
Networking	stuff,	
from	the	real	world	

Robert	Graham	
Dartmouth,	Spring,	2017	

OSI	MODEL	TRUTHS	

The	OSI	is	a	lie	
•  Created	in	late	1970s	to	describe	how	terminals	talked	
to	mainframes	

•  TCP/IP	model	shoehorned	into	it	
–  The	OSI	Model	has	been	“retconned”	to	fit	TCP/IP	

•  There	is	no	session	layer	
–  Yes,	session	concepts,	but	no	layer	

•  There	is	no	presentaNon	layer	
–  Yes,	presentaNon	concepts,	but	no	layer	

•  There	is	not	even	an	applicaNon	layer	
–  ApplicaNons	are	are	on	top	of	the	applicaNon	layer,	not	
the	applicaNon	layer	themselves	

There	are	only	4	layers 		

•  Transport	(TCP,	UDP,	SCTP)	
•  Internetwork	(IPv4,	IPv6)	
•  Local	data	link	(Ethernet,	WiFi)	
•  Local	physical	(Ethernet,	WiFi)	

Local	physical	layer	

•  AS	FAR	AS:	the	local	wire	(or	into	the	air)	
•  UNIT:	bits	

Local	link	

•  AS	FAR	AS:	next	hop	
•  UNIT:	frames	(local	address,	CRC	checked)	

•  STRIPPED	OFF	BEFORE	NEXT	HOP	
•  Other	non-Ethernet	links	exist	
– MPEG-TS,	ATM,	Frame	Relay,	PPP,	etc.	

Internetwork	layer	

•  AS	FAR	AS:	other	end	(end-to-end)	
•  UNIT:	packet	

Transport	layer	

•  AS	FAR	AS:	remote	applicaNon	
•  UNIT:	stream,	datagram	

Sideways/up-downs	
•  Only	two	up/down	

APIs	
–  TCP/IP	is	a	unified	

whole	in	the	
operaNng	system	
with	sockets	as	API	
on	top	

–  Ethernet	is	a	
unified	whole	with	
packet	driver	on	
top	

•  There’s	no	sideways	
–  It’s	a	bad	analogy	

that	leads	to	
confusion	

Physical	

Link	

Network	

Link	

Physical	

Link	 Link	

Network	 Network	

Transport	 Transport	

There	used	to	be	many	Internets	

•  Xerox	IDP/SDP	
•  Novel	IPX/SPX	
•  AppleTalk	
•  DECnet	
•  SNA	
•  Banyan	Vines	
•  GOSIP	
–  ISO/OSI	to	fit	the	model	

GOSIP	failed	

•  It	really	was	designed	to	fit	that	model	
•  OpNmizaNons	to	overcome	what’s	broken	
– Session	setup	inside	Transport	setup	packets	
– Session	layer	added	invisible	bytes	to	packets	

•  So	much	overhead	could	never	work	right	

•  Yet	we	sNll	get	X.509	in	today’s	networks	
•  And	LDAP	

WHAT	DOES	IPV6	SOLVE?	

Trick	quesNon	

•  Already	10	billion	devices	on	the	IPv4	Internet	
•  So	obviously,	“more	addresses”	is	not	
something	that	needed	to	be	solved	

WHERE	COOKIES	COME	FROM	

Where	do	cookies	come	from?	

•  Most	web-app	writers	aren’t	to	clear	on	this	
– “It’s	part	of	PHP”	

•  They	come	from	the	HTTP	header	

GET / HTTP/1.0
Host: www.example.com
Cookie: foo=bar;

200 OK
Server: Apache/1.0
Set-Cookie: foo=bar2

Why	this	important	

•  Everything	goes	across	the	wire	in	a	concrete	
form	
–  It’s	never	magic	
–  It’s	always	something	that	follows	concrete	rules	

•  Hackers	can	manipulate	this	on	the	wire	
•  Or	hackers	can	manipulate	this	from	hosNle	
systems	

•  Nothing	can	be	trusted	

The	failure	of	RPC	

•  Remote	procedure	call	
– SunRPC	(ONC	RPC)	with	NFS	
– MS-RPC	(DCE	RPC)	with	Windows	

