
Truly	
 random	
 notes	
 on	
 computer	

security	

Rodrigo	
 Rubira	
 Branco	
 (BSDaemon)	

rodrigo	
 noSPAM	
 kernelhacking.com	

Into	
 modern	
 soBware	
 exploitaEon	

•  Why	
 soBware	
 can	
 be	
 exploited	

– Sergey	
 Bratus	
 (yeah,	
 your	
 teacher)	
 created	
 an	

amazing	
 definiEon:	
 because	
 it	
 contains	
 a	
 ‘weird	

machine’	
 [that	
 runs	
 aNacker’s	
 craBed	
 inputs	
 as	
 if	

they	
 were	
 a	
 program]	

•  Thinking	
 about	
 group	
 theory,	
 exploitaEon	
 is	

made	
 possible	
 because	
 the	
 aNacker	
 has	
 the	

ability	
 to	
 group	
 together	
 what	
 we	
 name	

‘PRIMITIVES’	
 [“weird	
 assembly	
 instrucEons”]	

PrimiEves	
 x	
 Techniques	

•  ExploiEng	
 technique	

– Very	
 general	
 (works	
 for	
 ALL	
 cases	
 that	
 the	

technique	
 applies)	

– Think	
 about:	

•  tdelete()	

•  pop-­‐pop-­‐ret	

•  jmp	
 %esp	

Mind	
 detour	

CVE-­‐2010-­‐0083	

(gdb)	
 x/i	
 $pc	

	
 0xff0d1ec4	
 <_malloc_unlocked+356>:	
 	
 ld	
 [
 %l2	
],	
 %l4	

(gdb)	
 i	
 r	
 $l2	

	
 l2 	
 0x41414141	

	

Heap	
 Structure:	

	
 “\x00\x00\x00\x00”.	
 	
 	
 //	
 Size	
 (must	
 be	
 zero)	

	
 “\xff\xff\xff\xff”.	
 	
 	
 //	
 Whatever	
 value	

	
 $what_to_write.	

	
 “\x00\x00\x00\x00”. 	
 	
 //	
 Whatever	
 value	

	
 “\xff\xff\xff\xff”.	
 	
 	
 //	
 -­‐1	
 to	
 force	
 gemng	
 into	
 the	
 t_delete	
 funcEon	

	
 “\xff\xff\xff\xff”.	
 	
 	
 //	
 Whatever	
 value	

	
 $pointer_to_null. 	
 	
 //	
 Specific	
 to	
 this	
 bug	
 only	
 (usually	
 Whatever	
 valid	
 pointer)	

	
 “\xff\x00\x00\x00”. 	
 	
 //	
 Whatever	
 value	

	
 $where_to_write_minus_8	

	
 	

	

Mind	
 detour	

(gdb)	
 x/i	
 $pc	

	
 0xff0c766c	
 <t_delete+52>: 	
 	
 st	
 %o0,	
 [
 %o1	
 +8	
]	

(gdb)	
 i	
 r	
 $o0	

	
 o0 	
 0x61626364	

(gdb)	
 I	
 r	
 $o1	

	
 o1 	
 0x41424344	

	
 	

We	
 have	
 a	
 write	
 4!	

	

Challenges:	
 	

	
 -­‐	
 How	
 to	
 send	
 our	
 shellcode	
 within	
 the	
 packet	

	
 -­‐	
 What	
 to	
 overwrite	

	

	

PrimiEves	
 x	
 Techniques	

•  ExploiEng	
 primiEves	

– Grouping	
 together	
 what	
 you	
 need	
 to	
 create	
 the	

‘weird	
 machine’	

– Here	
 we	
 talk	
 about	
 per-­‐vulnerability	
 condiEons	

– Harder	
 to	
 generalize,	
 harder	
 to	
 prevent	

Mind	
 detour	

CVE-­‐2011-­‐0609	

SWF	
 File	
 divided	
 in	
 ABC	
 Segments:	

	

abcFile	
 {	
 	

	
 u16	
 minor_version	

	
 u16	
 major_version	

	
 cpool_info	
 constant_pool	

	
 u30	
 method_count	

	
 method_info	
 method[method_count]	

	
 u30	
 metadata_count	

	
 metadata_info	
 metadata[metadata_count]	

	
 u30	
 class_count	

	
 instance_info	
 instance[class_count]	

	
 u30	
 script_count	

	
 script_info	
 script[script_count]	

	
 u30	
 method_body_count	

	
 methody_body_info	
 method_body[method_body_count]	

}	

Source:	
 	
 Hai	
 Fei	
 Li	
 PresentaEon	
 @Cansecwest	
 2011	

Source:	
 	
 Hai	
 Fei	
 Li	
 PresentaEon	
 @Cansecwest	
 2011	

Source:	
 	
