
  

USB HID Drivers on OpenSolaris 
and Linux – By Example

Copyright 2009: Max Bruning
Kernel Conference Australia, 

July, 2009



  

Topics Covered

● Description of Wacom Tablet
● USB HID Device Driver Overview
● Linux Input Event Subsystem Overview
● HID Driver Framework on OpenSolaris
● Wacom Kernel Module and X Input Extension 

Library on OpenSolaris



  

Overview of the Wacom Tablet
● Tablet models come in different sizes and 

features
● Each tablet comes with a pen with replaceable 

stylus and side switches
● Tablet can send proximity events, absolute pen 

coordinates, pressure, height, tilt, pen serial 
number, and various “expresskey” events and 
slider(s) events

● Tablet contains HID boot protocol which allows 
pen to work like a mouse

● More information at www.wacom.com

http://www.wacom.com/productinfo/index.php


  

USB HID Device Overview
● Communication between HID devices and a 

HID driver are in the form of Device Descriptors 
and/or data

● Device Descriptor
● Configuration Descriptor

– Interface Descriptor
● Endpoint Descriptor
● HID Descriptor

– Report Descriptor
– Physical Descriptor

● Descriptors can be viewed using mdb(1)or 
prtpicl(1)

● See Device Class Definition for Human Interface Devices(HID)  

http://www.google.com/url?sa=t&source=web&ct=res&cd=2&url=http://www.usb.org/developers/devclass_docs/HID1_11.pdf&ei=J2FUSvjFB8jFsAaZ7qjSBw&rct=j&q=usb+hid+specification&usg=AFQjCNFEuxKl_CDWUSpdhHo-28H_MhrPAw


  

Device Descriptors For Wacom 
Tablet

# mdb -k
Loading modules: [ unix genunix specfs dtrace mac cpu.generic
 uppc pcplusmp scsi_vhci zfs sockfs ip hook neti sctp arp usba uhci
 sd fctl md lofs audiosup fcip fcp random cpc crypto logindmux ptm ufs
 nsmb sppp ipc ]
> ::prtusb
INDEX   DRIVER      INST  NODE            VID.PID     PRODUCT             
1       ehci        0     pci17aa,200b    0000.0000   No Product String
2       uhci        0     pci17aa,200a    0000.0000   No Product String
3       uhci        1     pci17aa,200a    0000.0000   No Product String
4       uhci        2     pci17aa,200a    0000.0000   No Product String
5       uhci        3     pci17aa,200a    0000.0000   No Product String
6       scsa2usb    1     storage         1058.0704   External HDD    
7       hid         0     mouse           056a.0065   MTE-450
8       usb_mid     0     device          0483.2016   Biometric Coprocessor
>



  

Device Descriptors For Wacom 
Tablet (Continued)

> ::prtusb -v -i 7 ← Add “-t” to also show HID Usage Tables
INDEX   DRIVER      INST  NODE            VID.PID     PRODUCT             
7       hid         0     mouse           056a.0065   MTE-450

Device Descriptor  ← usb_dev_descr_t from uts/common/sys/usb/usbai.h
{
    bLength = 0x12
    bDescriptorType = 0x1
    bcdUSB = 0x200
    BDeviceClass = 0 ← class info in interface descriptor
    bDeviceSubClass = 0
    bDeviceProtocol = 0
    bMaxPacketSize0 = 0x40
    idVendor = 0x56a ← Wacom vendor id
    idProduct = 0x65 ← “Bamboo”
    bcdDevice = 0x108
    iManufacturer = 0x1
    iProduct = 0x2
    iSerialNumber = 0
    bNumConfigurations = 0x1
}



  

Device Descriptors for Wacom 
Tablet (Continued)

    -- Active Config Index 0
    Configuration Descriptor
    {
        bLength = 0x9                 
        bDescriptorType = 0x2
        wTotalLength = 0x22
        bNumInterfaces = 0x1
        bConfigurationValue = 0x1
        iConfiguration = 0x0
        bmAttributes = 0x80 ← bus powered
        bMaxPower = 0x16 ← 44mA
    }
        Interface Descriptor
        {
            bLength = 0x9
            bDescriptorType = 0x4
            bInterfaceNumber = 0x0
            bAlternateSetting = 0x0
            bNumEndpoints = 0x1
            bInterfaceClass = 0x3 ← HID Class Device
            bInterfaceSubClass = 0x1 ← Device supports a boot interface
            bInterfaceProtocol = 0x2 ← Boot protocol is mouse
            iInterface = 0x0
        }



  

Device Descriptors For Wacom 
Tablet (Continued)

            HID Descriptor
            {
                bLength = 0x9         
                bDescriptorType = 0x21 ← Assigned by USB, mouse
                bcdHID = 0x100
                bCountryCode = 0x0 ← Not localized
                bNumDescriptors = 0x1
                bReportDescriptorType = 0x22 ← mouse
                wReportDescriptorLength = 0x92
            }
        Endpoint Descriptor
        {
            bLength = 0x7
            bDescriptorType = 0x5 ← mouse
            bEndpointAddress = 0x81 ← input endpoint number 1
            bmAttributes = 0x3 ← interrupt endpoint
            wMaxPacketSize = 0x9
            bInterval = 0x4
        }
                                                                        