•  DCOM	object	oriented	RPC	
•  Passed	internal	data	between	machines	
invisibly	
– Blaster	Worm	
– \\machinename	
– Even	pointer	values	

TCP	CHECKSUMS	

TCP	checksums	

•  Detects	all	1-bit	errors	
•  Detects	most	2-bit	errors	
– “most”	isn’t	enough	
–  It	means	“some”	aren’t	detected	

Every	step	should	be	protected	

•  Ethernet/links	are	CRC	protected	
•  PCIe	transfers	are	CRC	protected	
•  CPU	caches	are	parity	or	ECC	protected	
•  Intrachip	transfers	are	protected	
•  RAM	is	ECC	protected	on	high-end	systems	

How	it	really	works	

•  Not	so	much	
•  Especially	in	cheaper	devices	
•  Especially	RAM	
•  Especially	permanent	errors	in	RAM	cells	
•  Visible	comparing	packets	with	retransmits	
–  Errors	smeared	across	adjacent	bytes	

Bad	RAM	in	non-ECC	devices	is	the	#1	cause	of	
undetected	TCP	errors	

Bit-rot	

•  gmail.com	->	gmakl.com	

Bit-rot	comes	from	everywhere	

•  Bits	flipped	on	the	network	
•  Bits	flipped	in	RAM	
•  Bits	flipped	on	hard	drives	

•  Consequence:	
– Gmakl.com	gets	steady	stream	of	spam	

SoluNon	

•  Independent	checksums	
– BitTorrent	
– Bitcoin	
– Anything	SHA2	

•  You	really	need	to	do	this	in	your	custom	
solware	

•  Google	does	with	their	internal	stuff	

SMALL	PACKETS	

The	small	packet	problem	

•  The	same	as	“buying	in	bulk”	problem	
– Lots	of	small	packets	more	expensive	than	fewer	
large	packets	

•  Typical	small	packet	problems	
– Port	scanning	
– VoIP	audio	traffic	
– SIP	
– DNS	

Benchmarks	

•  Large	packet	performance	says	linle	about	
small	packet	performance	

•  Example:	USB	Ethernet	
– Full	bandwidth	at	large	packet	sizes	

•  400-mbps	on	USB	2.0	
•  1000-mbps	on	USB	3.0	

– Not	even	100mbps	on	small	packet	sizes	
•  10,000	to	100,000	packets-per-second	
•  …rather	than	1,500,000	packets-per-second	

Ethernet	max	packet	rate	for	1gbps	

•  hnp://blog.erratasec.com/2013/10/whats-max-
speed-on-ethernet.html	

•  1.488	million	packets	per	second	at	64-bytes	per	
packet	
–  Inter	frame	gap,	Preamble,	CRC,	padding,	etc.	

•  476-mbps	using	minimum	packet	sizes	
•  ISP	measured	bandwidth	!=	Ethernet	bandwidth	
at	port	
–  ISP	uplinks	don’t	including	Ethernet	header,	padding,	
etc.	

Your	UDP	app	

•  ~250k	to	~700k	packets-per-second	naïve	
•  2-million	with	Linux	mulNcore	opNmizaNons	
– SO_REUSEPORT:	many	sockets	handles,	one	UDP	
port	

– MulNple	Ethernet	receive	queues	
•  7-million	with	many	more	cores	and	extreme	
Linux	opNmizaNons	

•  FYI:	30-million	if	you	bypass	the	Linux	kernel	

LINUX	OPTIMIZATION	HOW-TO	

Basic	Linux	

•  Increase	file	descriptors	
•  Recompile	kernel	for	opNmizaNons	
•  Ethernet	opNmizaNon	
•  TCP/IP	opNmizaNons	

Perf	tools	

•  Use	“perf”	to	find	where	in	kernel	things	are	
stuck	

•  Usually	turn	it	off	
•  E.g.	
– Turn	off	nevilter	for	4%	

SEND()	DOESN’T	SEND	

send()	

•  bytes_sent	=	send(bytes_to_send)	
–  If	socket	is	non-blocking,	bytes_sent	may	be	fewer	
than	bytes_to_send	

