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Overview of the Wacom Tablet
● Tablet models come in different sizes and 

features
● Each tablet comes with a pen with replaceable 

stylus and side switches
● Tablet can send proximity events, absolute pen 

coordinates, pressure, height, tilt, pen serial 
number, and various “expresskey” events and 
slider(s) events

● Tablet contains HID boot protocol which allows 
pen to work like a mouse

● More information at www.wacom.com

http://www.wacom.com/productinfo/index.php


  

USB HID Device Overview
● Communication between HID devices and a 

HID driver are in the form of Device Descriptors 
and/or data

● Device Descriptor
● Configuration Descriptor

– Interface Descriptor
● Endpoint Descriptor
● HID Descriptor

– Report Descriptor
– Physical Descriptor

● Descriptors can be viewed using mdb(1)or 
prtpicl(1)

● See Device Class Definition for Human Interface Devices(HID)  

http://www.google.com/url?sa=t&source=web&ct=res&cd=2&url=http://www.usb.org/developers/devclass_docs/HID1_11.pdf&ei=J2FUSvjFB8jFsAaZ7qjSBw&rct=j&q=usb+hid+specification&usg=AFQjCNFEuxKl_CDWUSpdhHo-28H_MhrPAw


  

Device Descriptors For Wacom 
Tablet

# mdb -k
Loading modules: [ unix genunix specfs dtrace mac cpu.generic
 uppc pcplusmp scsi_vhci zfs sockfs ip hook neti sctp arp usba uhci
 sd fctl md lofs audiosup fcip fcp random cpc crypto logindmux ptm ufs
 nsmb sppp ipc ]
> ::prtusb
INDEX   DRIVER      INST  NODE            VID.PID     PRODUCT             
1       ehci        0     pci17aa,200b    0000.0000   No Product String
2       uhci        0     pci17aa,200a    0000.0000   No Product String
3       uhci        1     pci17aa,200a    0000.0000   No Product String
4       uhci        2     pci17aa,200a    0000.0000   No Product String
5       uhci        3     pci17aa,200a    0000.0000   No Product String
6       scsa2usb    1     storage         1058.0704   External HDD    
7       hid         0     mouse           056a.0065   MTE-450
8       usb_mid     0     device          0483.2016   Biometric Coprocessor
>



  

Device Descriptors For Wacom 
Tablet (Continued)

> ::prtusb -v -i 7 ← Add “-t” to also show HID Usage Tables
INDEX   DRIVER      INST  NODE            VID.PID     PRODUCT             
7       hid         0     mouse           056a.0065   MTE-450

Device Descriptor  ← usb_dev_descr_t from uts/common/sys/usb/usbai.h
{
    bLength = 0x12
    bDescriptorType = 0x1
    bcdUSB = 0x200
    BDeviceClass = 0 ← class info in interface descriptor
    bDeviceSubClass = 0
    bDeviceProtocol = 0
    bMaxPacketSize0 = 0x40
    idVendor = 0x56a ← Wacom vendor id
    idProduct = 0x65 ← “Bamboo”
    bcdDevice = 0x108
    iManufacturer = 0x1
    iProduct = 0x2
    iSerialNumber = 0
    bNumConfigurations = 0x1
}



  

Device Descriptors for Wacom 
Tablet (Continued)

    -- Active Config Index 0
    Configuration Descriptor
    {
        bLength = 0x9                 
        bDescriptorType = 0x2
        wTotalLength = 0x22
        bNumInterfaces = 0x1
        bConfigurationValue = 0x1
        iConfiguration = 0x0
        bmAttributes = 0x80 ← bus powered
        bMaxPower = 0x16 ← 44mA
    }
        Interface Descriptor
        {
            bLength = 0x9
            bDescriptorType = 0x4
            bInterfaceNumber = 0x0
            bAlternateSetting = 0x0
            bNumEndpoints = 0x1
            bInterfaceClass = 0x3 ← HID Class Device
            bInterfaceSubClass = 0x1 ← Device supports a boot interface
            bInterfaceProtocol = 0x2 ← Boot protocol is mouse
            iInterface = 0x0
        }



  

Device Descriptors For Wacom 
Tablet (Continued)

            HID Descriptor
            {
                bLength = 0x9         
                bDescriptorType = 0x21 ← Assigned by USB, mouse
                bcdHID = 0x100
                bCountryCode = 0x0 ← Not localized
                bNumDescriptors = 0x1
                bReportDescriptorType = 0x22 ← mouse
                wReportDescriptorLength = 0x92
            }
        Endpoint Descriptor
        {
            bLength = 0x7
            bDescriptorType = 0x5 ← mouse
            bEndpointAddress = 0x81 ← input endpoint number 1
            bmAttributes = 0x3 ← interrupt endpoint
            wMaxPacketSize = 0x9
            bInterval = 0x4
        }
                                                                        
> 



  

Viewing Device Descriptors on 
Linux

● On Linux, USB device information, including 
descriptors, is located in 
/proc/bus/usb/devices

