the stack as raw data, we 
therefore find:
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panic[cpu0]/thread=d0055600: 
BAD TRAP: type=e (#pf Page fault) rp=d010dd88 addr=0 occurred in module "unix" 
due to a NULL pointer dereference
[ ... ]
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
[ ... ]
> d010dd88,100/nap
[ ... ]
0xd010dda0:     0xd010dde4      %ebp from trapframe
[ ... ]
0xd010ddc0:     mutex_enter+0xd
0xd010ddc4:     0x158
0xd010ddc8:     0x10246 end of trapframe
0xd010ddcc:     lookuppnat+0x8f end of stack-before-trap
[ ... ]
0xd010dde4:     0xd010de68
0xd010dde8:     lookupnameat+0x54
[ ... ]
0xd010de68:     0xd010df0c      
0xd010de6c:     vn_openat+0x6c  
[ ... ]
0xd010df0c:     0xd010df70      
0xd010df10:     copen+0x24f     
[ ... ]
0xd010df70:     0xd010df88
0xd010df74:     open+0x18
[ ... ]              
0xd010df88:     0xd010dfb4
0xd010df8c:     sys_sysenter+0xe0
[ ... ]
0xd010dfb4:     0x1c3
0xd010dfb8:     0
0xd010dfbc:     0x173
0xd010dfc0:     0x173
0xd010dfc4:     6
0xd010dfc8:     0xcebd2000
0xd010dfcc:     0x80477c0
0xd010dfd0:     0xd010dfe4
0xd010dfd4:     0xceb46000
0xd010dfd8:     0xceb1db75
0xd010dfdc:     0x80477a8
0xd010dfe0:     5
0xd010dfe4:     0x208
0xd010dfe8:     0
0xd010dfec:     0xceb1db75
0xd010dff0:     0x16b
0xd010dff4:     0x282
0xd010dff8:     0x80477a8
0xd010dffc:     0x173
mdb: failed to read data from target: no mapping for address
0xd010e000:
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This is, of course, exactly the work that mdb does automatically on $C. Compare:

Output of $C manually following framepointers

> $C
d010dde4 mutex_enter+0xd([ ... ])

d010de68 lookupnameat+0x54([ ... ])

d010df0c vn_openat+0x6c([ ... ])

d010df70 copen+0x24f()

d010df88 open+0x18()

d010dfb4 sys_sysenter+0xe0()

<ebp=X;<eip=p;<ebp/nXp
            d010dde4        
mutex_enter+0xd
0xd010dde4:     
            d010de68 lookupnameat+0x54
> *./nXp
0xd010de68:
            d010df0c vn_openat+0x6c  
> *./nXp
0xd010df0c:     
            d010df70 copen+0x24f     
> *./nXp
0xd010df70:     
            d010df88 open+0x18       
> *./nXp
0xd010df88:
            d010dfb4 sys_sysenter+0xe0
> *./nXp
0xd010dfb4:     
            1c3      0

So the backtrace printed by mdb on $C simply consists of the framepointer/return 
address pairs in the stack.

We can also see that $C, when printing the panic thread's stacktrace, uses %ebp/%eip 
from the trapframe to print as the first line. That would be correct had the bad trap 
happened within a function that initialized a framepointer of its own – but 
mutex_enter(), simple as the code is, doesn't do that:

mutex_enter: movl   %gs:0x10,%edx
mutex_enter+7: movl   0x4(%esp),%ecx
mutex_enter+0xb: xorl   %eax,%eax
mutex_enter+0xd: lock cmpxchgl %edx,(%ecx)
mutex_enter+0x11: jne    +0xbbb5  <mutex_vector_enter>
mutex_enter+0x17: ret
mutex_enter+0x18: movl   $0x0,%eax

This of course means that the framepointer, %ebp, at the time of the panic, still was 
that of the caller of mutex_enter(). Disassembly for the stackframe immediately 
below it also shows that the return address there isn't from a call to mutex_enter():

d010dde4 mutex_enter+0xd(d010de10, 0, 1, 0, d010df00, 0)
d010de68 lookupnameat+0x54(ceb50d00, 0, 1, 0, d010df00, 0)
[ ... ]
> lookupnameat+0x54::dis
[ ... ]
lookupnameat+0x4f: call   +0x79    <lookuppnat>
lookupnameat+0x54: addl   $0x18,%esp

So how did we get from lookuppnat() to mutex_enter() ?

Simply follow the code. The bad trap happened in mutex_enter+0xd, without anything 
else having been pushed on the stack (or the stackpointer changed directly) by that 
function. This means – the stackpointer %esp at the time of the panic, in this case, 
points to the return address into the caller of mutex_enter():
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> d010dd88,40/nap
0xd010dd88:     
0xd010dd88:     0xd00401b0      
0xd010dd8c:     0xd0140000      
0xd010dd90:     0x160           
0xd010dd94:     0xd0130160      
0xd010dd98:     0xd010de10      
0xd010dd9c:     0xcfa379f0      
0xd010dda0:     0xd010dde4      
0xd010dda4:     0xd010ddb8      
0xd010dda8:     0               
0xd010ddac:     0xd0055600      
0xd010ddb0:     0               
0xd010ddb4:     0               
0xd010ddb8:     0xe             
0xd010ddbc:     2               
0xd010ddc0:     mutex_enter+0xd 
0xd010ddc4:     0x158           
0xd010ddc8:     0x10246         
0xd010ddcc:     lookuppnat+0x8f
0xd010ddd0:     0
[ ... ]
> lookuppnat+0x8f::dis
[ ... ]
lookuppnat+0x89:                pushl  %ebx
lookuppnat+0x8a:                call   -0xa00ef <mutex_enter>
lookuppnat+0x8f:                addl   $0x4,%esp

7.3.4.Finding function arguments
The next question to address is how the debugger finds arguments when displaying 
the backtrace, whether they're correct and in case they're not, how we can find the 
real function arguments manually.

It has already been shown that mdb's $C dcmd in 32bit x86 prints different numbers of 
arguments for different functions. Before we do this for the panic thread, let's first 
look at a more-complicated stacktrace that illustrates the underlaying principles 
better:

> cff19d00$C                          
cff19d1c swtch+0x119()
cff19d40 cv_wait_sig+0x119(cf830c16, cf83a964)
cff19d54 str_cv_wait+0x82(cf830c16, cf83a964, ffffffff, 0)
cff19d88 strwaitq+0x1a6(cf83a918, 2, 80, 3, ffffffff, cff19dd8)
cff19ddc strread+0x116(cf833c00, cff19f3c, ceefff38)
cff19df8 iwscnread+0x39()
cff19e0c cdev_read+0x22(380000, cff19f3c, ceefff38)
cff19e38 cnread+0x40()
cff19e4c cdev_read+0x22(0, cff19f3c, ceefff38)
cff19e90 spec_read+0x208()
cff19eac fop_read+0x1b(cfe2ec00, cff19f3c, 0, ceefff38, 0)
cff19f88 read+0x1f9()
cff19fb4 sys_sysenter+0xe0()

mdb in the backtrace above shows between two and six function arguments. From 
deduction, we already see that it cannot be fully correct about what it shows. For 
example, read(9e) functions, like all those *read() above, take three arguments as 
per the DDI interface specification, but the debugger shows between zero and four 
which cannot be right.

We know, from the way stacks on 32bit x96 work, that arguments are passed on the 
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stack and functions access them via +8(%ebp) onwards. This is of course what mdb 
does above. Verify it:

[ ... ]
cff19d54 str_cv_wait+0x82(cf830c16, cf83a964, ffffffff, 0)
[ ... ]
cff19d88 strwaitq+0x1a6(cf83a918, 2, 80, 3, ffffffff, cff19dd8)
[ ... ]
> cff19d54+8,4/nX
0xcff19d5c:     
                cf830c16        
                cf83a964        
                ffffffff        
                0               
> cff19d88+8,6/nX
0xcff19d90:     
                cf83a918        
                2               
                80              
                3               
                ffffffff        
                cff19dd8

But where does mdb get the idea from how many arguments it should print ? And why 
is it off in some cases ?

The answer to that lies  in the return addresses, or rather in the instructions that they 
point to. We find:

return addresses/arguments Instr. at ret. addr.

> cff19d00$c
swtch+0x119()

cv_wait_sig+0x119(cf830c16, cf83a964)
str_cv_wait+0x82(cf830c16, cf83a964, ffffffff, 0)

strwaitq+0x1a6(cf83a918, 2, 80, 3, ffffffff, cff19dd8)
strread+0x116(cf833c00, cff19f3c, ceefff38)

iwscnread+0x39()
cdev_read+0x22(380000, cff19f3c, ceefff38)

cnread+0x40()
cdev_read+0x22(0, cff19f3c, ceefff38)

spec_read+0x208()
fop_read+0x1b(cfe2ec00, cff19f3c, 0, ceefff38, 0)

read+0x1f9()
sys_sysenter+0xe0()

addl   $0x4,%esp
movzwl 0x18(%ebx),%eax
addl   $0x8,%esp
addl   $0x10,%esp
addl   $0x18,%esp
addl   $0xc,%esp
movl   %ebp,%esp
addl   $0xc,%esp
movl   %ebp,%esp
addl   $0xc,%esp
movl   %ebp,%esp
addl   $0x14,%esp
xorl   %ecx,%ecx

We notice that:

1. mdb prints arguments for those functions where the return address to the caller 
points to an instruction addl ...,%esp.
It does not print arguments for functions where the return address to the caller 
points to some other instruction.
Example:

• read() calls fop_read(), and the return address into read+... for that call 
points to addl $0x14,%esp. mdb prints arguments for fop_read().

• fop_read() calls spec_read(), but now the return address to fop_read+... 
points to some other instruction. mdb prints no arguments for spec_read().

2. The number of arguments displayed is deduced from the size of the 1st operand of 
the addl ...,%esp.
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The debugger uses the fact that in many cases, compiler-generated code will clean up 
the stack after return from a function call. This means that code that calls a function 
with N arguments (and therefore pushes N 32bit words to the stack before call) will 
need to remove these N arguments from the stack again. In order to do that, the code 
pops them to nowhere by explicitly adding 4*N Bytes to the stackpointer. Like this:

strread+0xfd: leal   -0x4(%ebp),%eax
strread+0x100: pushl  %eax
strread+0x101: pushl  $-0x1
strread+0x103: movswl 0x14(%edi),%eax
strread+0x107: pushl  %eax
strread+0x108: pushl  0x20(%edi)
strread+0x10b: movsbl -0x28(%ebp),%eax
strread+0x10f: pushl  %eax
strread+0x110: pushl  %ebx
strread+0x111: call   +0xba3d  <strwaitq>
strread+0x116: addl   $0x18,%esp

I.e. we've pushed six arguments for strwaitq(), and remove 6*4=0x18 Bytes from the 
stack after return from that function call.

As the example above has already shown, it's nothing more than code generation 
convention (and not mandated by the i386 UNIX ABI) that the return address shall 
point to an addl instruction that cleans up the stack. The compiler on optimizing code 
can decide to put something else in there and decide to do the stack cleanup later (or 
not at all, i.e. leave it for the function epilogue).

So, for cases where the debugger does not report arguments, how can we find how 
many arguments the function actually has ? There are two indirect ways of doing it:

1. Look at the assembly code of the caller and count the PUSH instructions that were 
done before the call. As an example, the following code for fop_read() proves it 
has passed five arguments to spec_read():

[ ... ]
cff19e90 spec_read+0x208()
cff19eac fop_read+0x1b(cfe2ec00, cff19f3c, 0, ceefff38, 0)
[ ... ]
> fop_read::dis
fop_read:                       pushl  %ebp
fop_read+1:                     movl   %esp,%ebp
fop_read+3:                     movl   0x8(%ebp),%ecx
fop_read+6:                     movl   0x28(%ecx),%eax
fop_read+9:                     movl   0xc(%eax),%eax
fop_read+0xc:                   pushl  0x18(%ebp)
fop_read+0xf:                   pushl  0x14(%ebp)
fop_read+0x12:                  pushl  0x10(%ebp)
fop_read+0x15:                  pushl  0xc(%ebp)
fop_read+0x18:                  pushl  %ecx
fop_read+0x19:                  call   *%eax
fop_read+0x1b:                  movl   %ebp,%esp
fop_read+0x1d:                  popl   %ebp
fop_read+0x1e:                  ret

2. Check the assembly code for the called function and see how many +...(%ebp) 
references it makes. Since we know the function accesses its arguments using the 
framepointer, +8(%ebp) onwards, this allows us to count how many arguments it 
actually uses. It's possible for a function to ignore some of its arguments, but of 
course it'd be bad if it used more args than were passed in. In that sense, checking 
for the numbers of arguments used is a complementary consistency check compared 
to checking the number of arguments passed in.
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Applying this technique to spec_read() as above tells us it uses three arguments, 
8(%ebp), c(%ebp), and 0x14(%ebp). It ignores its third arg, +0x10(%ebp), and any 
arg past the fourth.

> spec_read::dis ! egrep '[^-]0x[0-9a-f]+\(%ebp'
spec_read+0xd:                  movl   0x8(%ebp),%esi
spec_read+0x40:                 pushl  0x14(%ebp)
spec_read+0x43:                 pushl  0xc(%ebp)
spec_read+0x56:                 movl   0xc(%ebp),%edi
spec_read+0xf1:                 movl   0xc(%ebp),%esi
spec_read+0x1fb:                pushl  0x14(%ebp)

Of course, if we want to find the five arguments that were passed to spec_read() 
above, we can dump them from memory starting at +8(%ebp):

[ ... ]
cff19e90 spec_read+0x208()
[ ... ]

> cff19e90+8,5/nX
0xcff19e98:     
                cfe2ec00        
                cff19f3c        
                0               
                ceefff38        
                0

Quod erat demonstrandum !

Now let's revisit the panic backtrace:

> $C
d010dde4 mutex_enter+0xd(d010de10, 0, 1, 0, d010df00, 0)
d010de68 lookupnameat+0x54(ceb50d00, 0, 1, 0, d010df00, 0)
d010df0c vn_openat+0x6c(ceb50d00, 0, 1, 6, d010df6c, 0)
d010df70 copen+0x24f()
d010df88 open+0x18()
d010dfb4 sys_sysenter+0xe0()

This shows another oddity: mdb doesn't display more than six arguments even though 
some of the functions above take more than that. For example, <sys/vnode.h> 
declares the function prototype:

int     vn_openat(char *pnamep, enum uio_seg seg, int filemode, int createmode,
                struct vnode **vpp, enum create crwhy,
                mode_t umask, struct vnode *startvp);

which takes eight arguments. The return address:

> copen+0x24f/i
copen+0x24f:    addl   $0x20,%esp

confirms this (8*4 = 32 = 0x20). This is mdb's default setting – print no more than six 
arguments in stacktraces. The user can override this by giving the number of args to 
print (if possible) as additional option: $C ... – see below.

