
Avoiding a War on Unauthorized Computation:

Why Exploit Regulation is the Biggest Danger to

Coder Freedom and Future Security

Sergey Bratus, Anna Shubina

DRAFT

In recent cyber-security discussions, several parties compared exploits with
weapons (e.g., referred to development and sale of exploits as “arms dealing”)
and called for legal intervention and regulation in the name of protecting user se-
curity and privacy. We argue that any attempts to regulate – or, indeed, legally
define – exploits will in fact cause irreparable harm to both coder freedoms
and actual trustworthiness of consumer systems. The only technical difference
between exploit programming and “normal” programming is that the former
creates computation that is not anticipated by the target’s engineers, undesir-
able to vendors, and depends for its reliability on a deeper understanding of the
target’s actual rather than documented engineering composition. Restrictions
on activities of exploit programmers will inevitably burden all other kinds of
unexpected or unapproved programming-related activities, such as jailbreaking,
security analysis of proprietary data protection schemes, and even the fitting
of defensive measures to platforms not initially designed for them. We argue
that “war on unauthorized computation” will not improve trustworthiness of
our systems; to the contrary, it will reduce the sum of our knowledge about how
they can and cannot behave – and thus of what they can and cannot be trusted
with.

1 The challenge of exploits

The current discussion about regulating exploits so far revolved around scenar-
ios of rogue governments acquiring instant, push-button power for taking over
systems. This scary scenario creates an instant desire to prevent it, and limit-
ing creation or transfer of these dangerous artifacts naturally springs to mind,
hence calls for regulation of “weaponized exploits”. Throughout these discus-
sions, “exploits” are conceived of as easily identifiable artifacts of a specialized
craft rather than a general computing phenomenon.

However, whenever there is a call to regulate a programming activity –
and exploits are clearly programs, whose developers use sophisticated software
engineering tools – we should be aware of unexpected consequences of such

1



regulation. For example, constraining the ability of developers to be paid for
their work will certainly curtail the time they can afford to spend on it, thus
restrictions on exploit purchases will translate to restrictions on exploit research
and development as well. We should make sure that we clearly define that which
would be restricted – and consider both the direct scope of such regulation and
the inevitable elaboration and expansion of its underlying legal definitions and
theories.

We want no restrictions on security research that exposes vulnerabilities in
existing trusted systems – if anything, we want more of it to happen, in partic-
ular to offset the above rogue government abuse scenarios. Furthermore, we do
not want to accidentally restrict the freedom of general programming activities,
even where they might be construed to contribute or be related to exploitation
– e.g., when they require reliable “jail breaking” or rely on reverse engineer-
ing that needs to actively modify its running target. Finally, as defenders well
know, it can be hard to identify a particular technique or code as unambiguously
offensive (part of an exploit) or defensive; an ostensibly “evil” technique may
be necessary to add security protections to a system not designed to provide
security [4].

Thus, should we want to prevent the “cyber-weapon”-based scenarios with
regulation or law, we must consider the challenge of defining what constitutes the
exact kind of these “weapons” that we want to impede, and exactly how they are
different from other phenomena of applied computer security research, general
programming, even daily computer use. Without such clear boundaries and
definitions, resulting laws and regulations are likely not only to be ineffective but
enormously counterproductive to us being able to eventually trust the integrity
of our computers. Ultimately, we may find – and, we argue, we will find –
that such boundaries on computing artifacts are impossible to draw without
impeding a whole spectrum of activities critical for both programmer freedoms
and advancement of security.

The rapid expansion of activities covered by the revisions of Computer Fraud
and Abuse Act (CFAA) provides a cautionary example. Having started with a
narrow scope of protecting US government-owned computers, the law grew to
cover nearly every access to every computer around the world, at the same time
reaching unconstitutional vagueness in what exactly it criminalizes [5]. There is
every reason to expect a similar expansion in regulation of exploitation-related
activities.