– There	is	a	limit	in	outgoing	kernel	send	buffers	
– There	is	a	limit	on	incoming	kernel	receive	buffers	
on	the	other	side	

•  It	happens	at	scale	
– You	won’t	see	it	unNl	it	maners	
– Really	hard	to	create	test	case	for	

Where	I	see	this	

•  Short/long	lines	in	email	messages	
•  hnp://harryponer.wikia.com/wiki/Splinching	
--20cf307813b8ac926404b1628ab5
Content-Type: application/msword;

name="Prospectus for a Transportation Technologies Incubator v4.doc"
Content-Disposition: attachment;

filename="Prospectus for a Transportation Technologies Incubator v4.doc"
Content-Transfer-Encoding: base64
X-Attachment-Id: e953d37b7ed4bd1f_0.1

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAANAAAAAAAAAAA
AAAAAAAAqAMAAAAAAACoAwAAAAAAAKgDAAAAAAAAqAMAABQAAAAAAAAAAAAAALwDAAAAAAAAAAgA
AAAAAAAACAAAAAAAAAAIAAAAAAAAAAgAACwAAAAsCAAAFAAAALwDAAAAAAAAKg8AAG4BAABMCAAA
AAAAAEwIAAAAAAAAAAAAEwIAAAAAAAAJwkAAAAAAAAnCQAAAAAAACcJAAAA
AAAAqQ4AAAIAAACrDgAAAAAAAKsOAAAAAAAAqw4AAAAAAACrDgAAAAAAAKsOAAAAAAAAqw4AACQA
AACYEAAAaAIAAAATAADUAAAAzw4AABUAAAAAAAAAAAAAAAAAAAAAAAAAqAMAAAAAAABWCgAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAnCQAAAAAAACcJAAAAAAAAVgoAAAAAAABWCgAAAAAAAM8OAAAAAAAA

Project	idea:	Dartmouth	SMTP	

•  Monitor	all	Dartmoth	incoming/outgoing	
email	

•  Count	%	splinched	emails	
•  Count	amount	of	TCP	receive-windows-full	
packets	

RECV()	DOESN’T	RECEIVE	ENOUGH	
–	OR	RECEIVES	TOO	MUCH	

recv()	

•  bytes_recvd	=	recv(bytes_to_recv)	
– Other	side	may	not	have	sent	enough	bytes	
– Other	side	might	have	sent	too	many	bytes	

•  It	happens	at	scale	
•  It	happens	because	of	odd	solware	on	other	
side	

Where	I’ve	seen	this	

•  Line-oriented	protocols	
– HTTP,	FTP,	SMTP	

•  Typical	FTP	solware	
– Assumes	enNre	line	has	been	received	

•  Short	lines	without	\n	then	get	truncated	
•  Remainder	is	assumed	to	be	start	of	next	line	

– Assumes	no	more	than	one	line	received	
•  Parses	unNl	\n,	discards	remainder	
•  Next	packet	assumes	start	of	next	line	

HTTP	servers	

•  Sending	mulNple	requests	before	a	response	
has	been	received	

“pipelining”	

•  Means	you	can	send	more	data	than	expected	
and	it’s	not	lost	

•  Not	pipelining	means	you	can’t	

Project	idea:	masscan	

•  Idea	
– Masscan	FTP	port	(21)	
– Send	truncated	packets	without	\n	followed	by	
rest	of	line	

– Send	excess	packets	with	data	aler	\n	
– Test	how	many	have	flawed	responses	

TCP	IS	A	STREAM	

Example:	Snort	rules	for	
INTERNALBLUE	(WannaCry)	

•  Tests	for	packet	payloads	that	start	with	string	
“SMB”	

•  But	TCP	is	a	stream	
–  I	can	split	payloads	arbitrarily	
–  I	can	sNck	SMB	at	the	end	of	the	previous	packet	
instead	of	the	start	of	this	packet	