 Hai	
 Fei	
 Li	
 PresentaEon	
 @Cansecwest	
 2011	

Inconsistent	
 stack	
 state	
 aBer	
 a	
 jump	
 to	
 the	
 incorrect	
 posiEon	

InstrucEons	
 write	
 to	
 the	
 wrong	
 object	
 in	
 the	
 AcEveScript	
 Stack,	
 	

overwriEng	
 memory:	

	

mov	
 ecx,	
 dword	
 ptr	
 ds:[edx+70]	
 -­‐>	
 Program	
 fails	
 here	

lea	
 edx,	
 dword	
 ptr	
 ss:[ebp-­‐70]	

mov	
 dword	
 ptr	
 ss:[ebp-­‐70],	
 eax	

mov	
 eax,	
 dword	
 ptr	
 ds:[ecx]	

push	
 edx	

push	
 0	

push	
 ecx	

call	
 eax	

Shellcode:	

	

	
 -­‐	
 Relies	
 on	
 a	
 technique	
 to	
 get	
 the	
 KernelBase	
 that	
 does	

not	
 work	
 on	
 Windows	
 7	
 (InIniEalizaEonOrderModuleList	
 traversal	
 from	

the	
 PEB)	

	
 -­‐	
 Uses	
 hashes	
 for	
 calling	
 funcEons	
 (normal)	

	
 -­‐	
 Finds	
 the	
 handle	
 to	
 the	
 excel	
 process	

	
 	
 -­‐	
 Then	
 it	
 reads	
 the	
 binary	
 from	
 the	
 memory	
 image	

	
 	
 -­‐	
 IdenEfies	
 in	
 the	
 file	
 the	
 sequence:	
 43	
 2E	
 42	
 47	
 04	
 06	
 89	

	
 -­‐	
 Creates	
 the	
 binary	
 a.exe	
 and	
 executes	
 it	

	
 	
 -­‐	
 It	
 inserts	
 the	
 header	
 of	
 the	
 file	
 from	
 the	
 shellcode	
 itself	
 (call	

to	
 WriteFile(‘MZxx’))	
 in	
 order	
 to	
 bypass	
 AVs	
 detecEng	
 binaries	
 inside	

excel	
 files	

Bypassing	
 DEP:	

	
 -­‐	
 Need	
 to	
 use	
 ROP	

	
 -­‐	
 Create	
 a	
 first	
 stage	
 shellcode	
 that	
 will:	

	
 	
 Allocate	
 Memory	
 using	
 NtAllocateVirtualMemory	

	
 	
 Copy	
 a	
 second	
 stage	
 shellcode	
 to	
 that	
 locaEon	
 and	
 execute	
 it	

	
 -­‐	
 PDF	
 gadgets	
 are	
 widely	
 available	
 from	
 other	
 exploits:	

	
 	
 dd	
 7004919h 	
 	
 	
 pop	
 ecx	

	
 	
 	
 	
 	
 	
 	
 	
 pop	
 ecx	

	
 	
 	
 	
 	
 	
 	
 	
 mov	
 dword	
 ptr	
 [eax+0Ch],	
 1	

	
 	
 	
 	
 	
 	
 	
 	
 pop	
 esi	

	
 	
 	
 	
 	
 	
 	
 	
 pop	
 ebx	

	
 	
 	
 	
 	
 	
 	
 	
 retn	

	
 	
 dd	
 0CCCCCCCCh 	
 ecx	
 =	
 0xCCCCCCCC	

	
 	
 dd	
 70048EFh 	
 	
 	
 ecx	
 =	
 0x070048EF	

	
 	
 dd	
 700156Fh 	
 	
 	
 esi	
 =	
 0x0700156F 	
 	

	
 	
 dd	
 0CCCCCCCCh 	
 ebx	
 =	
 0xCCCCCCCC	

	
 	
 dd	
 7009084h 	
 	
 	
 retn	

	
 	
 dd	
 7009084h 	
 	
 	
 retn	

	
 	
 …	

We	
 control	
 eax,	
 do	
 you	
 remember?	

	

So,	
 what	
 do	
 you	
 say	
 when	
 you	
 look	
 into	
 a	
 loaded	
 library	

and	
 see	
 this	
 instrucEon	
 sequence:	

	

	
 0x070048EF 	
 xchg	
 esp,	
 eax	

	
 0x070048F0	
 	
 	
 	
 ret	

What	
 about	
 ASLR?	

