
CS 258, Midterm Extras, Winter 2015

Terms and Conditions. The solutions are due by class time on Thursday February 19. All
conditions from the main midterm apply.

Note: In the following problems, you are not allowed to use root privileges. Your solution
should only rely on writing, compiling, and running code with regular used privileges. Further,
in your solution you are not allowed to attach any debugger to running processes. (You may, of
course, use a debugger or tracer as much as you like to debug your solution.)

Problem 1. Ouch! It traps!
A program below will attempt to access an address outside of its address space. Allow this

access to be executed as written; it will cause a memory protection trap. Write a signal handler to
allow the program to survive this trap and finish with the final printf()!

You can modify the address or the program, but only after the fault occurs. Note that the fault
is a trap, that is, the instruction that caused it will be re-started after the signal handler code runs.

/∗ Build me with gcc −m64 ∗/
#inc lude <s t d i o . h>
#inc lude <s i g n a l . h>
#inc lude <s t d l i b . h>
#inc lude <errno . h>

i n t main (){
const unsigned long long badaddr = 0 x f f f f f f f f f b a d f e e d ;
char ∗p ;

/∗
Set up s i g n a l handl ing .
∗/

OMGGPF:
p = (char ∗) badaddr ;
∗p = ’\0 ’ ;

p r i n t f (”Phew ! Survived a gene ra l p r o t e c t i o n f a u l t !\n ”) ;
r e turn (0) ;

}

Problem 2. Lie to me.
A program is very particular about the user ID under which it runs: it checks it and refuses to

run if it isn’t just right. Unfortunately for you, your user ID is not that user, and you only get the
binary of the program, and you can’t even edit the binary.

You could, of course, connect a debugger to this program and manually bypass the check, but
you want to be able to run it simply and conveniently. Luckily for you, this program is dynamically
linked.

Write the code and produce the shell command that will run this binary for you, without
modifications.

#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <s t d i o . h>

i n t main (){

/∗ . . . ∗/

i f (ge tu id () != 100){
f p r i n t f (s tde r r , ”Not the r i g h t user ! Ex i t ing .\n ”) ;
e x i t (−1);

}

p r i n t f (”Welcome , c o r r e c t user , l e t ’ s do some work\n ”) ;

/∗ . . . ∗/

return (0) ;
}

