Networking stuff,
from the real world

Robert Graham
Dartmouth, Spring, 2017

OSI MODEL TRUTHS

The OSl is a lie

Created in late 1970s to describe how terminals talked
to mainframes

TCP/IP model shoehorned into it
— The OSI Model has been “retconned” to fit TCP/IP

There is no session layer
— Yes, session concepts, but no layer

There is no presentation layer
— Yes, presentation concepts, but no layer

There is not even an application layer

— Applications are are on top of the application layer, not
the application layer themselves

There are only 4 layers

Transport (TCP, UDP, SCTP)
nternetwork (IPv4, |Pv6)

Local data link (Ethernet, WiFi)
Local physical (Ethernet, WiFi)

Local physical layer

* AS FAR AS: the local wire (or into the air)
* UNIT: bits

Local link

AS FAR AS: next hop
UNIT: frames (local address, CRC checked)

STRIPPED OFF BEFORE NEXT HOP

Other non-Ethernet links exist
— MPEG-TS, ATM, Frame Relay, PPP, etc.

Internetwork layer

 AS FAR AS: other end (end-to-end)
 UNIT: packet

Transport layer

* AS FAR AS: remote application
 UNIT: stream, datagram

Sideways/up-downs

* Only two up/down
APls

— TCP/IP is a unified
whole in the
operating system
with sockets as API
on top

— Ethernetis a
unified whole with
packet driver on
top

 There’s no sideways

— It’s a bad analogy
that leads to
confusion

T - T
BT - ST e

<> Protocol § Interface

Transport Transport
Network Network Network
Link Link Link Link
Physical Physical

There used to be many Internets

Xerox IDP/SDP
Novel IPX/SPX
AppleTalk
DECnhet

SNA

Banyan Vines

GOSIP
— |SO/0SI to fit the model

GOSIP failed

It really was designed to fit that model

Optimizations to overcome what’s broken
— Session setup inside Transport setup packets
— Session layer added invisible bytes to packets

So much overhead could never work right

Yet we still get X.509 in today’s networks
And LDAP

WHAT DOES IPV6 SOLVE?

Trick question

* Already 10 billion devices on the IPv4 Internet

* So obviously, “more addresses” is not
something that needed to be solved

WHERE COOKIES COME FROM

Where do cookies come from?

 Most web-app writers aren’t to clear on this
— “It’s part of PHP”

* They come from the HTTP header

GET / HTTP/1.0
Host: www.example.com
Cookie: foo=bar;

200 OK
Server: Apache/1.0
Set-Cookie: foo=bar2

Why this important

Everything goes across the wire in a concrete
form

— It’s never magic
— It’s always something that follows concrete rules

Hackers can manipulate this on the wire

Or hackers can manipulate this from hostile
systems

Nothing can be trusted

The failure of RPC

 Remote procedure cal
— SunRPC (ONC RPC) with NFS
— MS-RPC (DCE RPC) with Windows

e DCOM object oriented RPC

* Passed internal data between machines
invisibly
— Blaster Worm
— \\machinename

— Even pointer values

TCP CHECKSUMS

TCP checksums

e Detects all 1-bit errors
e Detects most 2-bit errors

— “most” isn’t enough
— It means “some” aren’t detected

Every step should be protected

Ethernet/links are CRC protected

PCle transfers are CRC protected

CPU caches are parity or ECC protected
Intrachip transfers are protected

RAM is ECC protected on high-end systems

How it really works

Not so much

Especia
Especia
Especia

y in cheaper devices
v RAM
v permanent errors in RAM cells

Visible comparing packets with retransmits
— Errors smeared across adjacent bytes

Bad RAM in non-ECC devices is the #1 cause of

undetected TCP errors

Bit-rot

* gmail.com -> gmakl.com

= 2 " A 4 = X

0100
0100
0100
0100
0100
0100
0100

1000

100*_

1010

1011
-~

1100
1101
1110

M OX U - A m

0110
0110
0110
0110
0110
0110
0110

0110
0111
1000
1001
1010
1011
1100

Bit-rot comes from everywhere

Bits flipped on the network
Bits flipped in RAM
Bits flipped on hard drives

Conseqguence:
— Gmakl.com gets steady stream of spam

Solution

* Independent checksums
— BitTorrent
— Bitcoin
— Anything SHA2
* You really need to do this in your custom
software

* Google does with their internal stuff

SMALL PACKETS

The small packet problem

 The same as “buying in bulk” problem

— Lots of small packets more expensive than fewer
large packets

* Typical small packet problems
— Port scanning
— VolIP audio traffic
— SIP
— DNS