	

The	
 PDF	
 gadgets	
 shown	
 are	
 in	
 a	
 library	
 that	
 gets	
 randomized	

	

In	
 Excel,	
 some	
 libraries	
 are	
 NEVER	
 randomized	
 and	
 its	
 known	

how	
 to	
 force	
 than	
 to	
 be	
 loaded	
 (using	
 specific	
 entries)	
 -­‐>	
 Thus,	
 	

if	
 aNacker	
 use	
 gadgets	
 from	
 Excel,	
 it	
 is	
 game	
 over	
 (already	
 reported	
 to	
 MS)	

	

In	
 Acrobat	
 they	
 improved	
 (a	
 lot)	
 that	
 and	
 it	
 is	
 much	
 more	
 tricky…	

	

Fortunately,	
 Flash	
 leaks	
 objects	
 addresses	
 and	
 thus	
 it	
 is	
 possible	

to	
 create	
 an	
 exploit	
 that	
 uses	
 objects	
 to	
 get	
 addresses	
 of	
 base	

pointers,	
 and	
 then	
 offsets	
 to	
 determine	
 the	
 library	
 locaEons	

	

Back	
 on	
 Track	

What	
 do	
 we	
 have	
 to	
 do	
 with	
 that?	

•  We	
 need	
 to	
 remove	
 from	
 the	
 aNackers	
 the	
 capability	

of	
 complete	
 controlling	
 of	
 the	
 ‘weird’	
 machine,	
 and	

thus	
 force	
 them	
 to	
 rely	
 on	
 primiEves	
 that	
 they	
 control	
 	

–  ASLR	
 -­‐>	
 Add	
 primiEves	

–  DEP	
 -­‐>	
 Add	
 primiEves	

–  Cookies	
 -­‐>	
 Add	
 primiEves	

•  In	
 the	
 end,	
 what	
 we	
 do:	

–  Force	
 new	
 primiEves,	
 in	
 order	
 to	
 create	
 a	
 complex	
 weird	

machine	
 for	
 the	
 aNack	

–  The	
 more	
 complex	
 is	
 the	
 weird	
 machine	
 for	
 the	
 aNacker	
 to	

control,	
 the	
 less	
 RELIABLE	
 is	
 the	
 exploit	

Kernel	
 Land	

Into	
 the	
 inners	
 of	
 our	
 computers	

•  Linux is not secure by default (we know, many *secure*
Linux distributions exist...)

•  Most of efforts till now on OS protection don’t really protect
the kernel itself

•  Most of modern OSs use only 2 privileges rings provided by
Intel arch (4)

•  These efforts in most of current security tools/methods/
politics try to block ring3 (user-mode) escalation to ring0
(kernel-mode)

•  Many (a lot!) of public exploits were released for direct
kernel exploitation

•  Beyond the fact above, it is possible to bypass the system’s
protectors (such as SELinux)

•  After a kernel compromise, life is not the same (never
ever!)

How	
 do	
 we	
 all	
 fail?	

Security	
 Hooking	

Easier	
 to	
 the	
 aNacker	
 than	
 to	
 the	
 defender	

ssize_t h_read(int fd, void *buf, size_t count){
unsigned int i;
ssize_t ret;
char *tmp;
pid_t pid;

If the fd (file descriptor) contains something
that we are looking for (kmem or mem)

return_address();
At this point we could check the offset being
required. If is our backdoor addr, send
another task_struct
ret=o_read(fd,buf,count);
change_address();
return ret;
}

int	
 change_address()	

{	

put	
 our	
 hacks	
 into	
 	

the	
 kernel	

}	

int	
 return_address()	

{	

return	
 our	
 hacks	
 to	
 the	
 original	

state	

}	

What	
 has	
 been	
 happening?	

•  Spender's public exploit (null pointer
dereference):

•  get_current

•  disable_selinux & lsm

•  change gids/uids of the current

•  chmod /bin/bash to be suid

StMichael	
 uses	
 session	
 keys	
 to	

encrypt	
 internal	
 strings	
 since	
 2003!	

disable_selinux

- find_selinux_ctxid_to_string()

/* find string, then find the reference to it, then work
backwards to find a call to selinux_ctxid_to_string */

What string? "audit_rate_limit=%d old=%d by auid=%u
subj=%s"

- /* look for cmp [addr], 0x0 */
then set selinux_enable to zero

- find_unregister_security();

What string? "<6>%s: trying to unregister a"
Than set the security_ops to dummy_sec_ops ;)

PaX	
 and	
 the	
 Kernel	

- KERNEXEC
* Introduces non-exec data into the kernel level
* Read-only kernel internal structures

- RANDKSTACK
* Introduce randomness into the kernel stack address of a task
* Not really useful when many tasks are involved nor when a task is
ptraced (some tools use ptraced childs)

- UDEREF
* Protects agains usermode null pointer dereferences, mapping guard
pages and putting different user DS

The PaX KERNEXEC improves the kernel security because it turns
many parts of the kernel read-only. To get around of this an attacker
need a bug that gives arbitrary write ability (to modify page entries
directly).