– Especially	since	SMB	supports	“pipelining”	

alert	tcp	$EXTERNAL_NET	any	->	$HOME_NET	445	(msg:"OS-
WINDOWS	Microsol	Windows	SMB	remote	code	execuNon	
anempt";	flow:to_server,established;	content:"|FF|SMB3|00	
00	00	00|";	depth:9;	offset:4;	byte_extract:
2,26,TotalDataCount,relaNve,linle;	byte_test:
2,>,TotalDataCount,20,relaNve,linle;	metadata:policy	balanced-
ips	drop,	policy	connecNvity-ips	drop,	policy	security-ips	drop,	
ruleset	community,	service	netbios-ssn;	reference:cve,
2017-0144;	reference:cve,2017-0146;	
reference:url,isc.sans.edu/forums/diary/
ETERNALBLUE+Possible+Window+SMB+Buffer+Overflow+0Day/
22304/;	reference:url,technet.microsol.com/en-us/security/
bulleNn/MS17-010;	classtype:anempted-admin;	sid:41978;	rev:
3;)	

“Packets”	are	arbitrary	

•  The	packet	is	layer	3	
•  Layer	2	and	below	are	not	part	of	the	packet	
•  Layer	4	and	above	are	not	part	of	the	packet	
–  In	that	where	layer	3	boundaries	match	layer	4	
boundaries	is	purely	coincidental	

	
Packets	are	a	single	block	of	data,	but	of	

independent	parts	

BYTE-ORDER	

ntohs()	is	wrong	

•  You	should	be	handling	byte-order	the	same	
way	as	with	every	other	language	
– n	=	buf[0]<<256	|	buf[1];	
– n	=	buf[0]	*	256	+	buf[1];	

•  Never	use	ntohs()	style	funcNons	when	
parsing	
– Never	cast/overlay	packed	structures	

ntohs()	is	wrong	

•  Never	store	integers	inverted	
– The	‘int’	type	always	means	in	the	machine	byte-
order	

–  If	you	must,	then	create	a	new	type,	such	as	
“external_int”	to	hold	(possibly)	inverted	integers	

–  [byte-order	problem	is	a	type	problem]	
•  Use	it	only	when	dictated	by	sockets	API	
– sin.sin_port	=	ntohs(80);	
– but	IPv6	getaddrinfo()	gets	rid	of	this	

noths()	never	worked	anyway	

•  For	decades,	Solaris	apps	mysteriously	failed	
with	“bus	error”	because	while	ntohs()	solves	
byte-order,	it	doesn’t	solve	alignment	

external	!=	internal	

•  Internal	byte-order	is	unknown	and	unknowable	
–  It’s	abstract	

•  External	byte-order	is	known	
–  It’s	concrete	
–  Even:	don’t	fear	“magic	numbers”,	because	it’s	that	
concrete	
•  if	(ip_ver	==	4)	…	else	if	(ip_ver	==	6)	…	else	…	

–  If	you	change	the	value	in	a	.h	file,	your	code	will	fail	
to	interoperate	with	the	other	side	

PARSING	IS	A	THING	

Where	hacked	vulns	come	from	

•  Because	schools	don’t	teach	how	to	parse	input	
– …so	people	come	up	with	ad	hoc	soluNons	
themselves	

•  All	these	vulns	(like	the	one	in	WannaCry)	comes	
from	failure	to	parse	correctly	

•  Distrust	all	input	you	read	from	the	network	
– Assume	the	sender	is	a	hacker	trying	to	trick	you	
–  Validate	first	before	using	it	
– …and	stuff	

IPV6	APPS	AND	GETADDRINFO()	

Your	app	has	to	resolve	names	to	IP	
addresses	

•  Getaddrinfo()	does	DNS	resoluNon	
•  Also	parses	IP	addresses	from	text	to	binary	
•  No	longer	use	gethostname()	

Use	getaddrinfo()	

•  Magically	makes	your	code	support	both	IPv4	
and	IPv6	

Don’t	use	getaddrinfo()	

•  It’s	not	thread	safe	
– Use	only	from	the	configuraNon	thread	
– May	crash	otherwise	

•  It’s	not	scalable	
– Don’t	use	when	user	tries	to	configure	thousands	of	
addresses	

– Don’t	use	it	to	reverse-lookup	incoming	IP	addresses	
on	a	server	in	order	to	log	DNS	names	

–  Consider	using	inet_pton()	when	parsing	numeric	
addresses,	maybe	

hnps://blog.powerdns.com/2014/05/21/a-surprising-discovery-on-converNng-ipv6-
addresses-we-no-longer-prefer-getaddrinfo/	

Family	

•  freeaddrinfo()	
•  getpeername()	
•  Inet_pton()	
•  Inet_ntop()	

What	is	the	deal	with	DNS	anyway?	