> 



  

Viewing Device Descriptors on 
Linux

● On Linux, USB device information, including 
descriptors, is located in 
/proc/bus/usb/devices

● Information is in ascii (so you can cat the file)

● See 
Documentation/usb/proc_usb_info.txt 
in the Linux source code

● lsusb -vvv also shows descriptors as well 
as HID Usage Tables



  

USB HID Device Drivers on Linux

● Drivers for HID devices on Linux can be 
implemented via:
● A kernel driver that communicates with a USB host 

controller driver via the usb-core API
– See Programming Guide for Linux USB Device Drivers

● A user level driver that communicates with the 
hid_input kernel module

● A user level driver that communicates with the 
hiddev kernel module

● Hid-input and hiddev communicate with the 
USB host controller driver via hid-core

http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/


  

USB HID Device Drivers on Linux 
(Continued)

● User level drivers communicate with kernel via 
libusb and/or libhid

● Note that the Wacom implementation on Linux 
consists of a kernel module that communicates 
directly with the USB host controller via      
usb-core

● User level communication with Wacom is via Linux 
generic input device (/dev/input/event#)



  

USB HID Device Drivers on 
OpenSolaris

● For HID devices, OpenSolaris provides the 
hid(7d)driver and hidparser kernel module
● hid(7d) handles all communication with the USB 

host controller via usba(7d) (analagous to usb-
core on Linux)

● hid(7d) is a STREAMS driver
– Individual HID devices can use a STREAMS module 

pushed onto the driver to handle the device
– There is no documentation for writing such a module

● The hidparser module handles HID descriptors



  

USB HID Device Drivers on 
OpenSolaris (Continued)

● OpenSolaris also has support for 
libusb(3LIB)

● Uses the ugen(7d) kernel driver to communicate 
with the USB host controller via usba(7d)

● OpenSolaris currently has no support for 
libdev or the Linux input device module

● There are currently hid(7d) STREAMS 
modules to support mouse, keyboard, and 
audio control devices.



  

Linux Input Device Handling

Application

Event Handler
 (evdev, keybdev, mousedev, joydev)

input module

Driver

● Application opens and reads from an 
input device (/dev/input/event#, for 
instance)
● Event Handler is a kernel module that 
gets input events from the input module
● The input module gets events from 
registered drivers, and passes them to 
registered handlers
● The driver handles the device.  For 
USB, the driver communicates with the 
host controller via usb-core, or via hid-
core
● Input events include a time stamp, type 
of event, code for event type, and a 
value

➔ For instance, a type of event might 
be a button event, the code indicates 
which button, and the value would 
indicate press or release.



  

Linux Input Device Handling – USB 
Input Driver Example

/* note that in this example, many details are omitted */
static int foo_probe(struct usb_interface *intf,

Const struct usb_device_id *id)
{

struct foo *foo;  /* private state data for device */
foo = kzalloc(sizeof(struct foo), GFP_KERNEL);
input_dev = input_allocate_device();
foo->data = usb_buffer_alloc(dev, len, flags, &foo->data_dma);
foo->irq = usb_alloc_urb(0, flags);
input_dev->open = foo_open;
input_dev->close = foo_close;
/* initialize input_dev capabilities, i.e., */
/* set input_dev evbits and keybits (buttons, abs vs. rel, etc. */
/* tell input module about supported and min/max params */
/* for instance... */
input_set_abs_params(input_dev, ABS_X, minx, maxx, 0, 0);
…
endp = intf->cur_altsetting->endpoint[i].desc;
usb_fill_int_urb(foo->irq, dev,

usb_rcvintpipe(dev, endp->bEndpointAddress), foo->data, len,
foo_irq, foo, endp->bEndpointInterval);

input_register_device(foo->dev);
/* send/retrieve reports, as needed  */
usb_set_report(...);

}



  

Linux Input Device Handling – USB 
Input Driver Example (Continued)

Static void
foo_irq(struct urb urb) /* called when data arrives from device (usb-core)*/
{

struct foo *foo = (struct foo *)urb->context;
unsigned char *data = foo->data;  /* the data from the device */
struct input_dev *input_dev = foo->inputdev;
switch(urb->status) {
case 0:

/* success, first process data, then send keys, abs/rel, events */
input_report_abs(input_dev, type, code, value);
/* and/or input_event(), input_report_rel(), input_report_key() */

default:
/* handle error */

}



  

Linux Input Device Handling – Input 
Module

● Each input device module maintains bit field arrays of capabilities of the underlying device
● Device driver fills in bits for corresponding capabilities supported by the device

➔ Events
➔ Keys
➔ Relative Positions
➔ Absolute Positions
➔ Miscellaneous Events

➔ LEDs
➔ Sound Effects
➔ Force Feedback Events
➔ Switches

● Device drivers tell the input module about events that have occurred
● Input module checks to make sure the device is capable of generating the event
● Then the input module passes the event to interested event handler(s), or sent 

to the device (to turn on/off an LED, for instance)

● The input module is meant for generic input device handling, currently only used 
with usb