Another important example of a law that had significant chilling effects on
security research is the Digital Millenium Copyright Act (DMCA). The DMCA
apparently fell short of protecting the interests of US copyright owners (as ev-
idenced by much broader laws such as SOPA and PIPA being subsequently
lobbied for by copyright owner associations), but its criminalization of “circum-
venting digital protections” has already had significant chilling effects on secu-
rity research. The DMCA resulted in legal threats against security researchers
engaging in reverse engineering that included “technological protections of con-
tent” – no matter how inadequte these protections (e.g., arrest and prosecution
of the Russian researcher Dimitry Sklyarov for exposing multiple weaknesses of

2



Adobe DRM schemes) or how critically important the analyzed systems were
(e.g., legal threats to silence public debate about the trustworthiness of elec-
tronic voting machines1). The continuing chilling effects of the DMCA are cov-
ered by many resources on the web, in particular EFF’s www.chillingeffects.org
and the Freedom to Tinker blog, which frequently features contributions by Prof.
Edward Felten, who had to fight DMCA-based legal threats to his security re-
search in court in the landmark Felten, et al., v. RIAA, et al.

2 What is an exploit, or “I’ll know it when I see
it”

Exploits made an impressive appearance in Hollywood hacker movies: a hacker
runs a program and is immediately granted access to vital facilities. Exploits
have made attending-grabbing headlines, which propelled them into the current
debate. There is thus a danger that instead of a general and broadly important
computing phenomenon the debate will focus on the media artifact – to the
detriment of computing.

2.1 Flawed representation of exploits

In the ongoing discussion about regulating exploits, exploits to be regulated are
viewed as unfailingly effective products that give their wielder instant power to
take over systems silently and reliably – a scenario that tends to occur in hacker
movies rather than in reality.

When exploits are discussed in this manner, we end up with the image of an
exploit as an artifact rather than a general computing phenomenon. In particu-
lar, in the “surveillance argument”, which we discuss below, exploits are clearly
conceived of as easily identifiable artifacts of a specialized (and ethically ques-
tionable) craft rather than expressions of research of fundamental importance
to security of computers in general. This is a dangerous misconception.

2.2 Technical reality of exploits: defining “evil computa-
tion”

Despite being one of the most frequently used words in the security industry vo-
cabulary, exploit has no formal definition, nor did it need one while it was being
used by people who shared the same intuitions about security and exploitation.
Hardly anyone remembers who coined it; “it’s always been there”.

This lack of common definition presented a subtle trap when the word “ex-
ploit” started to get used by journalists and activists - lacking a definition to
correct themselves, they started using it in the sense “something that does bad
things to a computer”.

To define an exploit, we need to start with the basics.

1https://www.eff.org/cases/online-policy-group-v-diebold

3



Since exploits exist for all levels of software targets from chip firmware to
office document applications and web-based e-mail and content management
systems, any legally actionable definition of an exploit will inevitably grow to
be general enough to cover all major categories of computing systems. The
common feature that unites all levels of exploitation is that the exploit makes
the actual computation happening on the target deviate from the one expected
or designed, in a way that is reliably controlled by the exploit. It is highly likely
that the working legal definition will eventually capture this common feature,
although one can only guess at the possible legal formulations, with the evolution
of the CFAA of serving as a possible pattern (one could also recall the evolution
of “actionable copy”, culminating in the theory that “a copy in RAM” was one
under the DMCA).

It should be noted that an exploit may or may not be automated; important
parts or the entirety of it may be a recipe for user action. Moreover, exploit
computations may require additional physical conditions to succeed, e.g., wrong
voltage, exposure to heat, or light. An exploit may also depend on a heavy or
varying CPU load, or the ability to create such load on the targeted system, e.g.,
to create a side channel or a race condition. Such manipulations, dating back
to MLS covert channel concerns, are gaining renewed relevance in cloud envi-
ronments. For lack of space we do not further discuss such scenarios, but note
that they would easily fall under any broad enough prohibitions of unexpected
computation that would target software-only exploits.

In the common experience of software and hardware engineers, deviations
from expected execution quickly bring the system into a corrupted, inconsistent
state, in which it violates one of the hardware-enforced limits and either crashes
or is terminated by some monitoring component. An exploit, however, takes
care to minimize corruption and restore consistency, and controls the execution
so that no fatal violations occur, as if the target was operating normally. In
short, the exploit acts as a new program for the target – one that its original en-
gineers would consider impossible or really strange, but an effective and reliably
executing one nonetheless.