Problems	

•  Security normally runs on ring0, but usually on

kernel bugs attacker has ring0 privileges
•  Almost impossible to prevent (Joanna said we

need a new hardware-help, really?)
•  Lots of kernel-based detection bypassing

(forensics challenge)
•  Detection on kernel-based backdoors or attacks

rely on “mistakes” made by attackers - how to
detect an 'unknown' rootkit?

Changing	
 page	
 permissions	

wriEng	
 to	
 PaX-­‐protected	
 memory	

areas	

static int change_perm(unsigned int *addr)
{
 struct page *pg;
 pgprot_t prot;
 /* Change kernel Page Permissions */
 pg = virt_to_page(addr); /* We may experience some problems in RHEL

5 because it uses sparse mem */
 prot.pgprot = VM_READ | VM_WRITE | VM_EXEC; /* 0x7 - R-W-X */
 change_page_attr(pg, 1, prot);
 global_flush_tlb(); /* We need to flush the tlb, it's done reloading the

value in cr3 */
 return 0;
}// StMichael uses similar code to change kernel pages to RO

Handling	
 page	
 faults	

•  void do_page_fault(struct pt_regs *regs, unsigned long error_code) – arch/<arch>/

mm/fault.c
–  Get the unaccessible address from cr2
–  Get the address that caused the exception from regs->eip
–  Verify if someone is trying to write in a protected area

We need to care about page access violations, to provide real
time detection...

When the system tries to access an invalid memory location,
the MMU will generate an exception and the CPU will call the
do_page_fault to search the exception table for this EIP (ELF
section __ex_table)

OpEmizing	
 code	

•  Many efforts are needed to accomplish code

optimization
•  Lazy TLB:

– When a threads executes, copy the old
active mm pointer to be thread’s own
pointer

–  Doing so, the system does not need to
flush the TLB (one of the most expensive
things)

–  Because a defense system just touches
kernel-level memory, it doesn't need to
care about wrong resolutions

–  That's why we cannot just protect the
kcrash kernel

Interrupt	
 Handling	

•  Here we will try to cover two different
platforms: Intel and PowerPC

•  The general idea is to begin showing how our
model can be expanded to other architectures
(Like Power, which does not have System
Management Mode in the same way as the Intel
arch)

•  Interruptions are handled in different ways by
different platforms

System	
 calls	
 -­‐	
 Intel	

•  Two different ways:

–  Software interrupt 0x80
–  Vsyscalls (newer PIV+ processors – calls to

user space memory (vsyscall page) and using
sysenter and sysexit functions

•  To create the system call handler, the system

does:
set_system_gate(SYSCALL_VECTOR,&system_call
)
–  This is done in entry.S and creates a user

privilege descriptor at entry 128 (the
syscall_vector) pointing to the address of the
syscall handler (in that case, system_call)

System	
 calls	
 -­‐	
 PowerPC	

•  PPC interrupt routines are
anchored to fixed memory
locations

•  In head.S the system does:
. = 0xc00
SystemCall:
EXCEPTION_PROLOG
EXC_XFER_EE_LITE(0xc00, DoSyscall)

Intel Platform – Time interrupts

•  Historically used a cascaded pair of Intel 8259
interrupt controllers

•  Now, most of the system uses APIC, which
can emulate the old behavior

•  Each interrupt on x86 is assigned a unique
number, known as vector.

•  At the interrupt time, this vector is used as
index to the Interrupt Descriptor Table (IDT)

•  Uses the Intel 8254 timer with a
Programmable Interval Timer (PIT) – 16-bit
down counter – activate an interrupt in the
IRQ0 of the 8259 controller

• Power uses a 32 bit decrementer, built-in in
the CPU (running in the same clock)

• The timer handler is located at the fixed
address 0x900:

–  In head.S:
EXCEPTION(0x900, Decrementer, timer_interrupt,

EXC_XFER_LITE)

• External interrupts come at the fixed address
0x500 and are treated in a similar way to the

intel IDT jump

Power Platform – Time interrupts

• Julio Auto at H2HC III proposed an IDT
hooking to bypass StMichael – in Vietnam I

showed a working sample of this proposal (he
just gave a theoretical idea to bypass it)

• Also, he has proposed a way to protect it
hooking the init_module and checking the

opcodes of the new-inserted module

• It has two main problems:
–  Can be easily defeated using polymorphic shellcodes
–  Just protects against module insertion not against

arbitrary write (main purpose of StMichael)

Efforts	
 on	
 bypassing	
 StMichael	

Proposed	
 soluEons	
 against	
 it	

•  Julio Auto proposed statical
memory analysis as solution –
but, what about polymorphic
code? :

asm("jmp label3 \n\
label1: \n\
popl %%eax \n\
movl %%eax, %0 \n\
jmp label2 \n\
label3: \n\
call label1 \n\
label2:" : "=m" (address));

Memory	
 cloaking	

•  As exposed by Sherri Sparks and Jamie Butler
in the Shadow Walker talk at BlackHat and
already used by PaX project, the Intel
architecture has split TLBs for data and code
execution

•  Someone can force a TLB desynchronization
to hide kernel-text modifications from our
reads
–  This technique relies on the page fault

handler patch, since we protect the
hardware debug registers (see more
ahead) and we also check the default
handler, it cannot be used to bypass
StMichael.