● Information is in ascii (so you can cat the file)

● See 
Documentation/usb/proc_usb_info.txt 
in the Linux source code

● lsusb -vvv also shows descriptors as well 
as HID Usage Tables



  

USB HID Device Drivers on Linux

● Drivers for HID devices on Linux can be 
implemented via:
● A kernel driver that communicates with a USB host 

controller driver via the usb-core API
– See Programming Guide for Linux USB Device Drivers

● A user level driver that communicates with the 
hid_input kernel module

● A user level driver that communicates with the 
hiddev kernel module

● Hid-input and hiddev communicate with the 
USB host controller driver via hid-core

http://www.lrr.in.tum.de/Par/arch/usb/usbdoc/


  

USB HID Device Drivers on Linux 
(Continued)

● User level drivers communicate with kernel via 
libusb and/or libhid

● Note that the Wacom implementation on Linux 
consists of a kernel module that communicates 
directly with the USB host controller via      
usb-core

● User level communication with Wacom is via Linux 
generic input device (/dev/input/event#)



  

USB HID Device Drivers on 
OpenSolaris

● For HID devices, OpenSolaris provides the 
hid(7d)driver and hidparser kernel module
● hid(7d) handles all communication with the USB 

host controller via usba(7d) (analagous to usb-
core on Linux)

● hid(7d) is a STREAMS driver
– Individual HID devices can use a STREAMS module 

pushed onto the driver to handle the device
– There is no documentation for writing such a module

● The hidparser module handles HID descriptors



  

USB HID Device Drivers on 
OpenSolaris (Continued)

● OpenSolaris also has support for 
libusb(3LIB)

● Uses the ugen(7d) kernel driver to communicate 
with the USB host controller via usba(7d)

● OpenSolaris currently has no support for 
libdev or the Linux input device module

● There are currently hid(7d) STREAMS 
modules to support mouse, keyboard, and 
audio control devices.



  

Linux Input Device Handling

Application

Event Handler
 (evdev, keybdev, mousedev, joydev)

input module

Driver

● Application opens and reads from an 
input device (/dev/input/event#, for 
instance)
● Event Handler is a kernel module that 
gets input events from the input module
● The input module gets events from 
registered drivers, and passes them to 
registered handlers
● The driver handles the device.  For 
USB, the driver communicates with the 
host controller via usb-core, or via hid-
core
● Input events include a time stamp, type 
of event, code for event type, and a 
value

➔ For instance, a type of event might 
be a button event, the code indicates 
which button, and the value would 
indicate press or release.



  

Linux Input Device Handling – USB 
Input Driver Example

/* note that in this example, many details are omitted */
static int foo_probe(struct usb_interface *intf,

Const struct usb_device_id *id)
{

struct foo *foo;  /* private state data for device */
foo = kzalloc(sizeof(struct foo), GFP_KERNEL);
input_dev = input_allocate_device();
foo->data = usb_buffer_alloc(dev, len, flags, &foo->data_dma);
foo->irq = usb_alloc_urb(0, flags);
input_dev->open = foo_open;
input_dev->close = foo_close;
/* initialize input_dev capabilities, i.e., */
/* set input_dev evbits and keybits (buttons, abs vs. rel, etc. */
/* tell input module about supported and min/max params */
/* for instance... */
input_set_abs_params(input_dev, ABS_X, minx, maxx, 0, 0);
…
endp = intf->cur_altsetting->endpoint[i].desc;
usb_fill_int_urb(foo->irq, dev,

usb_rcvintpipe(dev, endp->bEndpointAddress), foo->data, len,
foo_irq, foo, endp->bEndpointInterval);

input_register_device(foo->dev);
/* send/retrieve reports, as needed  */
usb_set_report(...);

}



  

Linux Input Device Handling – USB 
Input Driver Example (Continued)

Static void
foo_irq(struct urb urb) /* called when data arrives from device (usb-core)*/
{

struct foo *foo = (struct foo *)urb->context;
unsigned char *data = foo->data;  /* the data from the device */
struct input_dev *input_dev = foo->inputdev;
switch(urb->status) {
case 0:

/* success, first process data, then send keys, abs/rel, events */
input_report_abs(input_dev, type, code, value);
/* and/or input_event(), input_report_rel(), input_report_key() */

default:
/* handle error */

}



  

Linux Input Device Handling – Input 
Module

● Each input device module maintains bit field arrays of capabilities of the underlying device
● Device driver fills in bits for corresponding capabilities supported by the device

➔ Events
➔ Keys
➔ Relative Positions
➔ Absolute Positions
➔ Miscellaneous Events

➔ LEDs
➔ Sound Effects
➔ Force Feedback Events
➔ Switches

● Device drivers tell the input module about events that have occurred
● Input module checks to make sure the device is capable of generating the event
● Then the input module passes the event to interested event handler(s), or sent 

to the device (to turn on/off an LED, for instance)