The fact that an exploit acts as a program for the target is extremely
significant, and here is why. Attacking exploits as a general phenomenon can
only be done by attacking unexpected or unintended computation brought about
by programming a computer by non-standard or unanticipated means, because
such computation is what all these different exploitation scenarios have in com-
mon. However, taking the view that it is illegal to either divert control within a
program from its intended paths or prevent it from crashing after an error condi-
tion in it has been triggered is clearly over-reaching, because bona-fide runtime
patching, error recovery, and debugging depend on the exact same techniques.
Outlawing particular ways of triggering program errors would be even worse,
because testing depends on them. In short, attempting to outlaw exploits as a
computing phenomenon will have broad repercussions to the fundamental prac-
tices on which the hope of trustworthy programming depends; ironically, it will
lead to programs that are harder to debug, test, compose, and understand.

In the end, as we try to find a common definition to fit all exploits, we are

4



left with the escape from the platform’s intended or expected limitations.

2.3 Limitations and escapes, a developer’s view

When securing a system, its developer, vendor, or operator may rely on existing
or assumed properties of its underlying software or hardware blocks, such as
the programming environment’s language and runtime safety properties (e.g.,
type safety, memory management features, etc.), OS features (e.g., separation
of userland and kernel contexts, process isolation), chipset protection bits and
fuses. The developer or vendor may also deliberately limit access to the system’s
functionality or programmability, e.g., by “jailing” third-party development or
hiding programmable interfaces from it, allowing only signed code to load, and
so on. A vendor’s security model may be tied to its business model more or less
closely and dictate the nature of limitations from which an exploit demonstrates
both the possibility and mechanism of escaping.

From a developer’s or vendor’s point of view, exploitation is any undesirable
execution in a software product that they did not expect to occur – whether
it is related to undesirable modifications of the product, unlocking extra func-
tionality, circumvention of a DRM scheme or some other intentional limitation,
unintended instrumentation, reverse engineering – or is a larger security issue
that should lead to rethinking the platform’s design for users to be able to trust
it. Arming software vendors or owners with legal tools and theories to suppress
unintended programming of their products will likely have chilling effects be-
yond the infamous anti-circumvention provisions of the DMCA and is unlikely
to improve actual security of products.

Whereas some escapes from the system’s limitations merely expose an engi-
neering oversight, fixable in the next product, others – incidentally, those that
push the state of the art in exploitation and receive accolades at security con-
ferences such as BlackHat and Defcon – tell us more about the platform than
any vendor’s documentation or academic model. These escapes typically ex-
pose false assumptions of what computation is and isn’t possible to achieve on
a platform, engineering misconceptions that may then take up to a decade to
correct provided significant, dedicated vendor effort.

Convincing the vendor that any given problem is serious or possibly a matter
of faulty design cannot be accomplished with a one-person one-off (“works on
my computer”) proof of concept, since any single bug can be papered over and
declared fixed, merely breaking the proof of concept without understanding its
larger implications. The exploitation technique needs to mature and become
known and reproducible. A body of knowledge and labor are needed to expose
the fact that the problem is general.

It is easy to blame developers for being slow to fix problems as they wait for
more evidence of the problems’ generality and not react to proofs of concept, but
they could be said to merely follow the evidence-based approach, where repro-
ducibility of results and accumulation of evidence take their time. For example,
faced with mounting evidence, Microsoft in 2002 established its “Trustworthy
Computing” initiative, hired prominent vulnerability researchers, and eventu-

5



ally incorporated defenses into products. Notably, many of these defenses (e.g.,
DEP and ASLR) were first prototyped in hacker research as far back as 1990s
(in particular, by pioneering hacker projects such as PaX and OpenWall), and
– notably – co-evolved with exploitation techniques. Even more notably, the
proper understanding of these techniques’ scope and applicability by industry
only emerged eventually, guided, yet again, by exploitation developments. For
example, when first introduced in 2004 Windows XP Service Pack 2, DEP was
described as protection against “buffer overflows”, even though exploitation of
this type of vulnerability that did not involve any executable payload has been
known since 1997; ASLR features were later brought in to partially address
it. Now these lessons learned from DEP and ASLR inform the design of every
modern OS and have become the de-facto industry standard, transcending a
particular vendor or platform – thanks to continuing evolution and generaliza-
tion of exploitation.

The above example shows the importance of free co-evolution of exploitation
and defense, in which exploitation must be free to attract resources and talent.
Limiting exploitation will not improve security, but rather help preserve the
narrow, pigeonholed view of flaws, leaving them with fixes that do not fully
address the underlying problems.

Neither do all problems that exploits expose represent mere engineering chal-
lenges. To see this, we next take a look at computer science theory behind the
phenomenon of exploitation.