Efforts	
 on	
 bypassing	
 StMichael	

•  The best approach (and easy?) way to bypass
StMichael is:
–  Read the list of VMAs in the system,

detecting the ones with execution property
enabled in the dynamic memory section

–  Doing so you can spot where the StMichael
code is in the kernel memory, so, just need
to attack it...

That's the motivation in the Joanna's comment

about us needing new hardware helping us...
but...

How?	
 SMM!	

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power management.
After entering SMM, various parts of a system can be shut
down or disabled to minimize power consumption. SMM
operates independently of other system software, and can
be used for other purposes too.

From the Intel386tm Product Overview – intel.com

Context	
 switches	

From	
 Cansecwest	
 2006	
 Duflot	

PE – Protection Mode Enable Flag
VM – Virtual Mode Enable Flag
RSM – Return from SMM
SMI – SMM Interrupt

Mind	
 Detour	

Mind	
 Detour	

•  Virtual	
 Machine	
 Control	
 Structure	
 	

•  Data	
 structure	
 used	
 by	
 the	
 CPU	
 to	
 store	
 all	
 informaEon	

about	
 the	
 Virtual	
 Machine	
 and	
 the	
 VMM.	
 	

•  Divided	
 in	
 5	
 areas:	

–	
 Guest-­‐state	
 area	

–	
 Host-­‐state	
 area	

–	
 VM-­‐execuEon	
 control	
 fields	
 –	
 VM-­‐entry	
 control	
 fields	
 	

•  –	
 Vm-­‐exit	
 informaEon	
 fields.	
 	

•  One	
 for	
 each	
 VM	
 and	
 for	
 each	
 CPU	
 	

•  Must	
 not	
 be	
 directly	
 accessed	

–	
 Use	
 the	
 VMX	
 instrucEons	
 to	
 access	
 the	
 VMCS.	
 	

Mind	
 Detour	

•  The	
 virtual	
 machine	
 must	
 handle	
 all	
 the	

intercepEon	
 events	
 (VMEXIT).	
 	

•  •	
 Types	
 of	
 events	

–	
 CRx/DRx	
 register	
 access	
 –	
 Interrupts	

–	
 I/O	
 instrucEons	

–	
 TSC	
 and	
 MSR	
 registers	
 –	
 much	
 more....	
 	

	

SMM	
 Resources	

•  No paging – 16 bits addressing mode, but all
memory accessible using memory extension
addressing

•  To enter SMM, we need an SMI
•  To leave the SMM, we need the RSM

instruction
•  When entering in SMM, the processor will

save the actual context – so, we can leave it
in any portion of the address space we want –
see more ahead

•  SMM runs in a protected memory, at SMBASE
and called SMRAM

SMM	
 Details	

•  SMM registers can be locked setting the D_LCK flag

(bit 4 in the MCH SMM register)
•  SMI_STS contains the device who generated the

SMI (write-reset register)
•  In the NorthBridge, the memory controller hub

contains the SMM control register – the bit 6,
D_OPEN, specifies that access to the memory range
SMRAM will go to SMM and not for the I/O port

•  The BIOS may set the D_LCK register, if so, we
need to patch the BIOS too (thanks to the
LinuxBIOS project, it's pretty easy)

GeneraEng	
 an	
 SMI	
 event	

•  We have many possibilities:
–  Using ACPI events (do you remember

hibernation and sleep?)
–  Using an external #SMI generator in the

bus
–  Some systems (AMD Geode?) are always

generating this kind of interrupt
– Writing to a specific I/O port also generates

an #SMI
•  This can be used to instrument the system to generate

#SMI events in some situations – compiler
modifications, static patch – need to be done yet –
SystemTAP gurus wanted

GeneraEng	
 an	
 SMI	
 event	
 -­‐	
 deeper	

•  All memory transactions from the CPU are placed

on the host bus to be consumed by some device
–  Potentially the CPU itself would decode a range

such as the Local APIC range, and the
transaction would be satisfied before needing to
be placed on the external bus at all.

•  If the CPU does not claim the transaction, then it
must be sent out.
–  In a typical Intel architecture, the transaction

would next be decoded by the MCH and be
either claimed as an address that it owns, or
determining based on decoders that the
transaction is not owned and thus would be
forwarded on to the next possible device in the
chain.