Benchmarks

* Large packet performance says little about
small packet performance

 Example: USB Ethernet

— Full bandwidth at large packet sizes

e 400-mbps on USB 2.0
* 1000-mbps on USB 3.0

— Not even 100mbps on small packet sizes

* 10,000 to 100,000 packets-per-second
e ...rather than 1,500,000 packets-per-second

Ethernet max packet rate for 1gbps

* http://blog.erratasec.com/2013/10/whats-max-
speed-on-ethernet.html

* 1.488 million packets per second at 64-bytes per
packet
— Inter frame gap, Preamble, CRC, padding, etc.

* 476-mbps using minimum packet sizes

e |SP measured bandwidth != Ethernet bandwidth
at port

— ISP uplinks don’t including Ethernet header, padding,
etc.

Your UDP app

~250k to ~700k packets-per-second naive

2-million with Linux multicore optimizations

— SO_REUSEPORT: many sockets handles, one UDP
port

— Multiple Ethernet receive queues

7-million with many more cores and extreme
Linux optimizations

FYIl: 30-million if you bypass the Linux kernel

LINUX OPTIMIZATION HOW-TO

Basic Linux

Increase file descriptors

Recompile kernel for optimizations
Ethernet optimization

TCP/IP optimizations

Perf tools

e Use “perf” to find where in kernel things are
stuck

e Usually turn it off
* E.g.
— Turn off netfilter for 4%

SEND() DOESN’T SEND

send()

* bytes_sent = send(bytes_to_send)

— If socket is non-blocking, bytes sent may be fewer
than bytes to_send

— There is a limit in outgoing kernel send buffers

— There is a limit on incoming kernel receive buffers
on the other side

* |t happens at scale
— You won’t see it until it matters
— Really hard to create test case for

Where | see this

* Short/long lines in email messages
* http://harrypotter.wikia.com/wiki/Splinching

--20cf307813b8ac926404b1628ab5s
Content-Type: application/msword;

name="Prospectus for a Transportation Technologies Incubator v4.doc"
Content-Disposition: attachment;

filename="Prospectus for a Transportation Technologies Incubator v4.doc"

Content-Transfer-Encoding: base64
X-Attachment-Id: e953d37b7ed4bdif 0.1

OM8R4KGXGUEAAAAAAAAAAAAAAAAAAAAAPGADAPT [CQAGAAAAAAAAAAAAAAABAAAANAAAAAAAAAAA
AAAAAAAAGAMAAAAAAACOAWAAAAAAAKGDAAAAAAAAGAMAABQAAAAAAAAAAAAAALWDAAAAAAAAAAGA
AAAAAAAACAAAAAAAAAATAAAAAAAAAAGAACWAAAASCAAAFAAAALWDAAAAAAAAKGB8AAGABAABMCAAA
AAAAAEWIAAAAAAAAAAAAEWIAAAAAAAAIWKAAAAAAAANCQAAAAAAACCIAAAA

AAAAQQ4AAATAAACTDgAAAAAAAKSOAAAAAAAAqQWAAAAAAAACTDGAAAAAAAKSOAAAAAAAAGQWAAACQA
AACYEAAAQATAAAATAADUAAAAzZWAAABUAAAAAAAAAAAAAAAAAAAAAAAAAQAMAAAAAAABWCGAAAAAA
AAAAAAAAAAAAAAAAAAAAAAANCQAAAAAAACCIAAAAAAAAVGOAAAAAAABWCGAAAAAAAMBOAAAAAAAA

Project idea: Dartmouth SMTP

* Monitor all Dartmoth incoming/outgoing
email

* Count % splinched emails

e Count amount of TCP receive-windows-full
packets

RECV() DOESN’T RECEIVE ENOUGH
— OR RECEIVES TOO MUCH

recv()

* bytes recvd = recv(bytes _to_recv)
— Other side may not have sent enough bytes
— Other side might have sent too many bytes

* |t happens at scale

* |t happens because of odd software on other
side

Where I've seen this

* Line-oriented protocols
— HTTP, FTP, SMTP

* Typical FTP software

— Assumes entire line has been received
* Short lines without \n then get truncated

e Remainder is assumed to be start of next line

— Assumes no more than one line received
* Parses until \n, discards remainder
* Next packet assumes start of next line

HTTP servers

* Sending multiple requests before a response
has been received

“pipelining”

Means you can send more data than expected
and it’s not lost

Not pipelining means you can’t

heartleech — root@projectp: ~

$ telnet 74.125.140.26 25

Trying 74.125.140.26...