3 Exploitation and Theoretical Computer Sci-
ence

While classic computer science concerned itself with answering the question
of which problems could and could not be solved with a computer (including
which behaviors could and could not be programmed), hacker research pursued
the same questions with a different emphasis: an empirical study of what actual
physical systems could and could not be made to do. Exploitation has been
the tool of this research and produced results that are moving us forward to
computers we may eventually be able to trust.2 Interfering with this research
now may rob us of a future theoretic generalization of these results.

State-of-the-art exploitation techniques of today will be key case studies for
computer security formalisms years from now. Today’s academic research ef-
forts in abstracting exploitation techniques, automatic finding of vulnerabilities,
and checking exploitability of bugs are typically informed not by the latest ad-
vances in exploit practice, but rather by exploit techniques that already reached
maturity and have sufficiently clearly described in tutorials suitable for the gen-
eral security community. The delay is not surprising and is partially due to
the development of such tutorials being a non-trivial and time-consuming task,

2I am indebted to Felix ’FX’ Lindner for the description of the practical essence of InfoSec
as “working towards computers we can finally trust”.

6



especially considering the difference between the classic curricula and exploiter
experience.

One important example of this eventual generalization of exploit techniques
initially overlooked as ad-hoc is “Return Oriented Programming” (ROP, see [7]
for the historical account and references). Presented to academic audiences in
2007-2008, ROP changed the dominant academic view of exploitation from ad-
hoc slipping of “malicious code” to the realization that exploitation involved
complex programming models that manipulated only the target’s own code and
needed none introduced from the outside. This change was brought about by
Shacham et al. demonstrating that exploit’s Turing completeness in a typical
target environment could be achieved without code injection. An important
innovation of this work was treating the phenomenon of exploitation as a com-
putational one, and using computation theory terms to characterize its power.
However, exploitation techniques involved were known and understood as suit-
able for generic target programming in the hacker community since at least
1997-2001, with detailed and general case studies published in 2000-2001. Thus
accumulation of exploit case studies led to one of the most important paradigm
changes in mainline academic computer security research: the change of the
threat model, from “malicious code” to “malicious computation” – a crucial
(and much overdue) step in understanding the nature of insecurity and improv-
ing defense.

Of course, generalization and formalisms take time; moving beyond theory,
constructing reliable access to the extra system/computation state is a hard
engineering task, made harder by new system defense techniques. Restricting
the sum of exploitation knowledge and effort now will hurt scientific insight
years into the future.

4 Exploits: the engineering view

Exploitation depends on mapping out the actual limits on computation on a tar-
geted system and fitting in unexpected computation within these limits. Clearly,
exploit programmers must develop an intimate knowledge of the system’s inter-
nals and architecture – and indeed, Phrack articles double as condensed intro-
ductions to most features of modern OS and programming languages.3

Thus exploit programming is a deeply structured engineering activity. In
particular, each new exploitation technique includes at least two major engi-
neering tasks:

(a) discovering and constructing a programming model based on the target
system’s mechanisms, features, and bugs, and

(b) constructing a reliable composition of the exploit program with its host
system.

3At Dartmouth, we’ve been using them as assigned reading in advanced courses; for details
and papers see http://hackercurriculum.org/.

7



The first task is usually described as distilling the effects of a bug that can be
reliably triggered with crafted inputs to a controllable minimum, a primitive.
Together, primitives that read the exploit’s crafted data play a role similar
to that of a virtual machine’s implementation of its pseudo-assembly bytecode
instructions, while the crafted data act as a compiled bytecode program for
that machine. Exploiters’ collective experience of finding and programming
such environments within systems poses most interesting software engineering
research questions – what design principles should guide future systems that
wouldn’t lend themselves to such manipulation?4

Exploitation is the evolutionary force that exposes and – when vendors and
engineers are forced to pay attention – kills software designs too amenable to
exploitation. It is clear to many security practitioners that without continued
co-evolution of exploitation techniques and defensive designs these questions
will not be properly answered.

Once the promising bugs have been located, and a programming model is
constructed, exploiter programmer’s task shifts to locating all relevant system
data objects and modifying them to allow the unexpected computation to run,
while keeping other code from faulting or crashing on modified data. Essentially,
these stages of the exploit bring in their own custom “linkers” and “loaders”,
which help compose the exploit’s computation with the main system, or use the
system’s own symbol information and dynamic linking mechanisms – producing
the finest descriptions of these mechanisms in the process.

