
Excerpted from the following, with permission:

Solaris® Troubleshooting Handbook

Troubleshooting and Performance Tuning Hints for Solaris® 10 and
OpenSolaris®

Scott Cromar

Solaris® Troubleshooting Handbook
by Scott Cromar

Copyright© 2008, Scott Cromar. All rights reserved.
Printed in the United States of America.

Notice to the reader:
Author and publisher do not warrant or guarantee any of the products or processes described herein. The reader is expressly warned to consider and adopt
appropriate safeguards and avoid any hazards associated with taking actions described in the book. By taking actions recommended in this book, the reader
is willingly assuming the risks associated with those activities.

The author and publisher do not make representations or warranties of any kind. In particular, no warranty of fitness for a particular purchase or
merchantability are implied in any material in this publication. The author and publisher shall not be liable for special, consequential, or exemplary
damages resulting, in whole or in part, from the reader’s reliance upon or use of the information in this book.

Trademarks:
Sun, Solaris, Java, Solstice DiskSuite, Solaris Volume Manager, Solaris JumpStart, NFS, and Java are trademarks or registered trademarks of Sun
Microsystems, Inc and Oracle Corporation. All SPARC trademarks are registered trademarks of SPARC International, Inc. UNIX is a registered
trademark exclusively licensed through X/Open Company, LTD. Symantec, Veritas, Veritas Volume Manager, VxVM, Veritas File System, VxFS, and
Veritas Cluster Server are trademarks and registered trademarks of Symantec Corp. Other designations used by manufacturers and sellers to distinguish
their products are also claimed as trademarks. Where we are aware of such a claim, the designation has been printed in caps or initial caps.

ISBN-13: 978-1463512415

ISBN-10: 1463512414

Published by Cromar & Cromar
St Augustine, FL 32092

2011 Printing by CreateSpace, North Charleston, SC

Comments, questions, and corrections welcome at
http://solaristroubleshooting.blogspot.com

This book extends and supplements information first published at
http://www.princeton.edu/~unix/Solaris/troubleshoot

http://www.princeton.edu/~unix/Solaris/troubleshoot
http://solaristroubleshooting.blogspot.com/

8
Memory and Paging

In the real world, memory shortfalls are much more devastating than having a CPU bottleneck. Two primary indicators of a
RAM shortage are the scan rate and swap device activity. Table 8-1 shows some useful commands for monitoring both types
of activity.

Table 8-1. Memory Monitoring Commands

Performance Metric Monitoring Commands

Memory Saturation: Scan Rate sar -g

vmstat

Memory Saturation: Swap Space Usage and Paging Rates vmstat

sar -g

sar -p

sar -r

sar -w

In both cases, the high activity rate can be due to something that does not have a consistently large impact on performance.
The processes running on the system have to be examined to see how frequently they are run and what their impact is. It
may be possible to re-work the program or run the process differently to reduce the amount of new data being read into
memory.

(Virtual memory takes two shapes in a Unix system: physical memory and swap space. Physical memory usually comes
in DIMM modules and is frequently called RAM. Swap space is a dedicated area of disk space that the operating system
addresses almost as if it were physical memory. Since disk I/O is much slower than I/O to and from memory, we would
prefer to use swap space as infrequently as possible. Memory address space refers to the range of addresses that can be
assigned, or mapped, to virtual memory on the system. The bulk of an address space is not mapped at any given point in
time.)

We have to weigh the costs and benefits of upgrading physical memory, especially to accommodate an infrequently
scheduled process. If the cost is more important than the performance, we can use swap space to provide enough virtual
memory space for the application to run. If adequate total virtual memory space is not provided, new processes will not be
able to open. (The system may report "Not enough space" or "WARNING: /tmp: File system full, swap
space limit exceeded.")

Swap space is usually only used when physical memory is too small to accommodate the system's memory requirements. At
that time, space is freed in physical memory by paging (moving) it out to swap space. (See “Paging” below for a more

complete discussion of the process.)