Summary:

• The debugger determines the number of arguments to print from inspecting the 
instruction at the return address. If this adjusts the stackpointer via addl, then

• the 1st operand is used as the number of stack words to print

• mdb prints at most six arguments by default. That's a deliberate limitation – it 
can be overridden. Just specify the maximum number of arguments to print as 
additional parameter to $C:
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> $C 10
d010dde4 mutex_enter+0xd(d010de10, 0, 1, 0, d010df00, 0)
d010de68 lookupnameat+0x54(ceb50d00, 0, 1, 0, d010df00, 0)
d010df0c vn_openat+0x6c(ceb50d00, 0, 1, 6, d010df6c, 0, 12, 0)
d010df70 copen+0x24f()
d010df88 open+0x18()
d010dfb4 sys_sysenter+0xe0()

• If the debugger prints arguments, they can be considered correct because they are 
on the stack and C code is supposed to treat its arguments read-only. Meaning the 
area on the stack where the arguments of a function are will not be modified by this 
function during its lifetime.

• If the debugger does not print arguments, it means the return address was found 
not to be an addl instruction. In this case:

• disassemble the caller to see how many arguments it pushes to the stack

• disassemble the called function to see how many arguments it accesses, i.e. how 
many +8(%ebp) onwards references it has in its assembly code.

• use the framepointer (the address printed to the left of the return instruction in 
stacktraces from $C or ::findstack) and dump N 32bit words of memory starting 
at +8(%ebp).

7.3.5.Piecing it all together
Now let's determine the rootcause for this panic. We already know the BAD TRAP 
occurred because mutex_enter() was called with a NULL as argument. This is found in 
the stack:

[ ... ]
0xd010ddbc:     2               
0xd010ddc0:     mutex_enter+0xd 
0xd010ddc4:     0x158           
0xd010ddc8:     0x10246         
0xd010ddcc:     lookuppnat+0x8f
0xd010ddd0:     0

and the code that calls mutex_enter(),

lookuppnat+0x89:                pushl  %ebx
lookuppnat+0x8a:                call   -0xa00ef <mutex_enter>
lookuppnat+0x8f:                addl   $0x4,%esp

together with the value of %ebx from the saved registers:

> d010dd88::print -a "struct regs"
{
[ ... ]
    d010dda8 r_ebx = 0
[ ... ]
> ::msgbuf
[ ... ]
        ebx:        0 edx: d0055600 ecx:        0 eax:        0
[ ... ]

proves we're looking at the “right” NULL. The task therefore is now to evaluate where 
that NULL pointer came from. We disassemble lookuppnat() for that purpose and 
check where it takes %ebx from:

> lookuppnat::dis ! grep %ebx
lookuppnat+6: pushl %ebx
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lookuppnat+0x25: popl %ebx
lookuppnat+0x77: movl 0x1c(%ebp),%ebx
lookuppnat+0x7a: testl %ebx,%ebx
lookuppnat+0x7e: movl 0x44c(%esi),%ebx
lookuppnat+0x86: movl -0x4(%ebp),%ebx
lookuppnat+0x89: pushl %ebx arg of mutex_enter() comes from here !
lookuppnat+0x92: incl 0xc(%ebx)
lookuppnat+0x95: pushl %ebx
lookuppnat+0xcf: pushl %ebx
lookuppnat+0xed: popl %ebx

The push and pop instructions probably are parts of prologues/epilogues. The testl 
doesn't modify %ebx, so we're left with the following three that we need to check 
further:

[ ... ]
lookuppnat+0x77: movl 0x1c(%ebp),%ebx
lookuppnat+0x7e: movl 0x44c(%esi),%ebx
lookuppnat+0x86: movl -0x4(%ebp),%ebx

The first one is an access to the 6th argument to lookuppnat(). We get that from the 
stack, using the framepointer that we know:

> d010dde4+1c/X
0xd010de00:     0

Hmm, so there's a NULL in there. Let's cheat and check sources, <sys/pathname.h>:

extern int lookuppnat(struct pathname *, struct pathname *, enum symfollow,
                vnode_t **, vnode_t **, vnode_t *);

That'd be a possibly valid place where a mutex address could come from, because the 
vnode_t data structure's first member, v_lock is a mutex. But then, the others can not 
yet be excluded. Let's check the assembly code again:

lookuppnat+0x77: movl   0x1c(%ebp),%ebx
lookuppnat+0x7a: testl  %ebx,%ebx
lookuppnat+0x7c: jne    +0xd     <lookuppnat+0x89>
lookuppnat+0x7e: movl   0x44c(%esi),%ebx
lookuppnat+0x84: jmp    +0x5     <lookuppnat+0x89>
lookuppnat+0x86: movl   -0x4(%ebp),%ebx
lookuppnat+0x89: pushl  %ebx
lookuppnat+0x8a: call   -0xa00ef <mutex_enter>
lookuppnat+0x8f: addl   $0x4,%esp

Well – we load arg#6 into %ebx, check whether it's NULL – and only go on to call 
mutex_enter() on it if it is not – jne. We cannot have taken that first path.

The second occurance takes %ebx from 0x44c(%esi). Making the assumption that we'd 
gone down that path, we know that %esi wouldn't have changed between the above 
place and the time the panic occurred, and therefore we can use its value from the 
trapframe/saved registers to check what's in 0x44c(%esi):

> d010dd88::print -a "struct regs"
{
[ ... ]
    d010dd9c r_esi = 0xcfa379f0
[ ... ]
> ::msgbuf
[ ... ]
        edi: d010de10 esi: cfa379f0 ebp: d010dde4 esp: d010ddb8
[ ... ]
> 0xcfa379f0+44c/X
0xcfa37e3c:     cf679d80
> cf679d80::whatis
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cf679d80 is cf679d80+0, allocated from vn_cache

This value is a vnode, and it's not NULL – so we cannot have gone down that codepath 
either. Leaves only the third possibility, -4(%ebp). The NULL must have come from this 
local variable of lookuppnat(). The stack contents show this is NULL:

> d010dde4-4/X
0xd010dde0: 0

Now check the assembly code for places where lookuppnat() modifies this value:

> lookuppnat::dis ! egrep -e '-0x4\(%ebp\)$'
lookuppnat+0x3b: movl   %eax,-0x4(%ebp)
lookuppnat+0x6c: movl   %eax,-0x4(%ebp)

Disassemble around these areas to find out more:

> lookuppnat+0x3b::dis
lookuppnat+0x23:                popl   %edi
lookuppnat+0x24:                popl   %esi
lookuppnat+0x25:                popl   %ebx
lookuppnat+0x26:                movl   %ebp,%esp
lookuppnat+0x28:                popl   %ebp
lookuppnat+0x29:                ret
lookuppnat+0x2a:                pushl  0x8(%esi)
lookuppnat+0x2d:                call   -0xa0092 <mutex_enter>
lookuppnat+0x32:                addl   $0x4,%esp
lookuppnat+0x35:                movl   0x450(%esi),%eax
lookuppnat+0x3b:                movl   %eax,-0x4(%ebp)
lookuppnat+0x3e:                testl  %eax,%eax
lookuppnat+0x40:                je     +0x27    <lookuppnat+0x67>
[ ... ]
> lookuppnat+0x6c::dis
[ ... ]
lookuppnat+0x67:                movl   0xfed369d8,%eax
lookuppnat+0x6c:                movl   %eax,-0x4(%ebp)
lookuppnat+0x6f:                movl   0x4(%edi),%eax
lookuppnat+0x72:                cmpb   $0x2f,(%eax)
lookuppnat+0x75:                je     +0x11    <lookuppnat+0x86>
[ ... ]
Can we have gone down the first codepath ? Obviously not – if there is a NULL at 
0x450(%esi), the testl/je would take us straight to the second codepath.

If mdb were a bit more friendly about printing symbol names instead of an address like 
0xfed369d8 within the code, everything would be already clear. So we need an 
additional step:

> 0xfed369d8::whatis
fed369d8 is rootdir+0 in genunix's bss
> 0xfed369d8/X
rootdir:
rootdir:        0
> 0xfed369d8::whattype
fed369d8 is fed369d8+0, vnode_t *

And there we are – rootdir, the very variable that we NULL'ed out deliberately.
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7.4.64bit kernel crashdump analysis – well known 
example
As introduction to crashdump analysis on Solaris/x86 64bit, we again use deliberate 
corruption of rootdir. Since we've already seen a dump where we write NULL there, 
let's now try something different: 0x1234567890abcdef. Run this to reproduce:

echo "rootdir/Z 0x1234567890abcdef" | mdb -kw

7.4.1.Panic messages
The machine panics similar to this:

The panic message consists of the same components that we already know from 32bit 
x86 (or SPARC) crashdumps:

1. The panic string. It's a bad trap again, but a general protection fault, #GP:

panic[cpu0]/thread=ffffffff859ef900:
BAD TRAP: type=d (#gp General protection) rp=ffffffffb2ef8bf0 addr=feef0180

2. The register dump for general-purpose and control register contents. Again, this is 
only shown (and only meaningful) because the reason for the panic is a BAD TRAP.

• As in 32bit mode, the register dump is a prettyprint version of the trapframe, and 
the address of that is in found both in the rp=... field and the framepointer of 
cmntrap().
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panicing instruction

backtrace:
• framepointers
• return addresses
• no arguments !

address of saved registers
one stackpointer

panic[cpu0]/thread=ffffffff859ef900: 
BAD TRAP: type=d (#gp General protection) rp=ffffffffb2ef8bf0 addr=feef0180

sh: 
#gp General protection
addr=0xfeef0180
pid=657, pc=0xfffffffffe825dbb, sp=0xffffffffb2ef8cd8, eflags=0x10246
cr0: 8005003b<pg,wp,ne,et,ts,mp,pe> cr4: 6f0<xmme,fxsr,pge,mce,pae,pse>
cr2: feef0180 cr3: 7f070000 cr8: 0
        rdi: 1234567890abcdef rsi:                0 rdx: ffffffff859ef900
        rcx:                0  r8: ffffffffb2ef8e78  r9:                0
        rax:                0 rbx: 1234567890abcdef rbp: ffffffffb2ef8d40
        r10:          8047d28 r11:                0 r12: ffffffffb2ef8d70
        r13: 1234567890abcdef r14: ffffffff82042c40 r15:                0
        fsb: ffffffff80000000 gsb: fffffffffec2c4a0  ds:               43
         es:               43  fs:                0  gs:                0
        trp:                d err:                0 rip: fffffffffe825dbb
         cs:               28 rfl:            10246 rsp: ffffffffb2ef8cd8
         ss:               30

ffffffffb2ef8af0 unix:real_mode_end+4611 (ffffffffb2ef8c90, fffffffff)
ffffffffb2ef8be0 unix:trap+964 ()
ffffffffb2ef8bf0 unix:cmntrap+11b ()
ffffffffb2ef8d40 unix:mutex_enter+b ()
ffffffffb2ef8e00 genunix:lookupnameat+86 ()
ffffffffb2ef8e50 genunix:cstatat_getvp+115 ()
ffffffffb2ef8eb0 genunix:cstatat64_32+49 ()
ffffffffb2ef8ec0 genunix:stat64_32+22 ()

syncing file systems...

panic[cpu0]/thread=ffffffff859ef900: 
BAD TRAP: type=d (#gp General protection) rp=ffffffffb2ef8bf0 addr=feef0180

sh: 
#gp General protection
addr=0xfeef0180
pid=657, pc=0xfffffffffe825dbb, sp=0xffffffffb2ef8cd8, eflags=0x10246
cr0: 8005003b<pg,wp,ne,et,ts,mp,pe> cr4: 6f0<xmme,fxsr,pge,mce,pae,pse>
cr2: feef0180 cr3: 7f070000 cr8: 0
        rdi: 1234567890abcdef rsi:                0 rdx: ffffffff859ef900
        rcx:                0  r8: ffffffffb2ef8e78  r9:                0
        rax:                0 rbx: 1234567890abcdef rbp: ffffffffb2ef8d40
        r10:          8047d28 r11:                0 r12: ffffffffb2ef8d70
        r13: 1234567890abcdef r14: ffffffff82042c40 r15:                0
        fsb: ffffffff80000000 gsb: fffffffffec2c4a0  ds:               43
         es:               43  fs:                0  gs:                0
        trp:                d err:                0 rip: fffffffffe825dbb
         cs:               28 rfl:            10246 rsp: ffffffffb2ef8cd8
         ss:               30

ffffffffb2ef8af0 unix:real_mode_end+4611 (ffffffffb2ef8c90, fffffffff)
ffffffffb2ef8be0 unix:trap+964 ()
ffffffffb2ef8bf0 unix:cmntrap+11b ()
ffffffffb2ef8d40 unix:mutex_enter+b ()
ffffffffb2ef8e00 genunix:lookupnameat+86 ()
ffffffffb2ef8e50 genunix:cstatat_getvp+115 ()
ffffffffb2ef8eb0 genunix:cstatat64_32+49 ()
ffffffffb2ef8ec0 genunix:stat64_32+22 ()

syncing file systems...



• As in 32bit mode, we get additional information about

• the panicing process (the shell in this case),

• a reprint of the trap type (#GP)

• the address of the assembly instruction that caused the bad trap. It's printed 
three times – as pc=..., as value of the %rip register, and as symbol name in 
the backtrace, for the frame immediately below the trapframe.

• But there are several things that are different from 32bit mode:

• The order in which the general-purpose registers are printed has changed.
The register print starts with the six argument registers, the remaining 
general-purpose registers follow, including the new ones %r10...%r15 that 64bit 
code can use.

• %rsp is not printed among the general-purpose registers, but only at the end.
It's identical to the value printed as sp=... - and it makes sense !

• Registers %fsb and %gsb are not present in a 32bit x86 crashdump.

• The segment registers contain different values than in 32bit mode. In fact, the 
values they have would be illegal in 32bit mode - %fs/%gs being NULL, and the 
two %es/%ds having userland (0x43 – low 2 bits set, ring 3 segment) values.
See chapter 3 – this is the way the 64bit protected mode works. The CPU 
determines its operating mode (64bit long mode or 32bit compatibility mode) 
based on %cs alone and implicitly assumes flat address spaces.

3. Finally, we get a backtrace. Since the Solaris/x86 64bit kernel uses the top end of 
the address space, all kernel addresses there start with 0xffffff...........
One difference to 32bit mode is very noticeable – no arguments in the 
backtrace !

7.4.2.Immediate cause of the panic - stacktracing
The first thing we notice is that it didn't panic with a pagefault but with a #GP 
("general protection") fault. This is, as mentioned in chapter 3, a peculiar side effect of 
the AMD64 virtual address space hole - addresses between 0x00007fffffffffff and 
0xffff800000000000 are "non-canonical" and create #GP faults on access - not 
pagefaults. It still means that the address is invalid.