The composition step cannot be skipped and cannot be replaced with some
“thought experiment.” Whether the needed compositional description of the
target relative to the exploit execution model is obtained by static analysis of
source code or binary, by dynamic analysis using such techniques as taint prop-
agation, by reverse engineering, or by a combination of these, this is the most
expensive part of exploit development. For example, in kernel exploitation [6, 8]
the parts that deal with such composition dominate those that deal with the
original vulnerability in both relative size and complexity.

Here we come to one of the most damaging effects of would-be
exploit regulation on the future of security. In presence of modern OS
defensive measures, the composition task presents considerable challenges, con-
sumes the most effort, and provides the crucial evidence that the exploit is
effective and does in fact contribute to the sum of knowledge about the target.
This evidence is critical in convincing security-conscious vendor to take action,
and, eventually, for having academic researchers to take note of the phenomenon
– in the same way that a “thought experiment” differs from an actual physics
experiment demonstrating a new phenomenon. This analogy is even more rel-
evant now that the cost of a physics experiment in qualified labor and tools is
becoming comparable to that of an exploit against a modern system. Suppress-
ing the funding of exploit development will destroy the distinguisher between
the theoretically possible but unlikely, and feasible, an actually plausible threat.

4We approach these questions in [10, 1].

8



5 The surveillance argument

In some recent arguments, exploits have been described as a vehicle for gov-
ernment surveillance. However, surveillance software (or commercial spyware)
should not to be confused with exploits. Such software might (or might not) use
exploits for installing itself, but it may also be detected by integrity-watching
methods informed by exploitation research. Installation of the very integrity
protections that can detect surveillance agents may require escaping from the
vendor limitations on a device – that is, exploitation. For example, retrofitting
the BlackICE Defender personal firewall to Windows involved an ostensible “ex-
ploit” and legal threats from Microsoft [4]; many other examples exist.

Although exploit abuse by governments is possible, depicting it as a prime
outcome of exploit development ignores both the nature of the exploit as a com-
puting phenomenon and the fact that the bulk of Internet surveillance occurs
without the use of exploits – but with full architectural support from ISPs and
networking vendors, due to the CALEA and subsequent legislation that man-
dated the embedding of “lawful interception” functionality into infrastructure-
class equipment. Such mandated network-level support is by design invisible
to the end-users, whereas exploitation of their diverse personal devices incurs
considerable risks of failure or detection, as exploit programmers well know.

Moreover, even for on-device surveillance software law enforcement has a
simpler path to surreptitious installation: subverting the platform vendor’s pri-
mary trust mechanisms, such as code or site signing certificates (e.g., the Fin-
Fisher spyware). Dedicated, costly development of a remote exploitation “0
day” is pointless when physical access by government agents can be trivially
obtained; mass deployment of “0 day” negates the advantage of it being actual
“0 day”.

Simply put, the connection between exploits and surveillance is weak; the
kinds of systems engineering involved in exploitation and effective surveillance
are largely orthogonal. Ironically, development of methods to expose and an-
alyze surveillance software (such as the German government’s Bundestrojan,
exposed in cases far beyond its original mission of terrorism-related investiga-
tion and analyzed by the Chaos Computer Club) may be curtailed by a “war on
unauthorized computation”. User modifications to commodity devices to make
them less surveillance-prone, such as jailbreaking of smart phones (in which
exploits played a prominent role) may suffer similar fate.

6 Conclusions

The unifying technical reality of exploits is unexpected computation and unap-
proved composition that a computing system can be made to carry out by feeding
it crafted inputs. An actionable legal notion of a class of illegal computations
and illegal compositions will inevitably lead to a totalitarian take on computing:
the necessity to preemptively justify the legality of computation performed on a
system, a presumption that anything that is not explicitly permitted likely falls

9



into a prohibited category. For the sake of both keeping general “unapproved”
programming activities free, and for the free scientific inquiry into actual soft-
ware trustworthiness, we must avoid this trap – which may be the most subtle
and, considering the good intentions currently driving it – the most dangerous
yet.

Acknowledgments

The authors are indebted to Felix “FX” Lindner for the description of the prac-
tical essence of InfoSec as working towards computers we can finally trust.” The
authors would also like to thank Julien Vanegue, the grugq, and other security
researchers for many helpful discussions of exploitation principles and examples.