If inadequate physical memory is provided, the system will be so busy paging to swap that it will be unable to keep up with
demand. (This state is known as "thrashing" and is characterized by heavy I/O on the swap device and horrendous
performance. In this state, the scanner can use up to 80% of CPU.)

When this happens, we can use the vmstat -p command to examine whether the stress on the system is coming from
executables, application data or file system traffic. This command displays the number of paging operations for each type of
data.

Scan Rate
When available memory falls below certain thresholds, the system attempts to reclaim memory that is being used for other
purposes. The page scanner is the program that runs through memory to see which pages can be made available by placing
them on the free list. The scan rate is the number of times per second that the page scanner makes a pass through memory.
(The “Paging” section later in this chapter discusses some details of the page scanner's operation.) The page scanning rate is
the main tipoff that a system does not have enough physical memory. We can use sar -g or vmstat to look at the scan
rate.

vmstat 30 checks memory usage every 30 seconds. (Ignore the summary statistics on the first line.) If page/sr is much
above zero for an extended time, your system may be running short of physical memory. (Shorter sampling periods may be
used to get a feel for what is happening on a smaller time scale.)

A very low scan rate is a sure indicator that the system is not running short of physical memory. On the other hand, a high
scan rate can be caused by transient issues, such as a process reading large amounts of uncached data. The processes on the
system should be examined to see how much of a long-term impact they have on performance. Historical trends need to be
examined with sar -g to make sure that the page scanner has not come on for a transient, non-recurring reason.

A nonzero scan rate is not necessarily an indication of a problem. Over time, memory is allocated for caching and other
activities. Eventually, the amount of memory will reach the lotsfree memory level, and the pageout scanner will be
invoked. For a more thorough discussion of the paging algorithm, see “Paging” below.

Swap Device Activity
The amount of disk activity on the swap device can be measured using iostat. iostat -xPnce provides information on
disk activity on a partition-by-partition basis. sar -d provides similar information on a per-physical-device basis, and
vmstat provides some usage information as well. Where Veritas Volume Manager is used, vxstat provides per-volume
performance information.

If there are I/O's queued for the swap device, application paging is occurring. If there is significant, persistent, heavy I/O to
the swap device, a RAM upgrade may be in order.

Process Memory Usage
The /usr/proc/bin/pmap command can help pin down which process is the memory hog. /usr/proc/bin/pmap -x
PID prints out details of memory use by a process.

Summary statistics regarding process size can be found in the RSS column of ps -ly or top.

dbx, the debugging utility in the SunPro package, has extensive memory leak detection built in. The source code will need
to be compiled with the -g flag by the appropriate SunPro compiler.

ipcs -mb shows memory statistics for shared memory. This may be useful when attempting to size memory to fit expected
traffic.

Segmentation Violations
Segmentation violations occur when a process references a memory address not mapped by any segment. The resulting
SIGSEGV signal originates as a major page fault hardware exception identified by the processor and is translated by
as_fault() in the address space layer.

When a process overflows its stack, a segmentation violation fault results. The kernel recognizes the violation and can
extend the stack size, up to a configurable limit. In a multithreaded environment, the kernel does not keep track of each user
thread's stack, so it cannot perform this function. The thread itself is responsible for stack SIGSEGV (stack overflow signal)
handling.

(The SIGSEGV signal is sent by the threads library when an attempt is made to write to a write-protected page just
beyond the end of the stack. This page is allocated as part of the stack creation request.)

It is often the case that segmentation faults occur because of resource restrictions on the size of a process's stack. See
“Resource Management” in Chapter 6 for information about how to increase these limits.

See “Process Virtual Memory” in Chapter 4 for a more detailed description of the structure of a process's address space.

Paging
Solaris uses both common types of paging in its virtual memory system. These types are swapping (swaps out all memory
associated with a user process) and demand paging (swaps out the not recently used pages). Which method is used is
determined by comparing the amount of available memory with several key parameters:

• physmem: physmem is the total page count of physical memory.