• If the memory controller does not find the
address to be within actual DRAM, then it looks

to see if it falls within one of the I/O ranges
owned by itself (ISA, EISA, PCI).

–  Depending upon how old the system is, the memory
controller may directly decode PCI transactions, for
example.

• If the MCH determines that the transaction
does not belong to it, the transaction will be

forwarded on down the chain to whatever I/O
bridge(s) may be present in the system. This
process of decoding for ownership / response

or forwarding on if not owned repeats until the
system has run out of potential agents.

GeneraEng	
 an	
 SMI	
 event	
 -­‐	
 deeper	

•  The final outcome is either an agent claims the transaction and
returns whatever data is present at the address, or no one claims

the address and an abort occurs to the transaction, typically
resulting if 0FFFFFFFFh data being returned.

•  In some situations (Duflot paper case), some addresses (sample
with the 0A0000h - 0BFFFFh range) are owned by two different

devices (VGA frame buffer and system memory) - This will force
the Intel architecture to send a SMI signal to satisfy the

transaction

•  If no SMI asserted, then the transaction is ultimately passed over
by the memory controller in favor of allowing a VGA controller (if

present) to claim.

•  If the SMI signal is asserted when the transaction is received by
the memory controller, then the transaction will be forwarded to

the DRAM unit for fetching the data from physical memory.

GeneraEng	
 an	
 SMI	
 event	
 -­‐	
 deeper	

Address	
 TranslaEon	
 while	
 in	
 SMM	

•  The biggest difficulty

–  We need to have the cr3 register value (in x86
systems)

–  We must parse the page tables used by the
processor (used by the OS)

–  Using DMA we can read the page tables (do you
remember the PGD, PMD and PTE?)

•  Maybe we can just read the physical pages used by the
kernel and compare it against a 'trusted' version (it
doesn't sound good, since sparsemem systems will be
really difficult to protect and dynamically generated
kernel structures too)

•  Another approach is just to transfer the control back to
our handler in main memory (that's what we are using
now)

Studying	
 the	
 SMM	

u32 value;
struct pci_dev *pointer = NULL;
devp = pci_find_class(0x060000, devp); // get a pointer to the MCH

for (i = 0; i < 256; i+=4)
{

pci_read_config_dword(pointer, i, &value);
<print the information>

}
- FreeBSD systems offers to us the pciconf utility, so you can just set
the D_OPEN to 1 and then dump the SMRAM memory:

pciconf -r -b pci0:0:0 0x72
pciconf -w -b pci0:0:0 0x72 0x4A
dd bs=0x1000 skip=0xA0 count=0x20 if=/dev/mem of=./foo
pciconf -w -b pci0:0:0 0x72 0x0A

The	
 SMM	
 Handler	

asm (".data");
asm (".code16");
asm (".globl handler, endhandler");
asm ("\n" "handler:");
asm (" addr32 mov $stmichael, %eax"); /* Where to return */
asm (" mov %eax, %cs:0xfff0"); /* Writing it in the save EIP */

/* Check the integrity of the called code */

asm (" rsm"); /* Switch back to protected mode */
asm ("endhandler:");
asm (".text");
asm (".code32");

Dangerous	

•  When entering the SMM, the SMRAM may be

overwritten by data in the cache if a #FLUSH occur
after the SMM entrance.

•  To avoid that we can shadow SMRAM over non-
cacheable memory or assert #FLUSH simultaneously to
#SMI events (#FLUSH will be served first) – usually
BIOS mark the SMRAM range as non-cacheable for us
–  As non-cacheable by setting the appropriate Page

Table Entry to Page Cache Disable (PTE. PCD=1
–  We need to compare that against mark the page as

non-cacheable by setting the appropriate Page Table
Entry to Page Write-Through (PTE.PWT=1) -
opinions?

SMM	
 locking	

•  As said SMM registers can be locked setting
the D_LCK flag (bit 4 in the MCH SMM
register). After that, the SMM_BASE,
SMM_ADDR and others related are locked and
cannot be changed, lacking a reboot for that

•  The SMM has special I/O cycles for processors
synchronization. We don't want these to be
executed, so we set SMISPCYCDIS and the
RSMSPCYCDIS to 1 (prevents the input and
output cycle respectively).

SMM	
 locking	

•  AMD just call this lock as
SMMLOCK (HWCR bit 0), and a
fragment code from the LinuxBIOS
project shows how simple is to set
it:
/* Set SMMLOCK to avoid exploits

messing with SMM */
msr = rdmsr(HWCR_MSR);
msr.lo |= (1 << 0);
wrmsr(HWCR_MSR, msr);

Useful?	