The panic message print an addr=... field:

BAD TRAP: type=d (#gp General protection) rp=ffffffffb2ef8bf0 addr=feef0180

But this is nonsense for a #GP trap – because, as with the 32bit version of this crash, 
the kernel simply prints the contents of the pagefault address register %cr2, and that, 
as the name implicates, contains the address of the last pagefault. But here no 
pagefault happened – so %cr2 is stale, and we better forget about what addr=... tells 
us. If we really want to know the faulting address for this, let's look at the panicing 
instruction:

[ ... ]
pid=657, pc=0xfffffffffe825dbb, sp=0xffffffffb2ef8cd8, eflags=0x10246
[ ... ]
        rdi: 1234567890abcdef rsi:                0 rdx: ffffffff859ef900
[ ... ]
        trp:                d err:                0 rip: fffffffffe825dbb
[ ... ]
> fffffffffe825dbb/i
mutex_enter+0xb: lock cmpxchgq %rdx,(%rdi)
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So the #GP fault occurred attempting to perform a 64bit atomic compare-and-swap of 
%rdx with the contents of the memory location %rdi points to. And that, as we see 
from the panic message, contains the value 0x1234567890abcdef that was used to 
corrupt rootdir.

How did we get there ? Let's start with mutex_enter() again:

> mutex_enter::dis
mutex_enter: movq   %gs:0x18,%rdx
mutex_enter+9: xorl   %eax,%eax
mutex_enter+0xb: lock cmpxchgq %rdx,(%rdi)
mutex_enter+0x10: jne    +0xe1b0  <mutex_vector_enter>
mutex_enter+0x16: ret

The first instruction looks surprising, given that the register dump from the panic 
message claimed %gs was NULL. But actually, this is just curthread, x86 64bit style. In 
64bit mode, there's a register, %gsb, which directly holds the segment base address to 
be used when %gs references are made. Look at *(%gsb+0x18) and you'll find:

panic[cpu0]/thread=ffffffff859ef900:
[ ... ]
        fsb: ffffffff80000000 gsb: fffffffffec2c4a0  ds:               43
[ ... ]
> 0xfffffffffec2c4a0+0x18/J | ::whatis
> fffffffffec2c4a0+0x18/J | ::whatis
ffffffff859ef900 is ffffffff859ef900+0, allocated as a thread structure
> panic_thread/J
panic_thread:
panic_thread:   ffffffff859ef900

This is the same code we know from 32bit x86, though we no longer need to look into 
the descriptor tables to find out what %gs really points to. %gsb directly has the pointer 
for us 

mutex_enter() directly exchanges curthread with its first argument, passed in %rdi.

Finding the call sequence that lead to the panic is simpler on x86 in 64bit than in 32bit 
mode – because the reported stackpointer is correct. %rsp/sp=... is the value of the 
kernel stackpointer value before the panic !

This can be crosschecked in two ways:

First, because the last thing that wrote a value to the stack was the call to 
mutex_enter(), we will find a return address at the location %rsp from the saved 
registers points to:

[ ... ]
pid=657, pc=0xfffffffffe825dbb, sp=0xffffffffb2ef8cd8, eflags=0x10246
[ ... ]
         cs:               28 rfl:            10246 rsp: ffffffffb2ef8cd8
[ ... ]
> ffffffffb2ef8cd8/nap
0xffffffffb2ef8cd8:             
0xffffffffb2ef8cd8:             lookuppnat+0xa8 
> lookuppnat+0xa8::dis
[ ... ]
lookuppnat+0xa0:                movq   %rbx,%rdi
lookuppnat+0xa3:                call   -0xe58e3 <mutex_enter>
lookuppnat+0xa8:                incl   0xc(%rbx)
[ ... ]

Second, when looking at the 64bit trapframe, we find that %rsp is only present in the 
bottom hardware part, and points after the end of that – and therefore must have been 
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written by the CPU before dispatching the trap handler:

raw data on the stack saved registers – struct regs

> ffffffffb2ef8bf0,40/nap
0xffffffffb2ef8bf0: 
0xffffffffb2ef8bf0: 0x1234567890abcdef
0xffffffffb2ef8bf8: 0 
0xffffffffb2ef8c00: 0xffffffff859ef900
0xffffffffb2ef8c08: 0 
0xffffffffb2ef8c10: 0xffffffffb2ef8e78
0xffffffffb2ef8c18: 0 
0xffffffffb2ef8c20: 0 
0xffffffffb2ef8c28: 0x1234567890abcdef
0xffffffffb2ef8c30: 0xffffffffb2ef8d40
0xffffffffb2ef8c38: 0x8047d28 
0xffffffffb2ef8c40: 0 
0xffffffffb2ef8c48: 0xffffffffb2ef8d70
0xffffffffb2ef8c50: 0x1234567890abcdef
0xffffffffb2ef8c58: 0xffffffff82042c40
0xffffffffb2ef8c60: 0 
0xffffffffb2ef8c68: 0xffffffff80000000
0xffffffffb2ef8c70: cpus 
0xffffffffb2ef8c78: 0x43 
0xffffffffb2ef8c80: 0x43 
0xffffffffb2ef8c88: 0 
0xffffffffb2ef8c90: 0 
0xffffffffb2ef8c98: 0xd 
0xffffffffb2ef8ca0: 0 
0xffffffffb2ef8ca8: mutex_enter+0xb 
0xffffffffb2ef8cb0: 0x28 
0xffffffffb2ef8cb8: 0x10246 
0xffffffffb2ef8cc0: 0xffffffffb2ef8cd8
0xffffffffb2ef8cc8: 0x30 
0xffffffffb2ef8cd0: 0xffffffffb2ef8cf0
0xffffffffb2ef8cd8: lookuppnat+0xa8

> ffffffffb2ef8bf0::print -a "struct regs"
{
    ffffffffb2ef8bf0 r_rdi = 0x1234567890abcdef
    ffffffffb2ef8bf8 r_rsi = 0
    ffffffffb2ef8c00 r_rdx = 0xffffffff859ef900
    ffffffffb2ef8c08 r_rcx = 0
    ffffffffb2ef8c10 r_r8 = 0xffffffffb2ef8e78
    ffffffffb2ef8c18 r_r9 = 0
    ffffffffb2ef8c20 r_rax = 0
    ffffffffb2ef8c28 r_rbx = 0x1234567890abcdef
    ffffffffb2ef8c30 r_rbp = 0xffffffffb2ef8d40
    ffffffffb2ef8c38 r_r10 = 0x8047d28
    ffffffffb2ef8c40 r_r11 = 0
    ffffffffb2ef8c48 r_r12 = 0xffffffffb2ef8d70
    ffffffffb2ef8c50 r_r13 = 0x1234567890abcdef
    ffffffffb2ef8c58 r_r14 = 0xffffffff82042c40
    ffffffffb2ef8c60 r_r15 = 0
    ffffffffb2ef8c68 r_fsbase = 0xffffffff80000000
    ffffffffb2ef8c70 r_gsbase = 0xfffffffffec2c4a0
    ffffffffb2ef8c78 r_ds = 0x43
    ffffffffb2ef8c80 r_es = 0x43
    ffffffffb2ef8c88 r_fs = 0
    ffffffffb2ef8c90 r_gs = 0
    ffffffffb2ef8c98 r_trapno = 0xd
    ffffffffb2ef8ca0 r_err = 0
    ffffffffb2ef8ca8 r_rip = 0xfffffffffe825dbb
    ffffffffb2ef8cb0 r_cs = 0x28
    ffffffffb2ef8cb8 r_rfl = 0x10246
    ffffffffb2ef8cc0 r_rsp = 0xffffffffb2ef8cd8
    ffffffffb2ef8cc8 r_ss = 0x30
}

The only thing in this stack that seems odd on first glance is the value between the end 
of the trapframe and the saved %rsp:

0xffffffffb2ef8cc8: 0x30 
0xffffffffb2ef8cd0: 0xffffffffb2ef8cf0
0xffffffffb2ef8cd8: lookuppnat+0xa8

But this is, see chapter 3, normal behaviour for 64bit gates – they align the stack at a 
multiple of 16 Bytes. So this in-between value has no meaning – it's padding and just 
old, pre-trap stale information still in this memory location.

So the big 32bit x86 problem “how do I find the kernel stackpointer at the time of the 
panic” is trivial on 64bit x86: We can trust %rsp from the panic register dump.

Stack backtracing in the Solaris/x86 64bit kernel works the same way as before:

Output of $C manually following framepointers

> $C
ffffffffb2ef8d40 mutex_enter+0xb

ffffffffb2ef8e00 lookupnameat+0x86

ffffffffb2ef8e50 cstatat_getvp+0x115

ffffffffb2ef8eb0 cstatat64_32+0x49

ffffffffb2ef8ec0 stat64_32+0x22

<rbp=J;<rip=p;<rbp/nJp
        ffffffffb2ef8d40
mutex_enter+0xb
ffffffffb2ef8d40:     
        ffffffffb2ef8e00 lookupnameat+0x86
> *./nJp
ffffffffb2ef8e00:
        ffffffffb2ef8e50 cstatat_getvp+0x115
> *./nJp
ffffffffb2ef8e50:
        ffffffffb2ef8eb0 cstatat64_32+0x49
> *./nJp
ffffffffb2ef8eb0:
        ffffffffb2ef8ec0 stat64_32+0x22
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Output of $C manually following framepointers

ffffffffb2ef8f20 sys_syscall32+0xd0

0000000008076c90 1

> *./nJp
ffffffffb2ef8ec0:
        ffffffffb2ef8f20 sys_syscall32+0xd0
> *./nJp
0xffffffffb2ef8f20:             
                 8076c90 1

When looking at the raw stack starting with the trap frame, we find the same linkage:

[ ... ]
BAD TRAP: type=d (#gp General protection) rp=ffffffffb2ef8bf0 addr=feef0180
[ ... ]
> ffffffffb2ef8bf0,100/nap
0xffffffffb2ef8bf0:
0xffffffffb2ef8bf0: 0x1234567890abcdef
0xffffffffb2ef8bf8: 0
0xffffffffb2ef8c00: 0xffffffff859ef900
0xffffffffb2ef8c08: 0
0xffffffffb2ef8c10: 0xffffffffb2ef8e78
0xffffffffb2ef8c18: 0
0xffffffffb2ef8c20: 0
0xffffffffb2ef8c28: 0x1234567890abcdef
0xffffffffb2ef8c30: 0xffffffffb2ef8d40
0xffffffffb2ef8c38: 0x8047d28
0xffffffffb2ef8c40: 0
0xffffffffb2ef8c48: 0xffffffffb2ef8d70
0xffffffffb2ef8c50: 0x1234567890abcdef
0xffffffffb2ef8c58: 0xffffffff82042c40
0xffffffffb2ef8c60: 0
0xffffffffb2ef8c68: 0xffffffff80000000
0xffffffffb2ef8c70: cpus
0xffffffffb2ef8c78: 0x43
0xffffffffb2ef8c80: 0x43
0xffffffffb2ef8c88: 0
0xffffffffb2ef8c90: 0
0xffffffffb2ef8c98: 0xd trap number
0xffffffffb2ef8ca0: 0
0xffffffffb2ef8ca8: mutex_enter+0xb
0xffffffffb2ef8cb0: 0x28
0xffffffffb2ef8cb8: 0x10246
0xffffffffb2ef8cc0: 0xffffffffb2ef8cd8
0xffffffffb2ef8cc8: 0x30
0xffffffffb2ef8cd0: 0xffffffffb2ef8cf0 padding – pre-trap aligned %rsp
0xffffffffb2ef8cd8: lookuppnat+0xa8 stack end at time of trap
[ ... ]
0xffffffffb2ef8d40: 0xffffffffb2ef8e00
0xffffffffb2ef8d48: lookupnameat+0x86
[ ... ]
0xffffffffb2ef8e00: 0xffffffffb2ef8e50
0xffffffffb2ef8e08: cstatat_getvp+0x115
[ ... ]
0xffffffffb2ef8e50: 0xffffffffb2ef8eb0
0xffffffffb2ef8e58: cstatat64_32+0x49
[ ... ]
0xffffffffb2ef8eb0: 0xffffffffb2ef8ec0
0xffffffffb2ef8eb8: stat64_32+0x22
0xffffffffb2ef8ec0: 0xffffffffb2ef8f20
0xffffffffb2ef8ec8: sys_syscall32+0xd0
[ ... ]
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0xffffffffb2ef8f20: 0x8076c90
0xffffffffb2ef8f28: 1
0xffffffffb2ef8f30: 0xdf
0xffffffffb2ef8f38: 0xfef9f5a7
0xffffffffb2ef8f40: 0x807330c
0xffffffffb2ef8f48: 0
0xffffffffb2ef8f50: 0xd7
0xffffffffb2ef8f58: 1
0xffffffffb2ef8f60: 0x8047dd4
0xffffffffb2ef8f68: 0x8047e7c
0xffffffffb2ef8f70: 0x296
0xffffffffb2ef8f78: 0x42138701
0xffffffffb2ef8f80: 0
0xffffffffb2ef8f88: 0xffffffff857d6cc0
0xffffffffb2ef8f90: 0xffffffff859ef900
0xffffffffb2ef8f98: 0xffffffff80000000
0xffffffffb2ef8fa0: 0xfeef2000
0xffffffffb2ef8fa8: 0x43
0xffffffffb2ef8fb0: 0x43
0xffffffffb2ef8fb8: 0
0xffffffffb2ef8fc0: 0x1c3
0xffffffffb2ef8fc8: 0xe
0xffffffffb2ef8fd0: 7
0xffffffffb2ef8fd8: 0xfef9f5a7
0xffffffffb2ef8fe0: 0x3b
0xffffffffb2ef8fe8: 0x202
0xffffffffb2ef8ff0: 0x8047d28
0xffffffffb2ef8ff8: 0x43
mdb: failed to read data from target: no mapping for address
0xffffffffb2ef9000:             
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7.4.3.Finding function arguments
It has been shown that in 64bit mode, mdb prints no arguments in backtraces. This of 
course is due to the fact that the x86 64bit ABI uses registers %rdi, %rsi, %rdx, %rcx, 
%r8 and %r9 (in that order) to pass the first six (integer) arguments and only resorts to 
using the stack if there are more. In a call trace the argument registers are 
overwritten each time another function is called, and so we only can reconstruct their 
values at the time of a BAD TRAP, using the contents of the trapframe.