• lotsfree: The page scanner is woken up when available memory falls below lotsfree. The default value for this is
physmem/64 (or 512 KB, whichever is greater); it can be tuned in the /etc/system file if necessary. The page
scanner runs in demand paging mode by default. The initial scan rate is set by the kernel parameter slowscan (which
is 100 by default).

• minfree: Between lotsfree and minfree, the scan rate increases linearly between slowscan and fastscan.
(fastscan is determined experimentally by the system as the maximum scan rate that can be supported by the system
hardware. minfree is set to desfree/2, and desfree is set to lotsfree/2 by default.) Each page scanner will
run for desscan pages. This parameter is dynamically set based on the scan rate.

• maxpgio: maxpgio (default 40 or 60) limits the rate at which I/O is queued to the swap devices. It is set to 40 for x86
architectures and 60 for SPARC architectures. With modern hard drives, maxpgio can safely be set to 100 times the
number of swap disks.

• throttlefree: When free memory falls below throttlefree (default minfree), the page_create routines force
the calling process to wait until free pages are available.

• pageout_reserve: When free memory falls below this value (default throttlefree/2), only the page daemon and
the scheduler are allowed memory allocations.

The page scanner operates by first freeing a usage flag on each page at a rate reported as "scan rate" in vmstat and sar
-g. After handspreadpages additional pages have been read, the page scanner checks to see whether the usage flag has
been reset. If not, the page is swapped out. (handspreadpages is set dynamically in current versions of Solaris. Its
maximum value is pageout_new_spread.)

Solaris 8 introduced an improved algorithm for handling file system page caching (for file systems other than ZFS). This
new architecture is known as the cyclical page cache. It is designed to remove most of the problems with virtual memory
that were previously caused by the file system page cache.

In the new algorithm, the cache of unmapped/inactive file pages is located on a cachelist which functions as part of the
freelist.

When a file page is mapped, it is mapped to the relevant page on the cachelist if it is already in memory. If the
referenced page is not on the cachelist, it is mapped to a page on the freelist and the file page is read (or “paged”)
into memory. Either way, mapped pages are moved to the segmap file cache.

Once all other freelist pages are consumed, additional allocations are taken from the cachelist on a least recently
accessed basis. With the new algorithm, file system cache only competes with itself for memory. It does not force
applications to be swapped out of primary memory as sometimes happened with the earlier OS versions.

As a result of these changes, vmstat reports statistics that are more in line with our intuition. In particular, scan rates will
be near zero unless there is a systemwide shortage of available memory. (In the past, scan rates would reflect file caching
activity, which is not really relevant to memory shortfalls.)

Every active memory page in Solaris is associated with a vnode (which is a mapping to a file) and an offset (the location
within that file). This references the backing store for the memory location, and may represent an area on the swap device,
or it may represent a location in a file system. All pages that are associated with a valid vnode and offset are placed on the
global page hash list.

vmstat -p reports paging activity details for applications (executables), data (anonymous) and file system activity.

The parameters listed above can be viewed and set dynamically via mdb, as in Example 8-1:

Example 8-1. Paging Parameters
mdb -kw
Loading modules: [unix krtld genunix specfs dtrace ufs sd ip sctp usba fcp fctl nca lofs zfs
random logindmux ptm cpc fcip sppp crypto nfs]
> physmem/E
physmem:
physmem: 258887
> lotsfree/E
lotsfree:
lotsfree: 3984
> desfree/E
desfree:
desfree: 1992
> minfree/E
minfree:
minfree: 996
> throttlefree/E
throttlefree:
throttlefree: 996
> fastscan/E
fastscan:
fastscan: 127499
> slowscan/E
slowscan:
slowscan: 100
> handspreadpages/E
handspreadpages:
handspreadpages:127499
> pageout_new_spread/E
pageout_new_spread:
pageout_new_spread: 161760
> lotsfree/Z fa0
lotsfree: 0xf90 = 0xfa0

> lotsfree/E
lotsfree:
lotsfree: 4000

Swap Space
The Solaris virtual memory system combines physical memory with available swap space via swapfs. If insufficient total
virtual memory space is provided, new processes will be unable to open.