  

Linux Input Device Handling – Event 
Handler (evdev)

● The evdev module is meant for processing of generic events
● Other event handlers exist (mouse, keyboard, joystick), and others can be added

● evdev places the event in a client buffer and sends a SIGIO to waiting application
● Applications using evdev will first open an event device (/dev/input/event# where 
# is between 0 and 31) corresponding to the device for which the application expects 
events

●  Handler is added for device during input_register_device()
● Applications must search /dev/input/event# devices to find correct 

corresponding device (open and then get vendor/product id)



  

Linux Input Device Handling – 
Application Level

● User level code typically implemented in a library (foo_drv.so)
1.Applications wishing to use the device link with the library

● For the X windowing system, the library does the following actions:
1.The ModuleSetupProc function tells X about the new input driver
2.The PreInit function loads the kernel foo driver and the event handler 

module (for instance, evdev)
3.The device_control function, on DEVICE_INIT, opens each 
/dev/input/event# device until it finds one corresponding to the correct 
underlying hardware

4.  The  read_input function is called whenever packets are ready to be read by 
the server.
i. For each packet read, read_input gathers the packets until it has enough 

information to send event(s) associated with the packet(s)
ii. Once all packets have been read, the library calls xf86PostxxxEvent()to 

dispatch button press/release, motion, keystrokes, etc. events to the X server.
● A description of the above functions can be found at 
http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO

http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO


  

HID Framework on OpenSolaris 
(Example)

Application

streamhead streamhead

Consms
STREAMS
Multiplexor

Conskbd
STREAMS
Multiplexor

Hid
Driver

Hid
Driver

usba

Host Controller Driver
ehci/ohci/uhci

usbms usbkbm



  

Wacom Tablet on OpenSolaris

● 3 versions
● Modified usbms module
● Implement input device handling in kernel module
● Re-Implement Xinput library module



  

Wacom Driver as Modified usbms

Application

streamhead streamhead

Consms
STREAMS
Multiplexor

Hid
Driver

Hid
Driver

usba

Host Controller Driver
ehci/ohci/uhci

usbms usbms

● Usbms modified to support
both mouse and tablet
● All tablet events sent as 
mouse events
● Version has been in 
production for 2 years



  

Problems with First Solution

● The first iteration was implemented because I 
could not find a way to “pop” the usbms module
● Plumbing of usbms module done by 
consconfig_dacf kernel module based on 
dacf.conf(4) 

– Boot protocol identifies tablet as a mouse

● No tablet key support (pen, erasor, and side 
switches work)

● On SPARC, hwc module caused problem

● All handling of tablet specific data done by 
modified usbms module 



  

Wacom Module Implementing Linux 
input Events

● Problem of mouse boot protocol goes away by 
open(2) of the underlying device (usbms 
module is popped)

● wacom STREAMS module pushed onto hid 
by modified Linux wacom_drv.so library
● Otherwise, wacom_drv.so needs no modification

● wacom module converts raw input from tablet into 
input_event structures expected by library 
module

● All features of tablet now work 



  

Problems with Second Solution

● The Linux solution does much of the processing 
twice, once in the kernel module, and again in 
the library

● Licensing
● (But we won't talk about this...)



  

Wacom on OpenSolaris – Yet 
Another Solution

● wacom kernel module puts the tablet into “pen” 
mode, and sends raw tablet data to consumers

● The X input library, wacom_drv.so, accepts 
raw data, converts into X events, and sends the 
events.

● Currently, solution is using some Linux library 
code
● So, not yet released for OpenSolaris



  

Wacom Kernel Module – Sending a 
Report

wacom_get_vid_pid(wacom_state_t wacomp) /* called from module open */
{
        struct iocblk mctlmsg;
        mblk_t *mctl_ptr;
        dev_info_t *devinfo;

        queue_t *q = wacomp->wacom_rq_ptr;

        mctlmsg.ioc_cmd = HID_GET_VID_PID;
        mctlmsg.ioc_count = 0;

        mctl_ptr = usba_mk_mctl(mctlmsg, NULL, 0);
        
        putnext(wacomp->wacom_wq_ptr, mctl_ptr);
        wacomp->wacom_flags |= WACOM_QWAIT;
        while (wacomp->wacom_flags & WACOM_QWAIT) {
                if (qwait_sig(q) == 0) {
                        wacomp->wacom_flags = 0;
                        return (EINTR);
                }

  }
  Return(0);

}



  

Wacom Kernel Module – Reading a 
Report

● The hid module acts on M_CTL messages 
and sends another M_CTL message upstream

● The wacom module, when it receives the 
answering M_CTL message, takes appropriate 
action (for instance, waking up code in the open 
function), and discards the message

● All tablet data is received as M_DATA 
messages, which are passed upstream with no 
processing



  

Acknowledgements

● Philip Brown's Wacom driver has been helpful, see 
http://www.bolthole.com/solaris/drivers/usb-wacom.html

● Strony Zhang at Sun Microsystems
● Various people at Wacom
● James McPherson
● The Queensland Brain Institute
● The Source

http://www.bolthole.com/solaris/drivers/usb-wacom.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