Which is why mdb in 64bit x86 doesn't give arguments in stacktraces. All traces look 
like this:

> $C
ffffffffb2ef8d40 mutex_enter+0xb()
ffffffffb2ef8e00 lookupnameat+0x86()
ffffffffb2ef8e50 cstatat_getvp+0x115()
ffffffffb2ef8eb0 cstatat64_32+0x49()
ffffffffb2ef8ec0 stat64_32+0x22()
ffffffffb2ef8f20 sys_syscall32+0xd0()
0000000008076c90 1()
> *panic_thread::findstack
stack pointer for thread ffffffff859ef900: ffffffffb2ef8c30
  ffffffffb2ef8d40 0x8047d28()
  ffffffffb2ef8e00 lookupnameat+0x86()
  ffffffffb2ef8e50 cstatat_getvp+0x115()
  ffffffffb2ef8eb0 cstatat64_32+0x49()
  ffffffffb2ef8ec0 stat64_32+0x22()
  ffffffffb2ef8f20 sys_syscall32+0xd0()
  0000000008076c90 1()

i.e. no arguments.

How can we overcome this problem ?

Simplest solution at this time is to use act.so from the CTEact package. This, as part 
of the Automated Crash Tool utility package is a loadable mdb module, which provides 
additional dcmds for mdb. Among these is an enhanced stack tracer, in the mdb dcmd 
::act_thread:

> ::load /opt/CTEact/mdb/5.10/amd64/act.so
> ::dcmds ! grep ^act
act                      - Automatic Coredump Tool [-zRu] [-s <dir>]
act_check_bio            - check for threads blocked in biowait
act_check_getblk         - check for threads blocked in getblk
act_check_mutex          - check for threads blocked on mutex's
act_check_rwlock         - check for threads blocked on rwlock's
act_dis_cpus             - print dispatcher queues
act_module_name          - print name of module
act_moutput              - print arguments
act_msgbuf               - print console messages
act_procs                - print number of active processes
act_sunsolve             - print sunsolve string
act_system               - print contenets of /etc/system
act_thread               - print thread [-PCfFnt]
act_thread_summary       - count number of threads
act_utsname              - act do utsname
> *panic_thread::act_thread

***
process id 657 is -sh, parent process is 270
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uid is 0, gid is 0

thread addr ffffffff859ef900, proc addr ffffffff82042c40,
lwp addr ffffffff857d6cc0
Thread bound to cpu id 0

t_state is 0x4 - TS_ONPROC

Scheduling info:
t_pri is 0x3b, t_epri is 0, t_cid is 0x1
scheduling class is: TS
t_disp_time: is 0x25a3eb, 0t2466795
last switched: 4 secs ago,  1 sec before panic on cpu 0
t_stk ffffffffb2ef8f20

stack trace is:

unix: panicsys+0x6e (0xffffffffb2ef89a0,vpanic+0x179,panic_stack+0x1f20,
                     0xfec2c4a0)
unix: vpanic+0x179 ()
unix: fffffffffe835a22 ()
unix: panic (0xfffffffffe87b0d8)
unix: fffffffffe81b607 ()
unix: die (?,?,0xfeef0180,0)
unix: trap+0x964 (0xffffffffb2ef8bf0,0xfeef0180,0)

TRAP FRAME: T_GPFLT general protection fault
        rdi              0      rsio             0
        rdx     0x859ef900      rcx              0
        r8      0xb2ef8e78      r9               0
        rax              0      rbx     0x90abcdef
        rbp     0xb2ef8d40      r10      0x8047d28
        r11              0      r12     0xb2ef8d70
        r13     0x90abcdef      r14     0x82042c40
        r15              0      fsb     0x80000000
        gsb     0xfec2c4a0      ds            0x43
        es            0x43      fs               0
        gs               0      trp            0xd
        err              0      rip     0xfe825dbb
        cs            0x28      rfl        0x10246
        rsp     0xb2ef8cd8      ss            0x30
unix: mutex_enterunix: mutex_enter+0xb ()
genunix: lookuppnat (?,?,1,0,0xffffffffb2ef8e78,?)
genunix: lookupnameat+0x86 (0x8076c90,0x1234567890abcdef,1,0,0xffffffffb2ef8e78,
                            0)
genunix: cstatat_getvp+0x115 (0xffd19553,0x8076c90,1,1,0xffffffffb2ef8e78,
                              0xffffffffb2ef8e80)
genunix: cstatat64_32+0x49 (0xffd19553,0x8076c90,1,0x8047d40,?,0x10)
genunix: stat64_32+0x22 (0xb2ef8f20,0xfe801120)
unix: sys_syscall32+0xd0 ()

act isn't perfect and still getting further enhancements for x86/64bit. We can see, for 
example, that the version of act used here doesn't print the contents of the trap frame 
correctly – the upper 32bits of the 64bit registers are missing. But there are 
arguments in the stacktraces – precisely what we want to see !

::act_thread can be used instead of mdb's builtin ::findstack in order to get 
stacktraces with arguments for a given kernel thread address. It does not, at this time, 
replace $C yet. This is another reason for us – apart from curiosity of course – why we 
should find out how arguments can be reconstructed from stacktraces.
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Passing arguments in registers, especially if these are global like on AMD64, means 
that over the lifetime of a function, especially if that in itself is making more function 
calls, the original contents of the argument registers will be overwritten – with 
variables from the working set, or with new arguments for functions to be called. 
Register reuse is the common case on AMD64. Unlike e.g. SPARC, where arguments 
are also passed in registers but the windowing mechanism provides every function 
with an independent set of argument registers, AMD64 uses the same set of argument 
registers all the time.

Which shows the way out of the problem. Before trying on the crashdump, let's 
investigate the following C sourcecode and the binary created from it:

extern int somefunc(int a1, int a2, int a3, int a4, int a5, int a6);
extern void otherfunc(int b1, int b2, int b3, int b4, int b5, int b6, int b7);

int call_two_funcs(int a, int b, int c, int d, int e, int f)
{

int local;

local = somefunc(1, 2, 3, 4, 5, 6);
otherfunc(a, b, c, d, e, f, local);
return (local);

}

This creates a situation that is common for C sourcecode – arguments of a function are 
needed during the entire lifetime of that function, no matter how many other functions 
were called in-between. Given the ABI, the consequences for the generated code are 
clear: A function that needs its arguments even after making another function call by 
itself will have to store them in a save place – and that's its own stackframe. AMD64 
code therefore will create hidden locals in its stackframe to stuff the arguments in, 
similar to 32bit x86 code that puts the nonvolatile registers to the stack. The binary 
code created from the above example shows this – red instructions move arguments 
into/outof the stack resp. the nonvolatile registers:

call_two_funcs:      pushq  %rbp
call_two_funcs+0x1:  movq   %rsp,%rbp
call_two_funcs+0x4:  subq   $0x40,%rsp
call_two_funcs+0x8:  movq   %r12,-0x20(%rbp)
call_two_funcs+0xc:  movq   %r13,-0x18(%rbp)
call_two_funcs+0x10: movl   %r9d,%r12d
call_two_funcs+0x13: movq   %r14,-0x10(%rbp)
call_two_funcs+0x17: movq   %r15,-0x8(%rbp)
call_two_funcs+0x1b: movl   %ecx,%r14d
call_two_funcs+0x1e: movl   %edi,-0x2c(%rbp)
call_two_funcs+0x21: movl   %esi,-0x30(%rbp)
call_two_funcs+0x24: movl   %edx,%r15d
call_two_funcs+0x27: movl   %r8d,%r13d
call_two_funcs+0x2a: movl   $0x6,%r9d
call_two_funcs+0x30: movl   $0x5,%r8d
call_two_funcs+0x36: movl   $0x4,%ecx
call_two_funcs+0x3b: movl   $0x3,%edx
call_two_funcs+0x40: movl   $0x2,%esi
call_two_funcs+0x45: movl   $0x1,%edi
call_two_funcs+0x4a: movq   %rbx,-0x28(%rbp)
call_two_funcs+0x4e: call   +0x5        <call_two_funcs+0x53>
call_two_funcs+0x53: movl   -0x30(%rbp),%esi
call_two_funcs+0x56: movl   -0x2c(%rbp),%edi
call_two_funcs+0x59: movl   %eax,%ebx
call_two_funcs+0x5b: movl   %r12d,%r9d
call_two_funcs+0x5e: movl   %r13d,%r8d
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call_two_funcs+0x61: movl   %r14d,%ecx
call_two_funcs+0x64: movl   %r15d,%edx
call_two_funcs+0x67: movl   %eax,(%rsp)
call_two_funcs+0x6a: call   +0x5        <call_two_funcs+0x6f>
call_two_funcs+0x6f: movl   %ebx,%eax
call_two_funcs+0x71: movq   -0x20(%rbp),%r12
call_two_funcs+0x75: movq   -0x28(%rbp),%rbx
call_two_funcs+0x79: movq   -0x18(%rbp),%r13
call_two_funcs+0x7d: movq   -0x10(%rbp),%r14
call_two_funcs+0x81: movq   -0x8(%rbp),%r15
call_two_funcs+0x85: leave  
call_two_funcs+0x86: ret

This behaviour of compiler-generated code of course means that we'll often be able to 
find arguments for functions in 64bit x86 backtraces if we use the following strategy:

1. Disassemble the function you want to find the arguments for, and determine 
whether it moves the argument registers into the stack, i.e. into locals -...(%rbp).
If it does, you've found them.

2. If not, see whether it moves argument registers into nonvolatile registers, i.e. from 
registers %rdi/%rsi/%rdx/%rcx/%r8/%r9 to %rbx/%r12/%r13/%r14/%r15.
If it does, disassemble the next function in the call trace. This will probably, as part 
of its function prologue, save (some or all of) the nonvolatile registers onto the 
stack. Do that recursively until all nonvolatile regs are on the stack – or until you 
find a trapframe and get the remaining register contents from there.

3. If the function you started out with did neither save its argument registers to the 
stack nor put them into nonvolatile registers, go back to the previous function (i.e. 
the caller) in the call trace and determine where the arguments to your function of 
interest were taken from.

This process, as indicated by the ACT output, can be automated to a certain extent. 
There's no guarantee that this succeeds, of course – ACT, if it cannot determine where 
an argument went, will print ? instead:

[ ... ]
genunix: lookuppnat (?,?,1,0,0xffffffffb2ef8e78,?)
[ ... ]

In the case shown, act failed to find the first two and the sixth arguments to 
lookuppnat(). Let's try the procedure manually and see whether we can do better:

> lookuppnat::dis
lookuppnat:                     pushq  %rbp
lookuppnat+1:                   movq   %rsp,%rbp
lookuppnat+4:                   subq   $0x60,%rsp
lookuppnat+8:                   movq   %r12,-0x20(%rbp)
lookuppnat+0xc:                 movq   %r15,-0x8(%rbp)
lookuppnat+0x10:                movq   %rdi,%r12
lookuppnat+0x13:                movq   %rbx,-0x28(%rbp)
lookuppnat+0x17:                movq   %r13,-0x18(%rbp)
lookuppnat+0x1b:                movq   %r9,%r15
lookuppnat+0x1e:                movq   %r14,-0x10(%rbp)
lookuppnat+0x22:                movq   %rsi,-0x30(%rbp)
lookuppnat+0x26:                movl   %edx,-0x34(%rbp)
lookuppnat+0x29:                movq   %rcx,-0x40(%rbp)
lookuppnat+0x2d:                movq   %r8,-0x48(%rbp)
lookuppnat+0x31:                movq   %gs:0x18,%rax
lookuppnat+0x3a:                cmpq   $0x0,0x10(%rdi)
lookuppnat+0x3f:                movq   0x168(%rax),%r14
lookuppnat+0x46:                movl   $0x2,%eax
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lookuppnat+0x4b:                je     +0xae    <lookuppnat+0xf9>
lookuppnat+0x51:                movq   0x10(%r14),%rdi
lookuppnat+0x55:                call   -0xe5895 <mutex_enter>

Yes – we obviously can. All six arguments are accounted for:

• %rdi (1st arg) is put into nonvolatile register %r12. Crosschecking that this is never 
again overwritten except in the function epilogue:

[ ... ]
lookuppnat+8:                   movq   %r12,-0x20(%rbp)
[ ... ]
> lookuppnat::dis ! grep '%r12$'
lookuppnat+0x10:                movq   %rdi,%r12
lookuppnat+0xfd:                movq   -0x20(%rbp),%r12

 Since the next thing after lookuppnat() was the panic in mutex_enter(), we know 
that the value of %r12 in the panic registers still has the value we're looking for:

> ::msgbuf
[ ... ]
        r10:          8047d28 r11:                0 r12: ffffffffb2ef8d70
[ ... ]

• %rsi (2nd arg) is put into -0x30(%rbp). Again, using the framepointer for 
lookuppnat() that's in the panic registers, we can locate the argument:

[ ... ]
        rax:                0 rbx: 1234567890abcdef rbp: ffffffffb2ef8d40
[ ... ]
> ffffffffb2ef8d40-30/J
0xffffffffb2ef8d10:             0

• %edx (3rd arg, obviously a 32bit int) is put into -0x34(%rbp):

> ffffffffb2ef8d40-34/X
0xffffffffb2ef8d0c:             1

• %rcx (4th arg) is put into -0x40(%rbp):

> ffffffffb2ef8d40-40/J
0xffffffffb2ef8d00:             0

• %r8 (5th arg) goes to -0x48(%rbp):

> ffffffffb2ef8d40-40/J
0xffffffffb2ef8cf8:             ffffffffb2ef8e78

• %r9 (6th arg) is put into nonvolatile register %r15. Again, we need to check that the 
function never reinitializes %r15 with something else before we can claim that the 
value of %r15 from the trap frame still has it:

[ ... ]
lookuppnat+0xc:                 movq   %r15,-0x8(%rbp)
[ ... ]
> lookuppnat::dis ! grep '%r15$'
lookuppnat+0x1b:                movq   %r9,%r15
lookuppnat+0x94:                testq  %r15,%r15
lookuppnat+0x109:               movq   -0x8(%rbp),%r15
> ::msgbuf
[ ... ]
        r13: 1234567890abcdef r14: ffffffff82042c40 r15:                0
[ ... ]

This strategy is generic and can be applied to all stacktraces on AMD64.
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7.4.4.Piecing it all together
Now that we know how backtracing in the Solaris/x86 64bit kernel is done and how 
arguments to functions can be retrieved in spite of the use of registers for argument 
passing, we're ready to put the pieces together and determine how overwriting 
rootdir with 0x1234567890abcdef could cause the panic we've got.

mutex_enter() paniced because 0x1234567890abcdef (an invalid, noncanonical 
virtual address) was passed to it as argument:

> mutex_enter::dis
mutex_enter:                    movq   %gs:0x18,%rdx
mutex_enter+9:                  xorl   %eax,%eax
mutex_enter+0xb:                lock cmpxchgq %rdx,(%rdi)
[ ... ]
> ::msgbuf
[ ... ]
        rdi: 1234567890abcdef rsi:                0 rdx: ffffffff859ef900
[ ... ]