•  SMM has the ability to relocate its protected
memory space. The SMBASE slot in the state save
map may be modified. This value is read during
the RSM instruction. When SMM is next entered,
the SMRAM is located at this new address - in the
saved state map offset 7EF8
–  Some problems to perform CS adjustments

•  It maybe used to avoid SMM memory dumping for
analysis

ProtecEng	
 missing	
 porEons	

•  Where	
 will	
 be	
 our	
 handler?	
 In	
 the	
 memory,	
 so	
 someone	
 can	
 aNack	
 it?	

•  ProtecEon	
 of	
 the	
 memory	
 pages	
 (already	
 supported	
 by	
 PaX)	

•  Possibility	
 to	
 add	
 watchpoints	
 in	
 memory	
 pages	
 (detect	
 read	
 at	
 VMAs?	
 At	
 our	
 code?	
 Or	

writes	
 against	
 our	
 system?)	

•  DR7	
 Register!	

The Debug Register 7 (DR7) has few unducumented bits that completely modifies the
CPU behavior when entering SMM (earlier ICE – In-Circuit Emulation ◊ previous of
SMM)

3 1 1 1 1 1 1 0
1 5 4 3 2 1 0 0
+-----------------+-+-+-+-+-+-+--------+
| |T|T|G|I| | | |
| |2|R|D|R| | | |
+-----------------+-+-+-+-+-+-+--------+
 | | | |
 | | | +-- IceBp 1=INT01 causes emulator
 | | | to break emulation
 | | | 0=CPU handles INT01
 | | +---- General Detect = Yeah, we can spot CHANGES in the Registers
 | +------ Trace1 1=Generate special address
 | cycles after code dis-
 | continuities. On Pentium,
 | these cycles are called
 | Branch Trace Messages.
 +-------- Trace2 1=Unknown.

Debugging	
 theory	
 in	
 Intel	

In Intel platform we have dr0-7 and 2 MSRs (model-
specific registers)

If one breakpoint is hit, we have a #DB – debug
exception

The meaning of having MSRs is to remember the last
branches, interruptions or exceptions generated that
have been inserted in the P6 line of Intel

Also, we may have TSS T (trap) flag enabled,
generating #DB in task changes

MSR contains the offset relative to the CS (code
segment) of the instruction

We can also monitor I/O port using debug registers

Debugging	
 theory	
 in	
 Intel	

The debug registers can only be accessed by:
- SMM
- Real-address mode
- CPL0
If you try to access a debug register in other levels, it will

generate a general-protection exception #GP
The comparison of a instruction address and the respective

debug register occurs before the address translation, so it
tries the linear address of the position

Debugging	
 implementaEon	

•  On dr7 the 13 bit is the “general detect”
•  The processor will zero the flag when entering in the

debug handler. We need to set it again after exiting
our handler.

•  The dr6 will be used to check the BD flag (debug
register access detected) - bit 13

•  So, the BD flag indicates if the next instruction will
access a debug register. So, it will be set when we
modify (setting it to 1) the general detect flag in the
dr7

•  We must clean the dr6 after attending the
debugging exceptions

SMM	
 and	
 AnE-­‐Forensics	
 ?	

•  Duflot paper released a way to turn off BSD protections using
SMM

•  A better approach can be done using SMM, just changing the
privilege level of a common task to RING 0

•  The segment-descriptor cache registers are stored in reserved
fields of the saved state map and can be manipulated inside the
SMM handler

•  We can just change the saved EIP to point to our task and also
the privilege level, forcing the system to return to our task, with
full memory access

•  Since the SMRAM is protected by the hardware itself, it is really
difficult to detect this kind of rootkit

CompaEbility	
 Problems	

•  Yeah, we have SMM just in the
Intel platform... but:
– Many platforms already support

something like firmware interrupts
– PowerPC does not have the IDT

register problem, so what we can do?

PowerPC	
 Kernel	
 ProtecEon	

•  The idea of putting the entire
kernel as read-only seems good

•  The attacker cannot modify the
pages permissions, since we can
use watchpoints to monitor that

•  But... life cannot be perfect...

PowerPC	
 ProtecEon	
 Problems	

•  From the manual:

“The optional data address breakpoint facility is

controlled by an optional SPR, the DABR. The
data address breakpoint facility is optional to
the PowerPC architecture. However, if the
data address breakpoint facility is
implemented, it is recommended, but not
required, that it be implemented as described
in this section.”

 The architecture does not include execution

breakpoints too.

PowerPC	
 32	
 Debugging...	