Connected to wg-in-f26.1e100.net.

Escape character is '~]'.

220 mx.google.com ESMTP j71s18766787wmg. 102 - gsmtp
EHLO rob

250-mx.google.com at your service, [50.251.176.182]
250-SIZE 157286400

250-8BITMIME
250-STARTTLS

250- ENHANCEDSTATUSCEUES
250-PIPELINING
250-CHUNKING

250 SMTPUTF8

Project idea: masscan

* |dea
— Masscan FTP port (21)

— Send truncated packets without \n followed by
rest of line

— Send excess packets with data after \n
— Test how many have flawed responses

TCP IS A STREAM

Example: Snort rules for
INTERNALBLUE (WannaCry)

* Tests for packet payloads that start with string
IISM BII

e But TCP is a stream
— | can split payloads arbitrarily

— | can stick SMB at the end of the previous packet
instead of the start of this packet

— Especially since SMB supports “pipelining”

alert tcp SEXTERNAL_NET any -> SHOME_NET 445 (msg:"OS-
WINDOWS Microsoft Windows SMB remote code execution
attempt"; flow:to_server,established; content:" |FF|SMB3|00
00 00 00|"; depth:9; offset:4; byte_ extract:
2,26,TotalDataCount,relative,little; byte test:
2,>,TotalDataCount,20,relative,little; metadata:policy balanced-
ips drop, policy connectivity-ips drop, policy security-ips drop,
ruleset community, service netbios-ssn; reference:cve,
2017-0144; reference:cve,2017-0146;
reference:url,isc.sans.edu/forums/diary/
ETERNALBLUE+Possible+Window+SMB+Buffer+Overflow+0Day/
22304/; reference:url,technet.microsoft.com/en-us/security/
bulletin/MS17-010; classtype:attempted-admin; sid:41978; rev:
3;)

“Packets” are arbitrary

* The packet is layer 3
e Layer 2 and below are not part of the packet

e Layer 4 and above are not part of the packet

— In that where layer 3 boundaries match layer 4
boundaries is purely coincidental

Packets are a single block of data, but of
independent parts

BYTE-ORDER

ntohs() is wrong

* You should be handling byte-order the same
way as with every other language

— n = buf[0]<<256 | buf[1];
— n = buf[0] * 256 + buf[1];

* Never use ntohs() style functions when
parsing

— Never cast/overlay packed structures

ntohs() is wrong

* Never store integers inverted

— The ‘int’ type always means in the machine byte-
order

— |If you must, then create a new type, such as
“external_int” to hold (possibly) inverted integers

— [byte-order problem is a type problem]

e Use it only when dictated by sockets API
— sin.sin_port = ntohs(80);
— but IPv6 getaddrinfo() gets rid of this

noths() never worked anyway

* For decades, Solaris apps mysteriously failed
with “bus error” because while ntohs() solves
byte-order, it doesn’t solve alighment

external != internal

* Internal byte-order is unknown and unknowable

— It’s abstract

* External byte-order is known
— It’s concrete

— Even: don’t fear “magic numbers”, because it’s that
concrete

e if (ip ver==4) ... elseif (ip_ver==6) ... else ...

— |f you change the value in a .h file, your code will fail
to interoperate with the other side

PARSING IS A THING

Where hacked vulns come from

* Because schools don’t teach how to parse input

— ...50 people come up with ad hoc solutions
themselves

e All these vulns (like the one in WannaCry) comes
from failure to parse correctly

e Distrust all input you read from the network
— Assume the sender is a hacker trying to trick you

— Validate first before using it
— ...and stuff

IPV6 APPS AND GETADDRINFO()

Your app has to resolve names to IP
addresses

* Getaddrinfo() does DNS resolution
* Also parses IP addresses from text to binary
* No longer use gethostname()

Use getaddrinfo()

* Magically makes your code support both IPv4
and IPv6

O O heartleech — root@projectp: ~
9
$ dig any +short www.google.com
2607:f8b0:4002:c09::69
64.233.185.99

64.233.185.147

64.233.185.103
64.233.185.106
64.233.185.105
64.233.185.104

9

Don’t use getaddrinfo()

* |t's not thread safe
— Use only from the configuration thread
— May crash otherwise

 |t’s not scalable

— Don’t use when user tries to configure thousands of
addresses

— Don’t use it to reverse-lookup incoming IP addresses
on a server in order to log DNS names

— Consider using inet_pton() when parsing numeric
addresses, maybe

https://blog.powerdns.com/2014/05/21/a-surprising-discovery-on-converting-ipv6-
addresses-we-no-longer-prefer-getaddrinfo/

freeaddrinfo()
getpeername()
Inet_pton()
Inet_ntop()

Family

What is the deal with DNS anyway?