Since mutex_enter() itself doesn't push anything to the stack, the stackpointer at the 
time the BAD TRAP occurred still must point to the return address, giving us the caller 
of mutex_enter(). It's an AMD64 crashdump, so %rsp from the HW part of the trap 
frame is correct and we can directly use that:

[ ... ]
pid=657, pc=0xfffffffffe825dbb, sp=0xffffffffb2ef8cd8, eflags=0x10246
[ ... ]
         cs:               28 rfl:            10246 rsp: ffffffffb2ef8cd8
[ ... ]
> ffffffffb2ef8cd8/p
0xffffffffb2ef8cd8:             lookuppnat+0xa8 
> *ffffffffb2ef8cd8::dis
[ ... ]
lookuppnat+0xa0:                movq   %rbx,%rdi
lookuppnat+0xa3:                call   -0xe58e3 <mutex_enter>
lookuppnat+0xa8:                incl   0xc(%rbx)
[ ... ]

This tells us lookuppnat+0xa3 was the location where mutex_enter() was called from. 
We need to figure out where the argument (%rdi) was taken from. The sourcecode for 
lookuppnat() is generic C, and therefore we can expect the 64bit code to have an 
identical flow as the 32bit code. In fact we find code so similar to the 32bit version that 
it's worth showing the two side-by-side:

32bit code 64bit code

lookuppnat:
[ ... ]
+0x77: movl   0x1c(%ebp),%ebx
+0x7a: testl  %ebx,%ebx
+0x7c: jne  <lookuppnat+0x89>
+0x7e: movl   0x44c(%esi),%ebx
+0x84: jmp  <lookuppnat+0x89>
+0x86: movl   -0x4(%ebp),%ebx
+0x89: pushl  %ebx
+0x8a: call <mutex_enter>
+0x8f: addl   $0x4,%esp

lookuppnat:
[ ... ]
+0x1b: movq   %r9,%r15
[ ... ]
+0x8c: movq   %r13,%rbx
+0x8f: cmpb   $0x2f,(%rax)
+0x92: je   <lookuppnat+0xa0>
+0x94: testq  %r15,%r15
+0x97: movq   %r15,%rbx
+0x9a: je   <lookuppnat+0x144>
+0xa0: movq   %rbx,%rdi
+0xa3: call <mutex_enter>
[ ... ]
+0x144:movq   0x628(%r14),%rbx
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32bit code 64bit code

+0x14b:jmp  <lookuppnat+0xa0>

The 64bit code, as shown earlier, puts its 6th argument into %r15 for permanent 
availability. If that's non-NULL, it's being used as argument for mutex_enter(). But 
then the trapframe already has shown that it was NULL, so as in 32bit the invalid value 
cannot have come from there. Can it have come from 0x628(%r14) ? Getting %r14 
from the trapframe and checking this memory location tells us:

[ ... ]
        r13: 1234567890abcdef r14: ffffffff82042c40 r15:                0
[ ... ]
> ffffffff82042c40+628/J
0xffffffff82043268:             ffffffff81c27c40

So this wasn't it either. Remains %r13 (a local variable, as in 32bit). Which in the panic 
registers holds the culprit, 0x1234567890abcdef. So check lookuppnat() for where it 
initializes %r13 from:

> lookuppnat::dis ! grep '%r13$'
lookuppnat+0x5a:                movq   0x630(%r14),%r13
lookuppnat+0x61:                testq  %r13,%r13
lookuppnat+0x6a:                cmpq   0x5628cf(%rip),%r13
lookuppnat+0x101:               movq   -0x18(%rbp),%r13
lookuppnat+0x138:               movq   0x562801(%rip),%r13
The indirect memory reference 0x630(%r14) and the local variable -0x18(%rbp) are 
simple to test, and they do not contain 0x1234567890abcdef:

[ ... ]
        rax:                0 rbx: 1234567890abcdef rbp: ffffffffb2ef8d40
[ ... ]
        r13: 1234567890abcdef r14: ffffffff82042c40 r15:                0
> ffffffff82042c40+630/J
0xffffffff82043270:             0
> ffffffffb2ef8d40-18/J
0xffffffffb2ef8d28:             0

So these cannot have been it either.
The only thing that remains is the %rip-relative location 0x562801(%rip). It'd be nice 
if mdb would resolve this for us (it has the capability, since it does resolve call 
targets, and these are also %rip-relative ...), but as it obviously doesn't do that (yet) 
let's work on it ourselves again. The code is:

> lookuppnat+0x138::dis        
[ ... ]
lookuppnat+0x138:               movq   0x562801(%rip),%r13
lookuppnat+0x13f:               jmp    -0xb8    <lookuppnat+0x87>

What value is used for %rip ? The answer is: The same that the call instruction would 
use to put onto the stack as the return address. In other words: In an instruction that 
makes a %rip-relative reference, %rip will contain the address of the following 
instruction. Cleartext: lookuppnat+0x13f in the case above. Resolve the %rip-relative 
address:

> lookuppnat+0x13f+0x562801/J
rootdir:
rootdir:        1234567890abcdef

Now there we are. Twisted but in the end we found it - the code indeed takes %rdi that 
it passes to mutex_enter() from "rootdir", and hence the corrupted pointer.
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7.5.Another 64bit crashdump analysis example
The following example shall serve as an advice to device driver developers: Know your 
compiler options !

The machine paniced with the following messages:

panic[cpu0]/thread=ffffffff81519000: 
BAD TRAP: type=e (#pf Page fault) rp=fffffe80006b3be0 addr=0 occurred in module 
"unix" due to a NULL pointer dereference

powernowd: 
#pf Page fault
Bad kernel fault at addr=0x0
pid=60, pc=0xfffffffffb826ce6, sp=0xfffffe80006b3cc8, eflags=0x10213
cr0: 80050033<pg,wp,ne,et,mp,pe> cr4: 6f0<xmme,fxsr,pge,mce,pae,pse>
cr2: 0 cr3: 44ce000 cr8: 0
        rdi:                0 rsi: ffffffff80ca0ee0 rdx: fffffffffbc027ff
        rcx:                0  r8:                0  r9: ffffffff80a471b0
        rax:               ff rbx:                0 rbp: fffffe80006b3cf0
        r10:               76 r11:         ffffffff r12: ffffffff80ca0ee0
        r13: fffffffffbe26408 r14: fffffffffbe26400 r15: ffffffff8010ac00
        fsb: ffffffff80000000 gsb: fffffffffbc1ede0  ds:               43
         es:               43  fs:                0  gs:              1c3
        trp:                e err:                2 rip: fffffffffb826ce6
         cs:               28 rfl:            10213 rsp: fffffe80006b3cc8
         ss:               30

fffffe80006b3af0 unix:die+da (fffffe80000adc80, 1fb800ccf)
fffffe80006b3bd0 unix:trap+5ea ()
fffffe80006b3be0 unix:cmntrap+11b ()
fffffe80006b3cf0 unix:lock_try+6 ()
fffffe80006b3d60 genunix:turnstile_block+19e ()
fffffe80006b3dc0 unix:mutex_vector_enter+3df ()
fffffe80006b3df0 genunix:releasef+4b ()
fffffe80006b3ed0 genunix:ioctl+c3 ()

On first glance, this looks like a generic Solaris kernel issue – only core kernel modules 
involved, right ? No immediate hint of any driver involvement !

Yet, this panic was caused by a bug in the following driver module – it was compiled 
with gcc, and the -mno-red-zone compiler option that is mandatory was omitted:

> ::modinfo
 ID         LOADADDR     SIZE REV MODULE NAME
[ ... ]
121 fffffffff51962b0      ef0   1 powernow (AMD Powernow! 1.15 (ACPICA))
[ ... ]

On the following pages, it'll be shown what happened here.

Well, by now we know what to do in order to find out. The panic message tells us it's a 
NULL pointer dereference, so let's disassemble the panicing code, lock_try(), to find 
out what it attempted to access:

> lock_try::dis
lock_try: movb   $-0x1,%dl
lock_try+2: movzbq %dl,%rax
lock_try+6: xchgb  %dl,(%rdi)

This is an unusual instruction – eXCHanGe Byte. There are locks in Solaris (thread 
and dispatcher locks, spinlocks) which don't keep owner information like mutexes and 
rwlocks, but only know a binary state 'locked'/'free' based on the contents of a single 
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byte. Implementation of these locks requires an atomic “check if Byte contains NULL 
and if so write my value into it” instruction – which is xchgb on x86 (on SPARC, ldstub 
would be used). So we know it attempted to access memory at %rdi – which, as the 
panic messages show, contains NULL.

We therefore have to find out where the caller of lock_try() got that %rdi from. 
lock_try(), as mutex_enter(), doesn't initialize a framepointer of its own and neither 
pushes any values to the stack. So we know that, as with the previous example, the 
stacktrace misses to show the actual caller of lock_try(). The next reported return 
address, turnstile_block+0x19e, of course shows what's in-between:

> turnstile_block+19e::dis
[ ... ]
turnstile_block+0x18a:          movq   0x1e0(%r12),%rdi
turnstile_block+0x192:          leaq   0x1e0(%rbx),%rsi
turnstile_block+0x199:          call   -0x2b9   <turnstile_interlock>
turnstile_block+0x19e:          testl  %eax,%eax

and the saved %rsp gives us the return address into the real caller of lock_try():

[ ... ]
pid=60, pc=0xfffffffffb826ce6, sp=0xfffffe80006b3cc8, eflags=0x10213
[ ... ]
         cs:               28 rfl:            10213 rsp: fffffe80006b3cc8
[ ... ]
> fffffe80006b3cc8/p
0xfffffe80006b3cc8:             turnstile_interlock+0x22
> *fffffe80006b3cc8::dis
turnstile_interlock+6:          pushq  %r13
turnstile_interlock+8:          movq   %rdi,%r13
turnstile_interlock+0xb:        pushq  %r12
turnstile_interlock+0xd:        movq   %rsi,%r12
turnstile_interlock+0x10:       pushq  %rbx
turnstile_interlock+0x11:       movq   (%r12),%rbx
turnstile_interlock+0x15:       cmpq   %r13,%rbx
turnstile_interlock+0x18:       je     +0x28    <turnstile_interlock+0x40>
turnstile_interlock+0x1a:       movq   %rbx,%rdi
turnstile_interlock+0x1d:       call   -0x1cf88d        <lock_try>
turnstile_interlock+0x22:       testl  %eax,%eax
[ ... ]
> turnstile_interlock::dis
turnstile_interlock:            pushq  %rbp
turnstile_interlock+1:          movq   %rsp,%rbp
turnstile_interlock+4:          pushq  %r14
turnstile_interlock+6:          pushq  %r13
[ ... ]

We could cheat and look up the sourcecode in order to determine what this function 
does, but since we've not made it past the first lock_try() we'll get by just reverse-
engineering the first piece of it. It obviously gets two arguments in %rdi and %rsi, 
which it – for later re-use after making some function calls of its own – stuffs into the 
nonvolatile registers %r13 (1st arg) and %r12 (2nd arg). It dereferences the second 
argument, movq (%r12),%rbx, and compares what it pointed to with the first. If these 
two were equal, it'd have taken the je to <turnstile_interlock+0x40>, but since 
they obviously have not been it moves *arg2 into %rdi and calls lock_try() on that. 
Because we do have a C prototype for lock_try() in <sys/machlock.h>:

extern int  lock_try(lock_t *lp);

we can derive the prototype and first piece of code for turnstile_interlock() from 
what we've just found out. It must've started like this:
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... turnstile_interlock(lock_t *lock1, lock_t **plock2)
{

lock_t *tmplock = *plock2;

if (tmplock != lock1)
lock_try(tmplock);

[ ... ]

What was that 2nd arg to this function ?

Since it was stuffed into %r12, and that didn't get modified anymore afterwards, we 
can take it from the panic message. There we find:

[ ... ]
        r10:               76 r11:         ffffffff r12: ffffffff80ca0ee0
        r13: fffffffffbe26408 r14: fffffffffbe26400 r15: ffffffff8010ac00
[ ... ]
>  ffffffff80ca0ee0/J
0xffffffff80ca0ee0:             0

So arg1, which went into %r13, was 0xfffffffffbe26408, and arg2, still in %r12, was 
0xffffffff80ca0ee0 and it really pointed to a NULL.

Go for the next frame, turnstile_block() calling turnstile_interrupt(), and dig 
out where the arguments came from again:

> $C
fffffe80006b3cf0 lock_try+6()
fffffe80006b3d60 turnstile_block+0x19e()
fffffe80006b3dc0 mutex_vector_enter+0x3df()
fffffe80006b3df0 releasef+0x4b()
fffffe80006b3ed0 ioctl+0xc3()
fffffe80006b3f20 sys_syscall32+0xd9()
0000000000000320 0x8047b48()
> turnstile_block+0x19e::dis
[ ... ]
turnstile_block+0x18a:          movq   0x1e0(%r12),%rdi
turnstile_block+0x192:          leaq   0x1e0(%rbx),%rsi
turnstile_block+0x199:          call   -0x2b9   <turnstile_interlock>
turnstile_block+0x19e:          testl  %eax,%eax
Hmm – it took them from memory referenced via nonvolatile registers %rbx and %r12. 
We'd have two immediate ways forward now:

1. The complicated one – disassemble turnstile_block(), and attempt to reverse 
engineer where the values in %r12 and %rbx at that time came from.
Since we're already deep down in the function, we're not going that way. Rather:

2. The simpler one – because %rbx and %r12 are nonvolatile, the called function, in this 
case turnstile_interlock(), of course has to either keep them as they are (and 
we could find them in the trapframe/panic registers then), or save them to its stack 
so they can be restored on return (but as there was no return we'll find them in the 
stack).

Brings us back to turnstile_interlock(), which indeed saves these two to its stack 
early on:

turnstile_interlock:            pushq  %rbp
turnstile_interlock+1:          movq   %rsp,%rbp
turnstile_interlock+4:          pushq  %r14
turnstile_interlock+6:          pushq  %r13
turnstile_interlock+8:          movq   %rdi,%r13
turnstile_interlock+0xb:        pushq  %r12
turnstile_interlock+0xd:        movq   %rsi,%r12
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turnstile_interlock+0x10:       pushq  %rbx

Now consider the stack contents. This function writes to the stack:

1. it's caller's framepointer, %rbp

2. the nonvolatile registers %r14, %r13, %r12 and %rbx, in that order.

3. when it calls lock_try(), the return address.