Swap space can be added, deleted or examined with the swap command. swap -l reports total and free space for each of
the swap partitions or files that are available to the system. Note that this number does not reflect total available virtual
memory space, since physical memory is not reflected in the output. swap -s reports the total available amount of virtual
memory, as does sar -r.

If swap is mounted on /tmp via tmpfs, df -k /tmp will report on total available virtual memory space, both swap and
physical. As large memory allocations are made, the amount of space available to tmpfs will decrease, meaning that the
utilization percentages reported by df will be of limited use.

The DTrace Toolkit's swapinfo.d program prints out a summary of how virtual memory is currently being used. See
Example 8-2:

Example 8-2. Virtual Memory Summary
/opt/DTT/Bin/swapinfo.d
RAM _______Total 2048 MB
RAM Unusable 25 MB
RAM Kernel 564 MB
RAM Locked 2 MB
RAM Used 189 MB
RAM Free 1266 MB

Disk _______Total 4004 MB
Disk Resv 69 MB
Disk Avail 3935 MB

Swap _______Total 5207 MB
Swap Resv 69 MB
Swap Avail 5138 MB
Swap (Minfree) 252 MB

Swapping
If the system is consistently below desfree of free memory (over a 30 second average), the memory scheduler will start
to swap out processes. (ie, if both avefree and avefree30 are less than desfree, the swapper begins to look at
processes.)

Initially, the scheduler will look for processes that have been idle for maxslp seconds. (maxslp defaults to 20 seconds
and can be tuned in /etc/system.) This swapping mode is known as soft swapping.

Swapping priorities are calculated for an LWP by the following formula:
epri = swapin_time - rss/(maxpgio/2) - pri
where swapin_time is the time since the thread was last swapped, rss is the amount of memory used by the LWPs
process, and pri is the thread's priority.

If, in addition to being below desfree of free memory, there are two processes in the run queue and paging activity
exceeds maxpgio, the system will commence hard swapping. In this state, the kernel unloads all modules and cache
memory that is not currently active and starts swapping out processes sequentially until desfree of free memory is
available.

Processes are not eligible for swapping if they are:

• In the SYS or RT scheduling class.

• Being executed or stopped by a signal.

• Exiting.

• Zombie.

• A system thread.

• Blocking a higher priority thread.

The DTrace Toolkit provides the anonpgpid.d script to attempt to identify the processes which are suffering the most
when the system is hard swapping. While this may be interesting, if we are hard-swapping, we need to kill the culprit, not
identify the victims. We are better off identifying which processes are consuming how much memory. prstat -s rss
does a nice job of ranking processes by memory usage. (RSS stands for “resident set size, “ which is the amount of
physical memory allocated to a process.)

Example 8-3. Ranking Processes by Memory Usage
prstat -s rss
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 213 daemon 19M 18M sleep 59 0 0:00:12 0.0% nfsmapid/4
 7 root 9336K 8328K sleep 59 0 0:00:04 0.0% svc.startd/14
 9 root 9248K 8188K sleep 59 0 0:00:07 0.0% svc.configd/15
 517 root 9020K 5916K sleep 59 0 0:00:02 0.0% snmpd/1
 321 root 9364K 5676K sleep 59 0 0:00:02 0.0% fmd/14
...
Total: 39 processes, 159 lwps, load averages: 0.00, 0.00, 0.00

We may also find ourselves swapping if we are running tmpfs and someone places a large file in /tmp. It takes some effort,
but we have to educate our user community that /tmp is not scratch space. It is literally part of the virtual memory space. It
may help matters to set up a directory called /scratch to allow people to unpack files or manipulate data.

System Memory Usage
mdb can be used to provide significant information about system memory usage. In particular, the ::memstat dcmd, and
the leak and leakbuf walkers may be useful.

• ::memstat displays a memory usage summary. (See Example 8-4.)

• walk leak finds leaks with the same stack trace as a leaked bufctl or vmem_seg.

• walk leakbuf walks buffers for leaks with the same stack trace as a leaked bufctl or vmem_seg.