* How long do you cache the name returned by
getaddrinfo(), before refreshing it?

 What if it returns an error? Do you ask for it
again?
 Can | reuse an old one if refreshing fails?

e When a botnet takes down DNS, does this
mean your internal app fails?

INTERNET SCALE AND
ASYNCHRONOUS

How you learn

* How networking works at all
— Spawn threads
— recv()/send() with blocking calls

— This is bad because it supports only a few
thousand connections

— Because the operating-system can only schedule a
few thousand active threads

Thread scheduler is packet scheduler

* This means that every incoming TCP packet
causes the thread associated with the socket
to be scheduled as runnable

e Services exposed to the Internet
— With millions of incoming TCP connections
— With hackers trying to mess things up

Not even kidding

Web server developers: Market share of the top million busiest sites

[IETCRAFT T ppsche

80%

= Other
4]
60% — NQINX
~— Google
40%
20% — —
— -

0%
00% 009 qug 0\0 'LQ\Q 0\‘\ Qn\‘\ 0\"2« qp‘\‘l 0\'3 qp\’b 0\0« Qp\b« 0\6 10\6 1’0\6 0\6 qp\'\
58Q \}\’b‘ 669 \g\’b‘ 669 \t\@‘ 60Q ‘!\0‘ %GQ \Nb‘ %QQ \}\'b‘ 589 \3\0‘ %GQ \]\0‘ QOQ \}\0‘

Asynchronous

* One thread
— ...or one thread per CPU
e epoll(), libevent, or libuv
— Selects whichever socket has pending data

— Don’t use select() or poll() as they aren’t scalable
either

 Can handle 100,000
— Or 1-million with OS tuning and hefty CPU

Project: test with masscan

* masscan can generate millions of TCP
connections

* | could get nginx to 450,000 TCP connections

ISLAND OF MISFIT PACKETS

Project idea

Responses from wrong IP address
— Both UDP and TCP
— Should be impossible for TCP

Checksum errors

Constant replies

— Sometimes application layer
— Sometimes underlying stack

2 million addresses respond to any SYN
So many “accelerators”

SOME CODE

Some of my github stuff

Runs on Windows, Linux, and macOS
Written in C
Clients and servers

Virtually no htons() style functions
— Just for setting sin_port

Telnet logger (server)

e Used for the Mirai loT botnet
* Logs passwords for incoming TCP connections

e https://github.com/robertdavidgraham/
telnetlogger/

BIND tkill

Simple client, sends DoS to bind
https://github.com/robertdavidgraham/

cve-2015-5477/

getaddrinfo() example

— Connects to all hosts returned by getaddrinfo()
DNS query, IPv4 or IPv6

No htons() style functions

Heartleech (client)

Exploits Heartbleed to scrape SSL certificates
from vulnerable systems
Example how to use SSL

— Warning: needs special version of SSL to compile
to exploit heartbleed

https://github.com/robertdavidgraham/

heartleech

(no htons() at all)

MassSCan

https://github.com/robertdavidgraham/

MasSCan

Millions of packets-per-second
Millions of concurrent TCP connections
Custom TCP/IP

— very limited
— Like your homework

HOW BIG IS 4 BILLION?