DAB BT DW DR
0 28 29 30 31

0–28 DAB Data address breakpoint
29 BT Breakpoint translation enable
30 DW Data write enable
31 DR Data read enable

A match will generate a DSI Exception, which you can check in the
DSISR register bit 9 (set if it is a DABR match)

PowerPC	
 4xx	
 Study	

•  Debug Control Registers: DBCR 0-2
•  Data Address Compare Registers: DAC 1-2
•  Instruction Address Compare Registers: IAC 1-4
•  Data Value Compare Registers: DVC 1-2
Detail: A patch has been sent to the linux kernel to

include the DAC support. In anyway, it can be used
directly just using the mtspr instruction to load the
specified address in the register

Detail2: Cache management instructions are treated as
'loads', so will trigger the watchpoints

Detail3: Platform also supports Watchdogs, but if the
interrupts are disabled, they will not trigger in anyway

PPC	
 4xx	
 Study	

•  Supports different conditions:

–  DBCR0[RET]=1 – Return exception
–  DBCR0[ICMP]=1 – Instruction completion
–  DBCR0[IRPT]=1 – Interruption
–  DBCR0[BRT]=1 – Branch
–  DBCR0[FT]=1 – Freeze the decrementer timers
–  Others...

•  To enable debug interrupts:
–  MSR[DE] = 1 and DBCR0[IDM]=1

•  Using the IAC (DBCR1[IAC1ER, IAC2ER, IAC3ER, IAC4ER])
we can choose to monitor the effective or the real address

•  We also can instrument an external debug systems, setting
DBCR0[EDM] to 1 and using a JTAG interface

PPC	
 405EP	
 and	
 Firmware	

instrumentaEon	

•  I2C interface between the real system and the
embedded processor

•  PowerPC Initialization Boot Software (PIBS).
Source code is provided.

•  Embedded PowerPC Operating System
(EPOS). Source code is provided.

•  Not just “hackish”, it's offered by major
companies ;)

•  cpc925_read addr numbytes and
cpc925_read_vfy addr numbytes
mask0[.mask1] data0[.data1] commands

PPC	
 405EP	
 and	
 Firmware	

instrumentaEon	

•  From the manual:
“Synopsis
 Read and display memory in the PPC970FX address space using the

PPC405EP service processor. The service processor accesses the CPC925
processor interface via its connection to the CPC925 I2C slave.

Command Type
 PIBS shell command or initialization script command.
Syntax
 cpc925_read addr numbytes
Parameters
 addr The least significant 32 bits of the 36 bit PPC970FX

physicaladdress to read. The 4 most significant physical address bits are
 assumed to be zero.
 numbytes The number of bytes to read and display.“

Future	

•  Some advanced hardware, like pSeries
support firmware services to abstract portions
of the hardware of the operating system

•  pSeries for example has the RTAS (run-time
abstraction service) to easily access NVRAM
and heartbeat mechanics

•  This operating system running in the firmware
maybe modified to offer integrity verification

Other	
 approaches	

•  PaX KernSeal – compiler modifications – not

released yet
•  Maryland Info-Security Labs Co-pilot and

others (firewire, tribble, etc) – PCI Card to
analyze the system integrity – cache/
relocation attacks, Joanna ideas, hardware
based

•  Intel System Integrity Services – SMM-based
implementation – depends on external
hardware (also uses client/server signed
heartbeats)

•  Microsoft PatchGuard – Self-encryption and
kernel instrumentation – many problems
spotted by Uninformed.org articles

Who	
 wanna	
 test?	

•  Everyone	
 uses	
 KIDS	
 ;)	

•  If	
 someone	
 wants	
 to	
 join	
 these	
 guy	
 from	
 the	
 	

Carnival	
 land:	

Acknowledgments	

Sergey Bratus for inviting me over to this class… and inspiring me
again to look over this material.

Edmond Rogers – the cheeseee-makeeerrr – the best a friend can be
for the always insightful exchange of ideas!

Spender for help with many portions of the model

PaX Team for resolving my doubts about PaX and giving many
helpful explanations of the PaX implementation

XCon crew: Opportunity to go to Beijing and present part of this
crazy slide-deck ;)

REFERENCES	

Spender public exploit:
http://seclists.org/dailydave/2007/q1/0227.html

Pax Project:
http://pax.grsecurity.net

Joanna Rutkowska:
http://www.invisiblethings.org

Julio Auto @ H2HC – Hackers 2 Hackers Conference:
http://www.h2hc.org.br

A Tamper-Resistant, Platform-Based, Bilateral - INTEL
Approach to Worm Containment

Runtime Integrity and Presence Verification for
Software Agents - INTEL

BIOS and Kernel Developer´s Guide for AMD Athlon 64 and AMD Opteron
Processors - AMD

Intel Architecture Software Developer´s Manual
Volume 3: System Programming

Security Issues Related to Pentium System Management Mode
Loïc Duflot

Questions?

Thank you :D!

Rodrigo Rubira Branco
rodrigo@kernelhacking.com

!