Example 8-4. System Memory Usage
> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 31563 246 12%
Anon 1523 11 1%
Exec and libs 416 3 0%
Page cache 70 0 0%
Free (cachelist) 78487 613 30%
Free (freelist) 146828 1147 57%

Total 258887 2022
Physical 254998 1992

In addition, there are several functions of interest that can be monitored by DTrace:

Table 8-2. Memory Functions

Function Name Description

page_exists() Tests for a page with a given vnode and offset.

page_find() Searches the hash list for a locked page that is known to have a given
vnode and offset.

page_first() Finds the first page on the global page hash list.

page_free() Frees a page. If it has a vnode and offset, sent to the cachelist,
otherwise sent to the freelist.

page_ismod() Checks whether a page has been modified.

page_isref() Checks whether a page has been referenced.

page_lock() Lock a page structure.

page_lookup() Find a page with the specified vnode and offset. If found on a free list, it
will be moved from the freelist.

page_lookup_nowait() Finds a page representing the specified vnode and offset that is not locked
and is not on the freelist.

page_needfree() Notifies the VM system that pages need to be freed.

page_next() Next page on the global hash list.

page_release() Unlock a page structure after unmapping it. Place it back on the
cachelist if appropriate.

page_unlock() Unlock a page structure.

Kernel Memory UsageSolaris kernel memory is used to provide space for kernel text, data and data structures. Most of the
kernel's memory is nailed down and cannot be swapped.

For UltraSPARC and x64 systems, Solaris locks a translation mapping into the MMU's translation lookaside buffer (TLB)
for the first 4MB of the kernel's text and data segments. By using large pages in this way, the number of kernel-related TLB
entries is reduced, leaving more buffer resources for user code. This has resulted in tremendously improved performance for
these environments.

When memory is allocated by the kernel, it is typically not released to the freelist unless a severe system memory
shortfall occurs. If this happens, the kernel relinquishes any unused memory.

The kernel allocates memory to itself via the slab/kmem and vmem allocators. (A discussion of the internals of the
allocators is beyond the scope of this book, but Chapter 11 of McDougall and Mauro discusses the allocators in detail.)

The kernel memory statistics can be tracked using sar -k, and probed using mdb's ::kmastat dcmd for an overall view of
kernel memory allocation. The kstat utility allows us to examine a particular cache. Truncated versions of ::kmastat and
kstat output are demonstrated in Example 8-5:

Example 8-5. Kernel Memory Allocation
mdb -k
Loading modules: [unix krtld genunix specfs dtrace ufs sd ip sctp usba fcp fctl nca lofs zfs
random logindmux ptm cpc fcip sppp crypto nfs]
> ::kmastat
cache buf buf buf memory alloc alloc
name size in use total in use succeed fail

------------------------- ------ ------ ------ --------- --------- -----
kmem_magazine_1 16 274 1016 16384 4569 0
...
bp_map_131072 131072 0 0 0 0 0
memseg_cache 112 0 0 0 0 0
mod_hash_entries 24 187 678 16384 408634 0
...
thread_cache 792 157 170 139264 75907 0
lwp_cache 904 157 171 155648 11537 0
turnstile_cache 64 299 381 24576 86758 0
cred_cache 148 50 106 16384 42752 0
rctl_cache 40 586 812 32768 541859 0
rctl_val_cache 64 1137 1651 106496 1148726 0
...
ufs_inode_cache 368 18526 102740 38256640 275296 0
...
process_cache 3040 38 56 172032 38758 0
...
zfs_znode_cache 192 0 0 0 0 0
------------------------- ------ ------ ------ --------- --------- -----
Total [static] 221184 150707 0
Total [hat_memload] 7397376 8417187 0
Total [kmem_msb] 1236992 362278 0
Total [kmem_va] 42991616 8893 0
Total [kmem_default] 152576000 112494417 0
Total [bp_map] 524288 3387 0
Total [kmem_tsb_default] 319488 83391 0
Total [hat_memload1] 245760 229486 0
Total [segkmem_ppa] 16384 127 0
Total [umem_np] 1048576 11204 0
Total [segkp] 11010048 30423 0
Total [pcisch2_dvma] 458752 8891868 0
Total [pcisch1_dvma] 98304 11 0
Total [ip_minor_arena] 64 13299 0
Total [spdsock] 64 1 0
Total [namefs_inodes] 64 21 0
------------------------- ------ ------ ------ --------- --------- -----