So we can now identify the stack contents:

[ ... ]
pid=60, pc=0xfffffffffb826ce6, sp=0xfffffe80006b3cc8, eflags=0x10213
[ ... ]
         cs:               28 rfl:            10213 rsp: fffffe80006b3cc8
[ ... ]
> fffffe80006b3cc8,7/nap
0xfffffe80006b3cc8:
0xfffffe80006b3cc8: turnstile_interlock+0x22
0xfffffe80006b3cd0: 0xffffffff80ca0d00 %rbx
0xfffffe80006b3cd8: 0xffffffff81519000 %r12
0xfffffe80006b3ce0: 0xffffffff80a47180 %r13
0xfffffe80006b3ce8: turnstile_table+0xd60 %r14
0xfffffe80006b3cf0: 0xfffffe80006b3d60 %rbp
0xfffffe80006b3cf8: turnstile_block+0x19e

We can now check where these args came from:

[ ... ]
turnstile_block+0x18a:          movq   0x1e0(%r12),%rdi
turnstile_block+0x192:          leaq   0x1e0(%rbx),%rsi
[ ... ]
> 0xffffffff81519000+1e0/nJ
0xffffffff815191e0:             
                fffffffffbe26408 %rdi - 1st arg
> 0xffffffff80ca0d00+1e0=J
                ffffffff80ca0ee0 %rsi - 2nd arg (note: =J due to leaq)

This is all well and consistent, but we're not further yet, and therefore still have to go 
the long way, and determine where turnstile_block() got the values from that it 
keeps in %r12 (0xffffffff81519000) and %rbx (0xffffffff80ca0d00). We're 
particularly interested in the latter, %rbx – that's where the bad pointer which got 
passed on came from. Disassemble:

> turnstile_block::dis ! egrep '%r(12|bx)$'
turnstile_block+0x10:           pushq  %r12
turnstile_block+0x12:           pushq  %rbx
turnstile_block+0x26:           movq   %gs:0x18,%rbx
turnstile_block+0x36:           movq   %rbx,%r12
turnstile_block+0x173:          movq   %rax,%rbx
turnstile_block+0x1b3:          movq   %gs:0x18,%r12
turnstile_block+0x202:          popq   %rbx
turnstile_block+0x203:          popq   %r12
turnstile_block+0x2cb:          movq   %rbx,%r12

The push/pop are part of function pro- and epilogues so those don't bother us (yet). 
The movq %gs:0x18,... is a curthread access, as shown before. The function also 
moves %rbx to %r12 two times, which doesn't bother us either because we want to 
know where %rbx is from. The only place that sets %rbx is movq %rax,%rbx so let's 
look at this area more closely:

> turnstile_block+0x173::dis
turnstile_block+0x149:          movq   -0x38(%rbp),%rdx
turnstile_block+0x14d:          cmpl   $0x1,(%rdx)
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turnstile_block+0x150:          je     +0x233   <turnstile_block+0x383>
turnstile_block+0x156:          movq   0x88(%r12),%rdx
turnstile_block+0x15e:          testq  %rdx,%rdx
turnstile_block+0x161:          je     +0x70    <turnstile_block+0x1d1>
turnstile_block+0x163:          xorl   %eax,%eax
turnstile_block+0x165:          movq   0x80(%r12),%rdi
turnstile_block+0x16d:          call   *0x8(%rdx)
turnstile_block+0x170:          testq  %rax,%rax
turnstile_block+0x173:          movq   %rax,%rbx
turnstile_block+0x176:          je     +0x5b    <turnstile_block+0x1d1>
turnstile_block+0x178:          movq   %gs:0x18,%rax
turnstile_block+0x181:          cmpq   %rbx,%rax
turnstile_block+0x184:          je     +0x21f   <turnstile_block+0x3a3>
turnstile_block+0x18a:          movq   0x1e0(%r12),%rdi
turnstile_block+0x192:          leaq   0x1e0(%rbx),%rsi
turnstile_block+0x199:          call   -0x2b9   <turnstile_interlock>
turnstile_block+0x19e:          testl  %eax,%eax
[ ... ]

Hmm – a bit unfair, there's a call through a function pointer in there. But we're 
fortunate – just a few lines above we find: movq  0x88(%r12),%rdx. We already found 
out what %r12 was, and so getting this is straightforward:

> 0xffffffff81519000+0x88/J 
0xffffffff81519088:             fffffffffbc02720 
> fffffffffbc02720::whatis
fffffffffbc02720 is mutex_sobj_ops+0 in unix's data segment
> fffffffffbc02720::whattype
fffffffffbc02720 is fffffffffbc02720+0, struct _sobj_ops
> fffffffffbc02720::print -a "struct _sobj_ops"
{
    fffffffffbc02720 sobj_type = 0x1
    fffffffffbc02728 sobj_owner = mutex_owner
    fffffffffbc02730 sobj_unsleep = turnstile_stay_asleep
    fffffffffbc02738 sobj_change_pri = turnstile_change_pri
}

Fortunately, we know that one. mutex_owner() takes a mutex as arg, and returns a 
kernel thread pointer (or NULL). The argument comes from:

turnstile_block+0x165:          movq   0x80(%r12),%rdi
> 0xffffffff81519000+0x80/J
0xffffffff81519080:             ffffffff8010ac00 
> ffffffff8010ac00::mutex
            ADDR  TYPE             HELD MINSPL OLDSPL WAITERS
ffffffff8010ac00 adapt ffffffff80ca0d00      -      -     yes

The owner of this mutex is in fact thread 0xffffffff80ca0d00 – which is in %rbx, so 
we've found where this has come from.

And we seem no further. Where is that corruption anyway ? Are we stuck ?

The answer is simpler than that. Do some consisteny checks on the “mutex” and the 
“owner thread” above:

> ffffffff8010ac00::whatis
ffffffff8010ac00 is in thread fffffffffbc1dac0's stack
> ffffffff8010ac00::whattype
ffffffff8010ac00 is ffffffff8010aa80+180, possibly one of the following:
  void (from fffffffffbc7a7a0+38, type struct vfs)
  struct ufsvfs (from ffffffff80c92008+c8, type inode_t)

> ffffffff80ca0d00::whatis 
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ffffffff80ca0d00 is in thread fffffffffbc1dac0's stack
> ffffffff80ca0d00::whattype
ffffffff80ca0d00 is ffffffff80ca0d00+0, possibly one of the following:
  struct ml_unit at ffffffff80ca0d01 (from ffffffff8010aa80+180, type 
struct ufsvfs)
  void at ffffffff80ca0e20 (from ffffffff80a47300+10, type struct turnstile)

Hmm – this looks pretty bad. mdb tells us that both these values, the “mutex” and the 
“owner” are in  some thread's stack – and at best, are some ufs type data structures. 
The attempt to use the “owner” as a thread struct fails quite horribly:

> ::load /opt/CTEact/mdb/5.10/amd64/act.so
> ffffffff80ca0d00::act_thread

***
could not get pid baddcafebaddcafe for proc ffffffff806a9e20 thread 
ffffffff80ca0d00
thread swapped

thread addr ffffffff80ca0d00, proc addr ffffffff806a9e20, lwp addr 0
Thread beacb004b6600 is pinned by this thread
Thread bound to cpu id 0xfbc7a7a0

t_state is 0xffffffff - illegal value - check

Scheduling info:
t_pri is 0x20, t_epri is 0, t_cid is 0x80127140
t->t_cid out of bounds
t_disp_time: is 0, 0
last ran: 3 hours 39 mins 14 secs ago,  3 hours 39 mins 10 secs before panic
last ran cpu is corrupt 0x6d6000006d6000t_stk 0

stack trace is:

ffffffff80ca0bc0 ()
[ ... ]

That makes no sense. This “mutex” is no mutex, and this “owner” is no thread.

With this knowledge in mind, it makes sense to skip further reverse engineering 
attempts on turnstile_block(), which seems more than incomprehensible based on 
the assembly code only, and go back to the stacktrace instead:

> $C
fffffe80006b3cf0 lock_try+6()
fffffe80006b3d60 turnstile_block+0x19e()
fffffe80006b3dc0 mutex_vector_enter+0x3df()
fffffe80006b3df0 releasef+0x4b()
fffffe80006b3ed0 ioctl+0xc3()
fffffe80006b3f20 sys_syscall32+0xd9()
0000000000000320 0x8047b48()

Let's investigate the call to mutex_enter(), and see whether we can find out what 
mutex was passed in. Should we in fact find that the caller of mutex_enter() passed 
that “non-mutex” 0xffffffff8010ac00, then we know the bug must be there – one cannot 
call mutex_enter() with just some more-or-less arbitrary address and hope all will be 
fine !

For those who like to peek ahead, cheat and use ::act_thread:

> *panic_thread::act_thread

***
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thread addr ffffffff81519000, proc addr 0, lwp addr ffffffff81519000
Thread bound to cpu id 0
[ ... ]
stack trace is:
[ ... ]
unix: lock_tryunix: lock_try+6 ()
genunix: turnstile_interlock (?,0xffffffff80ca0ee0)
genunix: turnstile_block+0x19e (0,0,0xffffffff8010ac00,mutex_sobj_ops,0,0)

**********

failed to find mutex pointer in stack frames fffffe80006b3dc0

**********
unix: mutex_vector_enter+0x3df (0xffffffff8010ac00)
unix: mutex_enter (?)
genunix: releasef+0x4b (0x30)
genunix: ioctl+0xc3 (0x6b3f20,0xfb801149,3)
unix: sys_syscall32+0xd9 ()

And bingo – mutex_vector_enter() was called with this “thing”.

But then, we can of course find that from the caller, releasef(), as well. Disassembly:

releasef+0x3a:                  movq   0x18(%r14),%rbx
releasef+0x3e:                  leaq   0x0(%r13,%rbx),%r12
releasef+0x43:                  movq   %r12,%rdi
releasef+0x46:                  call   -0x121246        <mutex_enter>
releasef+0x4b:                  movq   0x18(%r14),%rax

So we need to find %r12, and %r13/%r14/%rbx if we want to know where it came from. 
All these are nonvolatile registers, and if we're lucky, mutex_vector_enter() will have 
saved them for us.

Let's check its prologue:

mutex_vector_enter:             pushq  %rbp
mutex_vector_enter+1:           movq   %rsp,%rbp
mutex_vector_enter+4:           pushq  %r15
mutex_vector_enter+6:           movq   %rdi,%r15
mutex_vector_enter+9:           pushq  %r14
mutex_vector_enter+0xb:         pushq  %r13
mutex_vector_enter+0xd:         pushq  %r12
mutex_vector_enter+0xf:         pushq  %rbx
mutex_vector_enter+0x10:        subq   $0x28,%rsp

They're all there. Looking at the stack:

[ ... ]
fffffe80006b3dc0 mutex_vector_enter+0x3df()
[ ... ]
> fffffe80006b3dc0-30,10/nap 
0xfffffe80006b3d90:             
0xfffffe80006b3d90:             0xfffff3ffd596e89e
0xfffffe80006b3d98:             0xffffffff8010a000 %rbx
0xfffffe80006b3da0:             0xffffffff8010ac00 %r12
0xfffffe80006b3da8:             0xc00 %r13
0xfffffe80006b3db0:             0xffffffff80e2d708 %r14
0xfffffe80006b3db8:             0 %r15
0xfffffe80006b3dc0:             0xfffffe80006b3df0 %rbp
0xfffffe80006b3dc8:             releasef+0x4b
[ ... ]
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releasef+0x3a:                  movq   0x18(%r14),%rbx
releasef+0x3e:                  leaq   0x0(%r13,%rbx),%r12
[ ... ]
> 0xffffffff80e2d708+18/nJ
0xffffffff80e2d720:
                ffffffff8010a000 
> ffffffff8010a000+0xc00=J
                ffffffff8010ac00

So there it is. The address of something that was not a pointer to a mutex was passed 
into mutex_enter().

Where did releasef() take %r13/%r14/%rbx from:

releasef:                       pushq  %rbp
releasef+1:                     movq   %rsp,%rbp
releasef+4:                     pushq  %r14
releasef+6:                     pushq  %r13
releasef+8:                     pushq  %r12
releasef+0xa:                   pushq  %rbx
releasef+0xb:                   movl   %edi,%ebx
releasef+0xd:                   movq   %gs:0x18,%rax
releasef+0x16:                  movq   0x178(%rax),%r14
releasef+0x1d:                  movslq %ebx,%r13
releasef+0x20:                  shlq   $0x6,%r13
releasef+0x24:                  call   -0x4f4   <clear_active_fd>
releasef+0x29:                  addq   $0xa30,%r14
releasef+0x30:                  jmp    +0xa     <releasef+0x3a>
[ ... ]
releasef+0x3a:                  movq   0x18(%r14),%rbx
releasef+0x3e:                  leaq   0x0(%r13,%rbx),%r12
releasef+0x43:                  movq   %r12,%rdi
releasef+0x46:                  call   -0x121246        <mutex_enter>

We didn't make it further than that, so the relevant instructions are:

For %r14:

releasef+0xd:                   movq   %gs:0x18,%rax
releasef+0x16:                  movq   0x178(%rax),%r14
[ ... ]
releasef+0x29:                  addq   $0xa30,%r14
> *panic_thread+0x178/nJ
0xffffffff81519178:
                ffffffff80e2ccd8
> *panic_thread::print -a kthread_t ! grep ffffffff81519178
    ffffffff81519178 t_procp = 0xffffffff80e2ccd8
> ffffffff80e2ccd8+a30=J
                ffffffff80e2d708
> ffffffff80e2ccd8::print -a proc_t ! grep ffffffff80e2d708
        ffffffff80e2d708 u_finfo = {
            ffffffff80e2d708 fi_lock = {
                ffffffff80e2d708 _opaque = [ 0 ]
For %rbx:

releasef+0x3a:                  movq   0x18(%r14),%rbx
> 0xffffffff80e2d708+18/nJ
0xffffffff80e2d720:
                ffffffff8010a000

and finally %r13:

releasef+0xb:                   movl   %edi,%ebx
[ ... ]
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releasef+0x1d:                  movslq %ebx,%r13
releasef+0x20:                  shlq   $0x6,%r13

This takes the first argument, %edi (obviously an int) of releasef(), sign-extends it 
to 64bit and shifts it left by 0x6 (i.e. multiples it by 26 == 64). 