● The input module is meant for generic input device handling, currently only used 
with usb



  

Linux Input Device Handling – Event 
Handler (evdev)

● The evdev module is meant for processing of generic events
● Other event handlers exist (mouse, keyboard, joystick), and others can be added

● evdev places the event in a client buffer and sends a SIGIO to waiting application
● Applications using evdev will first open an event device (/dev/input/event# where 
# is between 0 and 31) corresponding to the device for which the application expects 
events

●  Handler is added for device during input_register_device()
● Applications must search /dev/input/event# devices to find correct 

corresponding device (open and then get vendor/product id)



  

Linux Input Device Handling – 
Application Level

● User level code typically implemented in a library (foo_drv.so)
1.Applications wishing to use the device link with the library

● For the X windowing system, the library does the following actions:
1.The ModuleSetupProc function tells X about the new input driver
2.The PreInit function loads the kernel foo driver and the event handler 

module (for instance, evdev)
3.The device_control function, on DEVICE_INIT, opens each 
/dev/input/event# device until it finds one corresponding to the correct 
underlying hardware

4.  The  read_input function is called whenever packets are ready to be read by 
the server.
i. For each packet read, read_input gathers the packets until it has enough 

information to send event(s) associated with the packet(s)
ii. Once all packets have been read, the library calls xf86PostxxxEvent()to 

dispatch button press/release, motion, keystrokes, etc. events to the X server.
● A description of the above functions can be found at 
http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO

http://www.x.org/wiki/Development/Documentation/XorgInputHOWTO


  

HID Framework on OpenSolaris 
(Example)

Application

streamhead streamhead

Consms
STREAMS
Multiplexor

Conskbd
STREAMS
Multiplexor

Hid
Driver

Hid
Driver

usba

Host Controller Driver
ehci/ohci/uhci

usbms usbkbm



  

Wacom Tablet on OpenSolaris

● 3 versions
● Modified usbms module
● Implement input device handling in kernel module
● Re-Implement Xinput library module



  

Wacom Driver as Modified usbms

Application

streamhead streamhead

Consms
STREAMS
Multiplexor

Hid
Driver

Hid
Driver

usba

Host Controller Driver
ehci/ohci/uhci

usbms usbms

● Usbms modified to support
both mouse and tablet
● All tablet events sent as 
mouse events
● Version has been in 
production for 2 years



  

Problems with First Solution

● The first iteration was implemented because I 
could not find a way to “pop” the usbms module
● Plumbing of usbms module done by 
consconfig_dacf kernel module based on 
dacf.conf(4) 

– Boot protocol identifies tablet as a mouse

● No tablet key support (pen, erasor, and side 
switches work)

● On SPARC, hwc module caused problem

● All handling of tablet specific data done by 
modified usbms module 



  

Wacom Module Implementing Linux 
input Events

● Problem of mouse boot protocol goes away by 
open(2) of the underlying device (usbms 
module is popped)

● wacom STREAMS module pushed onto hid 
by modified Linux wacom_drv.so library
● Otherwise, wacom_drv.so needs no modification

● wacom module converts raw input from tablet into 
input_event structures expected by library 
module

● All features of tablet now work 



  

Problems with Second Solution

● The Linux solution does much of the processing 
twice, once in the kernel module, and again in 
the library

● Licensing
● (But we won't talk about this...)



  

Wacom on OpenSolaris – Yet 
Another Solution

● wacom kernel module puts the tablet into “pen” 
mode, and sends raw tablet data to consumers

● The X input library, wacom_drv.so, accepts 
raw data, converts into X events, and sends the 
events.

● Currently, solution is using some Linux library 
code
● So, not yet released for OpenSolaris



  

Wacom Kernel Module – Sending a 
Report

wacom_get_vid_pid(wacom_state_t wacomp) /* called from module open */
{
        struct iocblk mctlmsg;
        mblk_t *mctl_ptr;
        dev_info_t *devinfo;

        queue_t *q = wacomp->wacom_rq_ptr;

        mctlmsg.ioc_cmd = HID_GET_VID_PID;
        mctlmsg.ioc_count = 0;

        mctl_ptr = usba_mk_mctl(mctlmsg, NULL, 0);
        
        putnext(wacomp->wacom_wq_ptr, mctl_ptr);
        wacomp->wacom_flags |= WACOM_QWAIT;
        while (wacomp->wacom_flags & WACOM_QWAIT) {
                if (qwait_sig(q) == 0) {
                        wacomp->wacom_flags = 0;
                        return (EINTR);
                }

  }
  Return(0);

}



  

Wacom Kernel Module – Reading a 
Report

● The hid module acts on M_CTL messages 
and sends another M_CTL message upstream

● The wacom module, when it receives the 
answering M_CTL message, takes appropriate 
action (for instance, waking up code in the open 
function), and discards the message

● All tablet data is received as M_DATA 
messages, which are passed upstream with no 
processing
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