Masscan demo

* masscan 0.0.0.0/0 -p<something> --banners -
rate <something>

.2# bin/masscan 129.1/0. .
lo.bin --source-ip 129.170.213.7

Starting masscan 1.0.3 (http://bit.ly/14GZzcT) at 2017-05-16 19:37:28 GHT

-- forced options: -sS -Pn -n --randomize-hosts -v --send-eth
Initiating SYN Stealth Scan
Scanning 256 hosts [1 port/host]
Discovered open port 445/tcp on 129.170.213.212
Discovered open port 445/tcp on 129.170.213.46
Discovered open port 445/tcp on 129.170.213.3
Discovered open port 445/tcp on 129.170.213.204
Banner on port 445/tcp on 129.170.213.212: [unknown] \x00\x00\x00\xbS\xffSHMBrix0
O\ x00\ x00\ x00\ x88\ x01\ xc8\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ xf f\xf
FAXOL\XOO\XFFixFfix00\x00\x11\x00\x00\x032\x00\x01\x00\x04A\ x00\x00\x00\x00\x01}
X000\ x12\x04\ x00\ x00\ xfd i\ xf3\x00\x80\xb2\x01(\xdd{\xce\xd2\x01\xfO\x00\ x00p\x00gr
een\x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00\x00 M\ x06\x06+\x06\x01\x05\x05\x02\ x
a0TOR\xa050\x22\ x06\ x09*\ x86H\ x82 \ xf 7\ x 12\ x01\x02\x02\ x06\x09*\ x86H\ x86\xf7\x12\
x01\x02\x02\ x06 x0a+\ x06\x0 1\ x04\ x01\x827\x02\x02\x0a\xa3*0(\xa0®\x26\x1bSnot_def
ined_in_RFC4178@please_ignore
Banner on port 445/tcp on 129.170.213.46: [unknown] \x00\x00\x00\x7f\xffSHBrix00
A\ X000\ x00\ x00\ x88\ x01\ xc8\x00\ x00\ x00\ x00\ X000\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ xf fixff
AXO1\XO0\XF X fix00\x00\x11\x00\x00\x032\x00\x01\x00\ x04A\ x00\ x00\ x00\x00\x01}x
00\ xbO\x0b\x01\x00\ xfd i xf3\x80\x80C\ x3e\ x1f\xdd{\xce\xd2\x01\xfO\x00\x00: \x00tru
stnas1{x00\x00\x00\ x00\ x00\ x00\ x00 * (\x06\x06+\x06\x01\x05\x05\x02\xa0\x1e®\x1c\x

root@dscanner:~/masscan# bin/masscan 1. .

smb-hello.bin --rate 400000 -oB dartmouth scan
/etc/masscanfexclude. txt: excluding 2542 ranges from file
fetc/masscan/exclude2. txt: excluding 387 ranges from file
/etc/masscan/DOD. txt: excluding 1487 ranges from file
/etc/masscan/exclude-rob. txt: excluding 42 ranges from file

Starting masscan 1.0.3 (http://bit.ly/14GZzcT) at 2017-05-17 16:22:51 GMT
-- forced options: -sS -Pn -n --randomize-hosts -v --send-eth

Initiating SYN Stealth Scan

Scanning 3496160537 hosts [1 port/host]

Bate:397.69-kpps, 0.27% done, 2:25:09 remaining, found=8483

® 00 Ploppy
Creecher:~ Ploppy$ dig mx gmail.com +short

40 altd4.gmail-smtp-in.l.google.com.

5 gmail-smtp-in.l.google.com.

10 altl.gmail-smtp-in.l.google.com.

30 alt3.gmail-smtp-in.l.google.com.

20 alt2.gmail-smtp-in.l.google.com.

Creecher:~ Ploppy$ telnet gmail-smtp-in.l.google.com 25
Trying 74.125.22.27...

Connected to gmail-smtp-in.l.google.com.

Escape character is '~]'.

220 mx.google.com ESHTP v40si2609544qtg.14 - gsmtp
EHLO rob

250-mx.google.com at your service, [216.66.104.3]
250-SIZE 157286400

250-8BITMIME

250-STARTTLS

250- ENHANCEDSTATUSCODES

250-PIPELINING

250-CHUNKING

250 SMTPUTFS

MAIL FROM:<sergey@example.com>

250 2.1.0 OK v40s12609544qtg.14 - gsmtp

rcpt to:<bigrobg@gmail.com>

250 2.1.5 0K v40si2609544qtg.14 - gsmtp

DATA

354 Go ahead v40s12609544qtg.14 - gsmtp

To: Rob

From: Sergey

Subject: Class Assigment

khatever

250 2.0.0 OK 1495038410 v40s12609544qtg.14 -

&

Google in:spam | Q. B

Gmail ~ “ Delete forever Not spam - - More ~ 1 of 246
COMPOSE Class Assigment Spam x &
:;box (:,?33) o Sergey 12:26 PM (2 minutes ago) -~
Sent Mail d to Rob [~
Drafts (293
¢ -) ' Why is this message in Spam? It's similar to messages that were detected by
- Swghl (4,488) our spam filters. Learn more

¥ Promotions (77...
© Updates (1,626)
™ Forums (1,379)

Whatever

~ Notes l’ Click here to Reply, Reply to all, or Forward
mRobert v +
s TIPS, U
4.72 GB (27%) of 17 GB used Terms - Privacy
Manage Last account activity: 1 hour ago
Details
2 P