We need the arg to releasef(). Since that code in itself didn't save %edi anywhere, 
we have to check the caller:

> $C
[ ... ]
fffffe80006b3df0 releasef+0x4b()
fffffe80006b3ed0 ioctl+0xc3()
[ ... ]
> ioctl+0xc3::dis
[ ... ]
ioctl+0xbb:                     movl   %r14d,%edi
ioctl+0xbe:                     call   -0x1091e <releasef>
ioctl+0xc3:                     movl   -0xcc(%rbp),%eax
[ ... ]

It takes the value from nonvolatile register %r14d. Given that releasef() has saved 
ioctl()'s %r14 in its prologue, we can find it in the stack::

releasef:                       pushq  %rbp
releasef+1:                     movq   %rsp,%rbp
releasef+4:                     pushq  %r14
> fffffe80006b3df0-8,3/nap
0xfffffe80006b3de8:
0xfffffe80006b3de8:             0x30
0xfffffe80006b3df0:             0xfffffe80006b3ed0
0xfffffe80006b3df8:             ioctl+0xc3
> 0x30*0t64=X
                c00
So the argument was 0x30, and 0xc00 is the result of the <<6. Next step of course is to 
determine where ioctl() got its %r14 from. Check the assembly:

> ioctl::dis
ioctl:                          pushq  %rbp
ioctl+1:                        movq   %rsp,%rbp
ioctl+4:                        subq   $0xd0,%rsp
ioctl+0xb:                      movq   %r12,-0x20(%rbp)
ioctl+0xf:                      movq   %r13,-0x18(%rbp)
ioctl+0x13:                     movl   %esi,%r13d
ioctl+0x16:                     movq   %r14,-0x10(%rbp)
ioctl+0x1a:                     movq   %r15,-0x8(%rbp)
ioctl+0x1e:                     movl   %edi,%r14d
[ ... ]
ioctl+0xbb:                     movl   %r14d,%edi
ioctl+0xbe:                     call   -0x1091e <releasef>
ioctl+0xc3:                     movl   -0xcc(%rbp),%eax

It does the same as we've seen releasef() do – move its first argument into the 
nonvolatile register %r14d. What was the first argument of ioctl() ?

> $C
[ ... ]
fffffe80006b3ed0 ioctl+0xc3()
fffffe80006b3f20 sys_syscall32+0xd9()
[ ... ]
> sys_syscall32+0xd9::dis
sys_syscall32+0xbc:             movl   0x0(%rsp),%edi
sys_syscall32+0xc0:             movl   0x8(%rsp),%esi
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sys_syscall32+0xc4:             movl   0x10(%rsp),%edx
sys_syscall32+0xc8:             movl   0x18(%rsp),%ecx
sys_syscall32+0xcc:             movl   0x20(%rsp),%r8d
sys_syscall32+0xd1:             movl   0x28(%rsp),%r9d
sys_syscall32+0xd6:             call   *0x18(%rbx)
sys_syscall32+0xd9:             movq   %rbp,%rsp

This code obviously transforms 32bit argument passing conventions (on the stack) into 
64bit argument passing conventions (in the arg registers). We therefore need the 
stackpointer at the time ioctl() was called and retrieve its first argument from there.

The task is of course easy – there's a call being done, and if we locate the return 
address from that in the stack we immediately know that the six words following it 
contains the arguments:

[ ... ]
fffffe80006b3ed0 ioctl+0xc3()
[ ... ]
> fffffe80006b3ed0,8/nap
0xfffffe80006b3ed0:             
0xfffffe80006b3ed0:             0xfffffe80006b3f20
0xfffffe80006b3ed8:             sys_syscall32+0xd9
0xfffffe80006b3ee0:             3 %edi
0xfffffe80006b3ee8:             0x414d4400 %esi
0xfffffe80006b3ef0:             0 %edx
0xfffffe80006b3ef8:             0 %ecx
0xfffffe80006b3f00:             0xffffffff8142ac00 %r8d
0xfffffe80006b3f08:             0xffffffff81519000 %r9d

Now this is really strange – ioctl() got called with 3 as 1st argument, and the code 
claims to have passed that through to releasef(). But this was called with 0x30 as 1st 

argument !

This is a clear inconsistency. Can it be explained ?

The only explanation is that something corrupted %r14 in between the instruction at 
ioctl+0x1e (which initialized it) and the call to releasef() at ioctl+0xbe. And 
indeed we make function calls there:

[ ... ]
ioctl+0x32:                     call   -0x10ce2 <getf>
[ ... ]
ioctl+0x76:                     call   -0x130b46        <get_udatamodel>
[ ... ]
ioctl+0x8e:                     movq   0x10(%r12),%rdi
ioctl+0x93:                     movq   0x1b0(%rax),%r8
ioctl+0x9a:                     leaq   -0xcc(%rbp),%r9
ioctl+0xa1:                     movq   %r15,%rdx
ioctl+0xa4:                     movl   %r13d,%esi
ioctl+0xa7:                     call   +0xb9969 <fop_ioctl>

The first two are not really suspicious. For one, they're well-known and long-tried 
kernel functions, and second their code is quite simple. It's left as an exercise to the 
reader to verify that these don't modify %r14 without restoring it for their caller.

But the other function is more suspicious – it's a generic dispatcher, and will ultimately 
end up in a device driver entry point. We can find which one without reverse 
engineering fop_ioctl(), by checking the panicing process' file table:

> *panic_thread::print -a kthread_t t_procp
ffffffff81519178 t_procp = 0xffffffff80e2ccd8
> 0xffffffff80e2ccd8::pfiles
FD   TYPE            VNODE INFO
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   0  CHR ffffffff81201180 /devices/pseudo/mm@0:null
   1  REG ffffffff81552040 /etc/svc/volatile/site-powernow:default.log
   2  REG ffffffff81552040 /etc/svc/volatile/site-powernow:default.log
   3  CHR ffffffff814fa4c0 /devices/pseudo/powernow@0:powernow
   4  CHR ffffffff815e89c0 /devices/pseudo/acpidrv@0:acpidrv
   5  CHR ffffffff8163f840 /devices/pseudo/kstat@0:kstat

We're operating on file descriptor #3 – and that is the powernow driver. What's the 
ioctl(9e) entry point for that ?

> ::modctl          
          MODCTL           MODULE   BITS FLAGS REF FILE
[ ... ]
ffffffff8126fdc8 ffffffff8126ea80     li 0x00   0 drv/powernow
> ffffffff8126fdc8::print "struct modctl" mod_linkage |

::print "struct modlinkage"
{
    ml_rev = 0x1
    ml_linkage = [ modldrv1, 0, 0, 0, 0, 0, 0 ]
}
> modldrv1::print "struct modldrv"
{
    drv_modops = mod_driverops
    drv_linkinfo = 0xfffffffff5196e72 "AMD Powernow! 1.15 (ACPICA)"
    drv_dev_ops = powernow_dev_ops
}
> powernow_dev_ops::print "struct dev_ops" devo_cb_ops |

::print "struct cb_ops" cb_ioctl
cb_ioctl = powernow_ioctl

Who would've guessed. Let's look into this:

> powernow_ioctl::dis
powernow_ioctl:                 pushq  %rbp
powernow_ioctl+1:               movq   %rsp,%rbp
powernow_ioctl+4:               movq   %rbx,-0x20(%rbp)
powernow_ioctl+8:               movq   %r12,-0x18(%rbp)
powernow_ioctl+0xc:             movq   %r13,-0x10(%rbp)
powernow_ioctl+0x10:            movq   %r14,-0x8(%rbp)
powernow_ioctl+0x14:            subq   $0x30,%rsp
[ ... ]

Wow – bad bad bad.

What does this code do ? It looks like it saves the nonvolatile registers into hidden 
local variables, -...(%rbp), doesn't it ?

Well – it may save them, but what it forgot to do and only does afterwards, is to 
allocate stackspace for this !

That's a big no-no in a preemptive kernel such as Solaris. If an interrupt occurs 
before the subq $0x30,%rsp has caught up with the required stackspace allocation, 
the values of %rbx/%r12/%r13 and %r14 just written to the stack will be clobbered by 
the interrupt frame !

Which is precisely what must have happened. Remember %r14 contained 0x30 on 
return ? Well – check any trapframe/interrupt frame that occurred in kernel, and you'll 
find at the very bottom of it:

panic[cpu0]/thread=ffffffff81519000: 
BAD TRAP: type=e (#pf Page fault) rp=fffffe80006b3be0 addr=0 occurred in module 
"unix" due to a NULL pointer dereference

powernowd: 
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#pf Page fault
Bad kernel fault at addr=0x0
pid=60, pc=0xfffffffffb826ce6, sp=0xfffffe80006b3cc8, eflags=0x10213
[ ... ]
> fffffe80006b3be0::print -a "struct regs" ! tail -2
    fffffe80006b3cb8 r_ss = 0x30
}

Now this is where the 0x30 comes from – as the value of KDS_SEL, the kernel 64bit 
data segment selector that is in %ss when the kernel runs.

We've seen code like this before – check the if() {} else statement source example 
in section 2.7.2. The GNU gcc compiler generates code like this in 64bit x86 as an 
“optimization” if the -mno-red-zone compile flag is omitted. The AMD64 UNIX ABI 
allows this for application code – but a preemptive kernel cannot allow this due to the 
way interrupts work on x86. Therefore:

Solaris Kernel Modules must be compiled with -mno-red-zone if gcc is used.

Morale:

If you're a developer, know your compiler's default options !

7.5.1.Unwanted gcc optimizations and the Solaris kernel
The GNU gcc compiler's default behaviour when compiling code for the kernel code 
model (-mcmodel=kernel) on 64bit x86 with optimization on (-O2 or even above) isn't 
compatible with the Solaris kernel for several reasons:

1. The compiler uses the stack redzone, although that behaviour is incompatible with 
kernel code on all preemptive kernels – whether Linux, Solaris or one of the *BSDs.
It's essential to disable the use of the redzone via -mno-red-zone. The example in 
the previous section should have shown how problematic it is to trace this bug.

2. The compiler will attempt to use builtin inline versions of functions like bcopy(), 
memcpy() and the str...() function family. But gcc's builtins can break the kernel 
because floating point / vector registers are not usable from kernel mode.
The use of builtins must be disabled via -fno-builtins.

3. The compiler by default assumes to be able to link binaries with libgcc.a that 
contains common “utility” code for gcc. This is not available for kernel drivers, 
which therefore must be compiled with -ffreestanding, which instructs gcc to 
create “standalone” code without any dependencies on external libraries/objects.

4. Some gcc versions optimize away the use of the framepointer when specifying -O2. 
While framepointer-less kernel driver code will work, it is incompatible with DTrace. 
Code that is supposed to be dynamically instrumented via DTrace requires 
framepointers. gcc can be instructed not to optimize away framepointers by using 
the -fno-omit-framepointer option. It's the default for gcc 3.4.3 as shipped with 
Solaris 10.

There are other gcc optimizations that don't cause problems in all cases but still may 
have negative impact depending in expectations of the sourcecode. Examples of these 
would be:

5. gcc does what it calls strict aliasing – type-based optimization. If this is on, the 
compiler optimizes data accesses depending on structure layout and the data types 
involved. For driver code, though, that may be a problem in cases where packed 
structures (or C unions) are used to map e.g. device hardware registers. Whether 
-fno-strict-aliasing is required to disable this behaviour therefore depends on 
the specific code being compiled.
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6. gcc does optimization like per- or cross-sourcefile function inlining or eliminating 
functions that are tail-called only. This doesn't cause failures but it may cause 
undesirable results (functions disappearing which the developer expexts to see e.g. 
in crashdumps, or via DTrace) and can be disabled, via the options -fno-inline, 
-fno-unit-at-a-time or -fno-optimize-sibling-calls.

For more gcc options, see http://gcc.gnu.org/onlinedocs/gcc/, “Optimizations”.
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7.6.AMD64 ABI – Backtracing without framepointers
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7.7.Examples on application coredump analysis on 
Solaris/x86
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7.8.Advanced Debugging Topics

7.8.1.The Solaris/x86 boot debugger

7.8.2.Debugging hard hangs on Solaris/x86
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8.Lab Exercises
8.1.Introduction to x86 assembly language
1. Name five different x86-compatible CPUs that run Solaris 10.

• how do they differ ?

• Which features does CPU X have but CPU Y not, and vice versa ?

• Which of these features are being used in Solaris 10 ?

2. Why does Solaris 10 not run on either of the following CPUs:

• Intel i8086,

• Intel i80286,

• AMD 486,

• Motorola 68040 ?

Which ones of these run any version of Solaris ?

3. Create a file “testfile” with random contents using the following command:

dd if=/dev/random of=testfile bs=1024 count=1

Try to disassemble the contents of testfile using the command:

echo “0,100?ai” | mdb testfile

• on a Solaris 10/x86 machine

• on a Solaris 10/SPARC machine.

What do you find ?

4. On a machine running a 64bit Solaris 10/x86 kernel, try disassembling testfile in 
both 32bit and 64bit disassembly mode using the following command:

mdb testfile <<EOI
::dismode ia32; 0,100?ai
::dismode amd64; 0,100?ai
EOI

• Is there any difference between the 32bit and 64bit output ?

• If so, what is different ?

5. What is the x86 machine code for the following assembly instruction:

addb %al,(%eax)

6. Take testfile created above and copy it onto a SPARC and a x86 machine. Inspect its 
contents using the commands:

od -N 128 -x testfile
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od -N 128 -t x1 testfile
od -N 128 -t x2 testfile
od -N 128 -t x4 testfile
od -N 128 -t x8 testfile

Compare the output on SPARC and x86 and describe what you see.

7. Create the following assembly sourcefile:

/ amd64-impl.s
/ demonstrate how AMD extended the x86 instruction set
.globl func
func:

addb %bl, %al
addb %r11b, %al
addb %bl, %r10b
addb %r11b, %r10b
addw %bx, %ax
addw %r11w, %ax
addw %bx, %r10w
addw %r11w, %r10w
addl %ebx, %eax
addl %r11d, %eax
addl %ebx, %r10d
addl %r11d, %r10d
addq %rbx, %rax
addq %r11, %rax
addq %rbx, %r10
addq %r11, %r10

.size func,.-func

and assemble it (don't forget -xarch=amd64, to instruct the assembler to use 
AMD64 input mode). Disassemble the resulting object file via /usr/ccs/bin/dis.

Identify the patterns in the binary code.

• what do all addb instructions have in common ?

• what do all addw instructions have in common ?

• ... addl/addq instructions ?

• what differs between instructions using %bl/%bx/%ebx/%rbx and instructions using 
the various widths of %r11 ? Dito for %rax/%r10 ?

• Can you derive from the binary code how the AMD64 extension was done ?

If not: Disassemble the object file with mdb, switching into ia32 disassembly mode 
(::dismode ia32). What's the same and what's different to the 64bit version ?

8. Create the following assembly sourcefile:

/ addressing mode redundancy in 32bit x86
/ demonstrate how %rip-relative addressing is done in AMD64
.globl func
func:

movl 0x1234, %ebx
.size func,.-func

and assemble it (cc -c ... for 32bit, cc -xarch=amd64 -c ... for 64bit)

• Assemble it as 32bit, then disassemble the object file via /usr/ccs/bin/dis.
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• Assemble it as 64bit, then disassemble the object file.

What if any are the differences ? Next, Change the source to:

func:
movl 0x1234, %ebx
movl 0x1234(%rip), %ebx

.size func,.-func

• Assemble this (64bit required now, of course).

• Disassemble it in mdb, using the commands:
::dismode amd64; func::dis
::dismode ia32; func::dis

How was the %rip-relative addressing done in 64bit mode ?