•  How	long	do	you	cache	the	name	returned	by	
getaddrinfo(),	before	refreshing	it?	

•  What	if	it	returns	an	error?	Do	you	ask	for	it	
again?	

•  Can	I	reuse	an	old	one	if	refreshing	fails?	
•  When	a	botnet	takes	down	DNS,	does	this	
mean	your	internal	app	fails?	

INTERNET	SCALE	AND	
ASYNCHRONOUS	

How	you	learn	

•  How	networking	works	at	all	
– Spawn	threads	
–  recv()/send()	with	blocking	calls	
– This	is	bad	because	it	supports	only	a	few	
thousand	connecNons	

– Because	the	operaNng-system	can	only	schedule	a	
few	thousand	acNve	threads	

Thread	scheduler	is	packet	scheduler	

•  This	means	that	every	incoming	TCP	packet	
causes	the	thread	associated	with	the	socket	
to	be	scheduled	as	runnable	

•  Services	exposed	to	the	Internet	
– With	millions	of	incoming	TCP	connecNons	
– With	hackers	trying	to	mess	things	up	

Not	even	kidding	

Asynchronous	

•  One	thread	
– …or	one	thread	per	CPU	

•  epoll(),	libevent,	or	libuv	
– Selects	whichever	socket	has	pending	data	
– Don’t	use	select()	or	poll()	as	they	aren’t	scalable	
either	

•  Can	handle	100,000	
– Or	1-million	with	OS	tuning	and	hely	CPU	

Project:	test	with	masscan	

•  masscan	can	generate	millions	of	TCP	
connecNons	

•  I	could	get	nginx	to	450,000	TCP	connecNons	

ISLAND	OF	MISFIT	PACKETS	

Project	idea	

•  Responses	from	wrong	IP	address	
–  Both	UDP	and	TCP	
–  Should	be	impossible	for	TCP	

•  Checksum	errors	
•  Constant	replies	
–  SomeNmes	applicaNon	layer	
–  SomeNmes	underlying	stack	

•  2	million	addresses	respond	to	any	SYN	
•  So	many	“accelerators”	

SOME	CODE	

Some	of	my	github	stuff	

•  Runs	on	Windows,	Linux,	and	macOS	
•  Wrinen	in	C	
•  Clients	and	servers	
•  Virtually	no	htons()	style	funcNons	
–  Just	for	se�ng	sin_port	

Telnet	logger	(server)	

•  Used	for	the	Mirai	IoT	botnet	
•  Logs	passwords	for	incoming	TCP	connecNons	

•  hnps://github.com/robertdavidgraham/
telnetlogger/	

BIND	tkill	

•  Simple	client,	sends	DoS	to	bind	
•  hnps://github.com/robertdavidgraham/
cve-2015-5477/	

•  getaddrinfo()	example	
– Connects	to	all	hosts	returned	by	getaddrinfo()	
DNS	query,	IPv4	or	IPv6	

•  No	htons()	style	funcNons	

Heartleech	(client)	

•  Exploits	Heartbleed	to	scrape	SSL	cerNficates	
from	vulnerable	systems	

•  Example	how	to	use	SSL	
– Warning:	needs	special	version	of	SSL	to	compile	
to	exploit	heartbleed	

•  hnps://github.com/robertdavidgraham/
heartleech	

•  (no	htons()	at	all)	

masscan	

•  hnps://github.com/robertdavidgraham/
masscan	

•  Millions	of	packets-per-second	
•  Millions	of	concurrent	TCP	connecNons	
•  Custom	TCP/IP	
–  	very	limited	
– Like	your	homework	

HOW	BIG	IS	4	BILLION?	

Masscan	demo	

•  masscan	0.0.0.0/0	–p<something>	--banners	–
rate	<something>	