Appendix A: Exploits from the point of view of
Theory of Computation

Computer science studies the hard limits on what is computable (both in gen-
eral and under specific limitations on resources or knowledge) by reducing the
physical nature of the computing machines to simpler model machines that are
more amenable to formal proofs. The tasks of interest are then translated as
inputs for these machines to consume; traditionally represented as a “tape” on
which the inputs are encoded with symbols of some alphabet.

The most famous and powerful of these models is the Turing machine; there
are many other more limited models such as finite state machines, pushdown
automata of various kinds, and so on, progressively less capable in the classes
of computational tasks they can perform. For tasks provably beyond a model’s
power, any solution claiming to be general will in fact fail on some input; for real
systems this failure will translate into a bug, a failure to validate an expected
condition – which may be exploitable.

Inputs consumed from the tape cause transitions in the internal state of the
model, mirrored in its physical implementation as changes of variable values in
a code module, or state of gates, or memory cells in a chip. Since exploits act
as crafted input that drives the target system, the “impossible” computations
they cause can and should be understood in the same terms (see [2, 3, 9]).

Existence of exploits indicates that the actual logical (in case of software) or
physical (in case of hardware) target possesses additional state and transitions
that are triggered by crafted exploit inputs. What engineers think of as their
system is actually submerged in a larger system, with hidden state and tran-
sitions partially revealed by the exploit and lending the exploit its additional
power to escape its limitations.

For software on a general-purpose computer this observation is, in a sense,
trivial, since such computers have the power of Turing machines. However, this
power is only gained by the exploit via a bug, a feature, or, more commonly
these days, by a combination of features in the target. Famous exploits make

10



a point of describing and then constructing a realistically minimal execution
environment needed, which is non-trivial. Not surprisingly, finding whether a
confirmed bug is exploitable is a hot research area.

Thus, from the theory point of view, exploits are programs for hidden ma-
chines immersed in real-world computing environments. Exploits expose dif-
ferences between the target’s presumed execution model and reality, in which
computations deemed impossible by its security model actually exist. Describ-
ing and creating them is both programming and systems analysis; continued
success of exploit programming schools suggests they follow a successful and
teachable methodology.

Although this methodology and classic computer science concerned with
limits of computation are currently far apart, this gap should be bridged if we are
to eventually create more trustworthy computers. Needless to say, restrictions
on what is essentially an empirical study of programming models’ limits may be
as devastating as restrictions on any other activity accumulating an initial store
of facts for the development of a scientific theory; imagine the HMS Beagle’s
voyage curtailed and never delivering its collection of specimens.

References

[1] Sergey Bratus, Julian Bangert, Alexandar Gabrovsky, Anna Shubina,
Daniel Bilar, and Michael E. Locasto. Composition patterns of hacking.
In Proceedings of the 1st International Workshop on Cyber Patterns, pages
80–85, Abingdon, Oxfordshire, UK, July 2012.

[2] Sergey Bratus, Michael E. Locasto, Meredith L. Patterson, Len Sassaman,
and Anna Shubina. Exploit programming: from buffer overflows to “weird
machines” and theory of computation. ;login:, December 2011.

[3] Thomas Dullien. Exploitation and state machines: Programming the
”weird machine”, revisited. In Infiltrate Conference, Apr 2011.

[4] Robert Graham. The Debate Over Evil Code. http://erratasec.

blogspot.com/2013/03/the-debate-over-evil-code.html, March
2013.

[5] Orin S. Kerr. Vagueness challenges to the Computer Fraud and Abuse Act.
Minnesota Law Review, 2010.

[6] Alfredo Ortega and Gerardo Richarte. OpenBSD remote exploit. BlackHat
2007, June 2007.

[7] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. Return-
Oriented Programming: Systems, Languages, and Applications, 2009.

[8] Dan Rosenberg. Anatomy of a remote kernel exploit. http://

vulnfactory.org/research/defcon-remote.pdf.

11



[9] Len Sassaman, Meredith L. Patterson, and Sergey Bratus. The science of
insecurity. 28th Chaos Communication Congress, Dec 2011.

[10] Len Sassaman, Meredith L. Patterson, Sergey Bratus, Michael E. Locasto,
and Anna Shubina. Security Applications of Formal Language Theory.
Technical Report TR2011-709, Dartmouth College, 2011.

12