9. Compile the following sourcefile, into optimized and non-optimized 32bit and 64bit 
code, both with gcc and Sun Workshop cc:

#include <string.h>
#include <stdlib.h>

typedef struct _str {
        int str_i;
        char str_c;
        long long str_ll;
        char str_name[256];
        struct _str *str_nxt;
} str_t;

void init_str(str_t *initme, int i, char c, long long ll, str_t *nxt)
{
        str_t lv;
        int j;

        lv.str_i = i;
        lv.str_c = c;
        lv.str_ll = ll;
        lv.str_nxt = nxt;

        for (j = c; j < i; j++)
                lv.str_name[j] = (char)j;

        memcpy(initme, &lv, sizeof(str_t));
}

For each case, disassemble the resulting binary and identify the instructions that 
access the array, lv.str_name[j]. What is used to access memory ?

What assembly code (optimized vs. non-optimized, gcc vs. Workshop cc) is best 
readable ?

10.Change the above program and make lv a global (instead of a local) variable. 
Repeat the steps above, for 64bit optimized compilation. What changes ?

11.Change the program again to directly initialize *initme (no pre-creation of an 
instance of the structure and memcpy). Perform both 32bit and 64bit optimizing 
compiles. What changes in the assembly code ?
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12.Compile the following sourcecode:

int main(int argc, char **argv)
{
        return (3 * argc);
        /*
         * try also:
         *      return (5 * argc)
         *      return (9 * (argc + 1))
         */

}

Use optimization (-O2 or higher in gcc, -xO3 or above in Workshop cc).  What 
assembly instructions are used to perform the multiplication ?
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8.2.Stacks and Stacktracing
1. Compile the following program into a 64bit x86 executable:

#include <stdlib.h>
#include <stdio.h>

long
overflow_me(long a1, long a2, long a3, long a4, long a5, long a6, long a7)
{
        long localvar;

        localvar = a1 + a2 - a3 * a4 / a5 ^ a6 | a7;
        return (localvar + overflow_me(lrand48(), lrand48(), lrand48(),
                        lrand48(), lrand48(), lrand48(), lrand48()));
}

int main(int argc, char **argv)
{
        printf("Let's overflow: %ld\n",
                overflow_me(1, 2, 3, 4, 5, 6, 7));
        return (0);
}

Use optimization (-O2 in gcc, or -xO3 in cc) because that makes the assembly code 
better readable.

• open the program in mdb.

• put a breakpoint in main (main:b)

• run the program (:r)

• When the breakpoint is hit, dump the top of the stack (<rsp,10/nap). What is on 
the stack ?

• disassemble main and identify the instructions that put values into the stack.

• single-step through main and dump the top of the stack after each step to verify 
your findings (:s;<rsp,10/nap). Stop singlestepping when you're in 
overflow_me at the first call lrand48.

• Explain all the values on the stack between the stackpointer at this time and the 
framepointer of main.

• Where does the stackframe of main() start, and where does it end ? Give the 
addresses !

• Can you find the arguments of main() ?

• Continue the program (:c). It will segfault – why ?

2. A crashdump is provided with the electronic parts of the course material that has 
the following stacktrace:

> $C
ffffffffb2ef8d40 mutex_enter+0xb()
ffffffffb2ef8e00 lookupnameat+0x86()
ffffffffb2ef8e50 cstatat_getvp+0x115()
ffffffffb2ef8eb0 cstatat64_32+0x49()
ffffffffb2ef8ec0 stat64_32+0x22()
ffffffffb2ef8f20 sys_syscall32+0xd0()

• Identify the stack boundaries (bottom and top of the stackframes) for the listed 
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functions. I.e. for all functions in the call trace, find:

• What is the first word written to the stack by a function ?

• What is the last word written to the stack by the same function ?

• Find out based on reading the assembly code for function and caller how many 
arguments the listed functions have.

• Find the arguments. To do so, emply the following strategies:

• load the act module and let that do the work for you:
::load /opt/CTEact/mdb/5.10/amd64/act.so
*panic_thread::act_thread

• Search them manually, at least for those cases where act fails to print them. The 
seach strategy is:

• Disassemble the function.

• See whether it puts arguments registers into its stack.
If it does, retrieve the values from the stack of the function.

• See whether it moves argument registers into nonvolatiles.
If it does, disassemble the next function in the calltrace and see where it 
saves the nonvolatiles.

• If neither, disassemble the caller and see where it takes the arguments from. 
If they come from local variables of the caller, they'll be in the caller's stack.
If they come from nonvolatile registers of the caller, they have been saved 
by the function itself.
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10.License
The first version of this book was written by Frank Hofmann.

You're allowed to modify this under the terms and conditions stated by the Creative 
Commons “Attribution-ShareAlike” License, Version 2.5:

http://creativecommons.org/licenses/by-sa/2.5/

Summary:

Attribution-ShareAlike 2.5 

You are free:

• to copy, distribute, display, and perform the work 
• to make derivative works 
• to make commercial use of the work 

Under the following conditions:

Attribution. You must attribute the work in the 
manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this 
work, you may distribute the resulting work only under 
a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of 
this work. 

• Any of these conditions can be waived if you get permission from the copyright 
holder. 

Your fair use and other rights are in no way affected by the above.
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Full terms in print:

Attribution-ShareAlike 2.5

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT 
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE 
AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS 
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO 
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS 
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License 

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS 
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS 
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE 
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW 
IS PROHIBITED. 

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND 
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS 
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE 
OF SUCH TERMS AND CONDITIONS. 

1. Definitions 

a. "Collective Work" means a work, such as a periodical issue, anthology or 
encyclopedia, in which the Work in its entirety in unmodified form, along with a 
number of other contributions, constituting separate and independent works in 
themselves, are assembled into a collective whole. A work that constitutes a 
Collective Work will not be considered a Derivative Work (as defined below) for 
the purposes of this License. 

b. "Derivative Work" means a work based upon the Work or upon the Work and 
other pre-existing works, such as a translation, musical arrangement, 
dramatization, fictionalization, motion picture version, sound recording, art 
reproduction, abridgment, condensation, or any other form in which the Work 
may be recast, transformed, or adapted, except that a work that constitutes a 
Collective Work will not be considered a Derivative Work for the purpose of this 
License. For the avoidance of doubt, where the Work is a musical composition or 
sound recording, the synchronization of the Work in timed-relation with a 
moving image ("synching") will be considered a Derivative Work for the purpose 
of this License. 

c. "Licensor" means the individual or entity that offers the Work under the terms 
of this License. 

d. "Original Author" means the individual or entity who created the Work. 
e. "Work" means the copyrightable work of authorship offered under the terms of 

this License. 
f. "You" means an individual or entity exercising rights under this License who 

has not previously violated the terms of this License with respect to the Work, or 
who has received express permission from the Licensor to exercise rights under 
this License despite a previous violation. 
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g. "License Elements" means the following high-level license attributes as 
selected by Licensor and indicated in the title of this License: Attribution, 
ShareAlike.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any 
rights arising from fair use, first sale or other limitations on the exclusive rights of the 
copyright owner under copyright law or other applicable laws. 

3. License Grant. Subject to the terms and conditions of this License, Licensor 
hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration 
of the applicable copyright) license to exercise the rights in the Work as stated below: 

a. to reproduce the Work, to incorporate the Work into one or more Collective 
Works, and to reproduce the Work as incorporated in the Collective Works; 

b. to create and reproduce Derivative Works; 
c. to distribute copies or phonorecords of, display publicly, perform publicly, and 

perform publicly by means of a digital audio transmission the Work including as 
incorporated in Collective Works; 

d. to distribute copies or phonorecords of, display publicly, perform publicly, and 
perform publicly by means of a digital audio transmission Derivative Works. 

e. For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the 
exclusive right to collect, whether individually or via a performance rights 
society (e.g. ASCAP, BMI, SESAC), royalties for the public performance or 
public digital performance (e.g. webcast) of the Work. 

ii. Mechanical Rights and Statutory Royalties. Licensor waives the 
exclusive right to collect, whether individually or via a music rights 
society or designated agent (e.g. Harry Fox Agency), royalties for any 
phonorecord You create from the Work ("cover version") and distribute, 
subject to the compulsory license created by 17 USC Section 115 of the 
US Copyright Act (or the equivalent in other jurisdictions). 

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, 
where the Work is a sound recording, Licensor waives the exclusive right to 
collect, whether individually or via a performance-rights society (e.g. 
SoundExchange), royalties for the public digital performance (e.g. webcast) of 
the Work, subject to the compulsory license created by 17 USC Section 114 of 
the US Copyright Act (or the equivalent in other jurisdictions). 

The above rights may be exercised in all media and formats whether now known or 
hereafter devised. The above rights include the right to make such modifications as are 
technically necessary to exercise the rights in other media and formats. All rights not 
expressly granted by Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly made subject to 
and limited by the following restrictions: 

a. You may distribute, publicly display, publicly perform, or publicly digitally 
perform the Work only under the terms of this License, and You must include a 
copy of, or the Uniform Resource Identifier for, this License with every copy or 
phonorecord of the Work You distribute, publicly display, publicly perform, or 
publicly digitally perform. You may not offer or impose any terms on the Work 
that alter or restrict the terms of this License or the recipients' exercise of the 
rights granted hereunder. You may not sublicense the Work. You must keep 
intact all notices that refer to this License and to the disclaimer of warranties. 
You may not distribute, publicly display, publicly perform, or publicly digitally 
perform the Work with any technological measures that control access or use of 
the Work in a manner inconsistent with the terms of this License Agreement. 
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The above applies to the Work as incorporated in a Collective Work, but this 
does not require the Collective Work apart from the Work itself to be made 
subject to the terms of this License. If You create a Collective Work, upon notice 
from any Licensor You must, to the extent practicable, remove from the 
Collective Work any credit as required by clause 4(c), as requested. If You create 
a Derivative Work, upon notice from any Licensor You must, to the extent 
practicable, remove from the Derivative Work any credit as required by clause 
4(c), as requested. 

b. You may distribute, publicly display, publicly perform, or publicly digitally 
perform a Derivative Work only under the terms of this License, a later version 
of this License with the same License Elements as this License, or a Creative 
Commons iCommons license that contains the same License Elements as this 
License (e.g. Attribution-ShareAlike 2.5 Japan). You must include a copy of, or 
the Uniform Resource Identifier for, this License or other license specified in the 
previous sentence with every copy or phonorecord of each Derivative Work You 
distribute, publicly display, publicly perform, or publicly digitally perform. You 
may not offer or impose any terms on the Derivative Works that alter or restrict 
the terms of this License or the recipients' exercise of the rights granted 
hereunder, and You must keep intact all notices that refer to this License and to 
the disclaimer of warranties. You may not distribute, publicly display, publicly 
perform, or publicly digitally perform the Derivative Work with any 
technological measures that control access or use of the Work in a manner 
inconsistent with the terms of this License Agreement. The above applies to the 
Derivative Work as incorporated in a Collective Work, but this does not require 
the Collective Work apart from the Derivative Work itself to be made subject to 
the terms of this License. 

c. If you distribute, publicly display, publicly perform, or publicly digitally perform 
the Work or any Derivative Works or Collective Works, You must keep intact all 
copyright notices for the Work and provide, reasonable to the medium or means 
You are utilizing: (i) the name of the Original Author (or pseudonym, if 
applicable) if supplied, and/or (ii) if the Original Author and/or Licensor 
designate another party or parties (e.g. a sponsor institute, publishing entity, 
journal) for attribution in Licensor's copyright notice, terms of service or by 
other reasonable means, the name of such party or parties; the title of the Work 
if supplied; to the extent reasonably practicable, the Uniform Resource 
Identifier, if any, that Licensor specifies to be associated with the Work, unless 
such URI does not refer to the copyright notice or licensing information for the 
Work; and in the case of a Derivative Work, a credit identifying the use of the 
Work in the Derivative Work (e.g., "French translation of the Work by Original 
Author," or "Screenplay based on original Work by Original Author"). Such 
credit may be implemented in any reasonable manner; provided, however, that 
in the case of a Derivative Work or Collective Work, at a minimum such credit 
will appear where any other comparable authorship credit appears and in a 
manner at least as prominent as such other comparable authorship credit. 

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR 
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES 
OF ANY KIND CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR 
OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, 
MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, 
OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE 
PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME 
JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO 
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SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE 
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY 
FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY 
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF 
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

7. Termination 

a. This License and the rights granted hereunder will terminate automatically 
upon any breach by You of the terms of this License. Individuals or entities who 
have received Derivative Works or Collective Works from You under this 
License, however, will not have their licenses terminated provided such 
individuals or entities remain in full compliance with those licenses. Sections 1, 
2, 5, 6, 7, and 8 will survive any termination of this License. 

b. Subject to the above terms and conditions, the license granted here is perpetual 
(for the duration of the applicable copyright in the Work). Notwithstanding the 
above, Licensor reserves the right to release the Work under different license 
terms or to stop distributing the Work at any time; provided, however that any 
such election will not serve to withdraw this License (or any other license that 
has been, or is required to be, granted under the terms of this License), and this 
License will continue in full force and effect unless terminated as stated above. 

8. Miscellaneous 

a. Each time You distribute or publicly digitally perform the Work or a Collective 
Work, the Licensor offers to the recipient a license to the Work on the same 
terms and conditions as the license granted to You under this License. 

b. Each time You distribute or publicly digitally perform a Derivative Work, 
Licensor offers to the recipient a license to the original Work on the same terms 
and conditions as the license granted to You under this License. 

c. If any provision of this License is invalid or unenforceable under applicable law, 
it shall not affect the validity or enforceability of the remainder of the terms of 
this License, and without further action by the parties to this agreement, such 
provision shall be reformed to the minimum extent necessary to make such 
provision valid and enforceable. 

d. No term or provision of this License shall be deemed waived and no breach 
consented to unless such waiver or consent shall be in writing and signed by the 
party to be charged with such waiver or consent. 

e. This License constitutes the entire agreement between the parties with respect 
to the Work licensed here. There are no understandings, agreements or 
representations with respect to the Work not specified here. Licensor shall not 
be bound by any additional provisions that may appear in any communication 
from You. This License may not be modified without the mutual written 
agreement of the Licensor and You. 
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Creative Commons is not a party to this License, and makes no warranty whatsoever 
in connection with the Work. Creative Commons will not be liable to You or any party 
on any legal theory for any damages whatsoever, including without limitation any 
general, special, incidental or consequential damages arising in connection to this 
license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has 
expressly identified itself as the Licensor hereunder, it shall have all rights and 
obligations of Licensor. 

Except for the limited purpose of indicating to the public that the Work is licensed 
under the CCPL, neither party will use the trademark "Creative Commons" or any 
related trademark or logo of Creative Commons without the prior written consent of 
Creative Commons. Any permitted use will be in compliance with Creative Commons' 
then-current trademark usage guidelines, as may be published on its website or 
otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.
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