vmem memory memory memory alloc alloc
name in use total import succeed fail
------------------------- --------- ---------- --------- --------- -----
heap 1099614298112 4398046511104 0 20207 0
 vmem_metadata 6619136 6815744 6815744 752 0
 vmem_seg 5578752 5578752 5578752 681 0
 vmem_hash 722560 729088 729088 46 0
 vmem_vmem 295800 346096 311296 106 0
...
ibcm_local_sid 0 4294967295 0 0 0
------------------------- --------- ---------- --------- --------- -----
> $Q

kstat -n process_cache
module: unix instance: 0
name: process_cache class: kmem_cache
 align 8
 alloc 38785
 alloc_fail 0
 buf_avail 18
 buf_constructed 12
 buf_inuse 38
 buf_max 64
 buf_size 3040
 buf_total 56
 chunk_size 3040
 crtime 28.796560304
 depot_alloc 2955

 depot_contention 0
 depot_free 2965
 empty_magazines 0
 free 38811
 full_magazines 3
 hash_lookup_depth 1
 hash_rescale 0
 hash_size 64
 magazine_size 3
 slab_alloc 104
 slab_create 9
 slab_destroy 2
 slab_free 54
 slab_size 24576
 snaptime 1233645.2648315
 vmem_source 23

Certain aspects of the kernel memory allocation only become possible if the debug flags are enabled in kmdb at boot time,
as in Example 8-6:

Example 8-6. Enabling Kernel Memory Allocator Debug Flag
ok boot kmdb -d
Loading kmdb...

Welcome to kmdb
[0]> kmem_flags/W 0x1f
kmem_flags: 0x0 = 0x1f
[0]> :c

If the system crashes while kmdb is loaded, it will drop to the kmdb prompt rather than the PROM monitor
prompt. (This is intended to allow debugging to continue in the wake of a crash.) This is probably not the
desired state for a production system, so it is recommended that kmdb be unloaded once debugging is
complete.

0x1f sets all KMA flags. Individual flags can be set instead by using different values, but I have never run across a situation
when it wasn't better to just have them all enabled.

Direct I/O
Large sequential I/O can cause performance problems due to excessive use of the memory page cache. One way to avoid
this problem is to use direct I/O on file systems where large sequential I/Os are common.

Direct I/O is usually specified as a mount option in the vfstab. The specific file system option will vary based on file system
type. For UFS, it is forcedirectio.

Resources
• Cockcroft, Adrian and Pettit, Richard. (April 1998) Sun Performance and Tuning: Java and the Internet, 2nd Ed.

Prentice Hall.

• Cromar, Scott. (2007) Solaris Troubleshooting and Performance Tuning at Princeton University. Princeton, NJ.
(http://www.princeton.edu/~unix/Solaris/troubleshoot/index.html)

• McDougall, Richard and Mauro, Jim. (July 2006) Solaris Internals. Upper Saddle River, NJ: Prentice Hall & Sun
Microsystems Press.

• McDougall, Richard, Mauro, Jim and Gregg, Brendan. (October 2006) Solaris Performance and Tools. Upper Saddle
River, NJ: Prentice Hall & Sun Microsystems Press.

http://www.princeton.edu/~unix/Solaris/troubleshoot/index.html

• OpenSolaris Project. (October 2006) DTrace Toolkit. (http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/)

• Sun Microsystems. (May 2006) Solaris Tunable Parameters Reference Manual. Santa Clara, CA: Sun Microsystems,
Inc. (http://docs.sun.com/app/docs/doc/817-0404)

http://docs.sun.com/app/docs/doc/817-1592
http://docs.sun.com/app/docs/doc/817-0404
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

