
CS 258, Midterm Exam

Terms and Conditions. This is a take-home, open-book, open-manual,
open-shell exam. The solutions are due by noon of Monday February 18.

You are expected to use (at least) DTrace, the OpenGrok source code
browser1 and the Modular Debugger’s running kernel inspection capability2,
and any other tools you find useful. The documents in the class directory
http://www.cs.dartmouth.edu/~sergey/cs258/ and the textbook’s index
might be useful, too.

For each problem, you should “show your work”: the output of the above
tools on your actual platform (virtual or physical). For OS kernel code lines,
provide the filename and the line number, or the OpenGrok URL pointing
to the right line.

You are allowed to discuss the use of tools with your fellow students, but
not the solutions themselves. For example, sharing a tracing trick is OK,
but sharing part of a solution as such is not. Note that in most exercises
you are free to choose your targets (which may help you avoid conflicts with
the above rule). If in doubt, ask.

Note: The default system for these problems is Illumos, due to the
great flexibility of DTrace and MDB. You may choose to do some or all or
the problems on GNU/Linux instead of Illumos if you so desire (e.g., using
SysTrace and Kprobes); note, however, that Illumos’ tools for examining a
running kernel are much more versatile and stable. Linux will likely be more
work, unless you’ve been working on a Linux project idea and practiced with
Linux tools already.

Problem 1. Enumerate the kernel-space data structures created (allo-
cated and/or initialized) when a new process is created but before any of
the code contained in the process’ binary file is executed. Draw the rela-
tionships between them (you can sketch the data structures by hand or use
the Graphviz (http://www.graphviz.org/) free software package.3 You
may limit your drawing to the ten data structures you consider the most
important to describing a process.

Problem 2. When you start a kernel debugging session (“mdb -k”),

1http://src.illumos.org/source/
2mdb -k
3http://www.graphviz.org/content/datastruct is a good example if you want a neat

graph; click on the image here and elsewhere in http://www.graphviz.org/Gallery.php

to see the code that generates the picture.



MDB runs as a userland process. Yet it reads and interprets the kernel
memory for you, which means that it has access to the information about
the layout of kernel memory (i.e., kernel symbols).

• Where is this information stored and how does MDB access it?

• How does MDB access kernel memory?

• For a kernel global variable of your choice, show the appropriate data
structures and their use by MDB.

(Previous years’ lecture notes provide some hints, but your primary tools
should be tracing and kernel state examination).

Problem 3. Write a C program that successfully modifies its own code
(.text section) to break out of an infinite loop. In particular, consider the
program with the following main() function:

int main(){

while(1){

puts("Woot!");

breakout();

}

return(42); /* Hit this! */

}

Write the function breakout() that will break out of the infinite loop and hit
the return statement by changing the program’s own .text section.

You may use any system calls you need (except exit()). You may not
use goto, break, and similar control flow statements.

You are also allowed to modify the compiled ELF executable of your
program, but not the code inside it. Your solution will most likely depend
on your compiler and platform; if so, turn in the .s file (the output of “gcc
-S ”) with it.

Hint: Use truss or strace to trace systems calls made by a process.

Problem 4. In an MDB session, enumerate all processes that share
a physical memory frame that contains the libc’s printf() function, and all
the virtual addresses at which this function is mapped into their respective
address spaces. Bonus points if you manage to keep it to a one-liner of
(chained) MDB or shell commands.



Problem 5. The file with Unix password hashes, /etc/shadow, is not
readable to processes run by regular users (only to root, and to processes
started via sudo or pfexec). Start a user process that will attempt to read
/etc/shadow, and (with MDB and/or DTrace) modify its kernel data struc-
tures for the read to succeed. You can use “cat /etc/shadow” as a target
process, or write your own. You may suspend the process and resume it as
needed by means of DTrace or a debugger of your choice.


