
Pastures: Towards Usable Security Policy
Engineering

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith

Institute for Security Technology Studies
Department of Computer Science

Dartmouth College

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



A practitioner’s look at the field

Powerful formalisms exist:
Older: “The Orange Book”, Bell–LaPadula, Biba, ... (MLS)
Newer: FLASK, type enforcement (SELinux)

But:

Admins, app writers (even vendors) appear to shun them.
Security-conscious practitioners create and use other
solutions.

We try to:

1 Review existing design space from the usability viewpoint.
2 Formalize ideas already in use.
3 Combine them in a new approach to a set of more usable

policy primitives.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



At a first glance

Available high assurance systems have large and complex
policies.

Hard to write and maintain
Crafted by trial and error

Example
SELinux in Fedora Core 3:

Policy makes use of M4 macros
2000+ lines in core M4 macro base

Mediates 160+ domains (∼ daemons and applications),
145 operations (∼ syscalls)
227275 lines in the strict policy

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



A 10,000 miles review of SELinux internals (1)

Each process and each resource (file) operated on has a
domain or type label.

task struct, inode, super block structs have a
(void *) security member that points to respective
SELinux policy structures.

System call hooks (LSM) check the process and file labels
for each mediated operation, and deny access unless
permitted by the policy:

allow sshd t sshd key t:file {getattr read};
allow ssh keygen t urandom device t:chr file
{getattr read};

All objects in the root filesystem are pre-labeled
/etc/ssh/ssh host key --
system u:object r:sshd key t

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



A 10,000 miles review of SELinux internals (2)

New files and processes are assigned labels based on the
labels of:

for files, parent directory and creating process,
file type auto trans(ssh keygen t, etc t,
sshd key t, file)

for processes, parent process and executable file,
daemon base domain(ssh keygen)→
type transition sysadm t
ssh keygen exec t:process ssh keygen t;

Permitted operations can be specified in terms of type
attributes (sets of labels, e.g., sysadmfile.)

type sshd key t, file type, sysadmfile;
allow sysadm t sysadmfile:file { getattr
read write create unlink ... relabelfrom
relabelto };

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



The ssh-keygen example

ssh keygen t is the type of the ssh-keygen program when run by
the admin to generate the host key or at install time.

file contexts/program/ssh.fc:
/usr/bin/ssh-keygen -- system u:object r:ssh keygen exec t

domains/program/ssh.te → policy.conf:
type ssh keygen exec t, file type, sysadmfile, exec type;

allow initrc t ssh keygen exec t:file {read { getattr execute }};
allow sysadm t ssh keygen exec t:file {read { getattr execute }};
allow ssh keygen t ssh keygen exec t:file entrypoint;

type transition initrc t ssh keygen exec t:process ssh keygen t;
type transition sysadm t ssh keygen exec t:process ssh keygen t;

allow ssh keygen t ssh keygen exec t:file {read getattr lock
execute ioctl};
...

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Observations

SELinux case study
One policy language and mechanism for

1 Access control, Integrity, Confidentiality
2 Host intrusion alerts
3 Inevitable admin exceptions & delegation

Using one language for all goals causes policy bloat: good
expressive power for some goals, not enough for others.
Structure imposed by M4 macros is implicit.
Flow properties are not “first class” language objects and
must be derived (Apol & other Tresys tools, SLAT, PAL,
etc.)

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Audit2allow

A “first cut” at a type description:
A tool and approach to generating new types:

1 Run application in non-enforcing mode, record accesses
that would be denied.

2 Generate policy from the log trail by allowing relevant
accesses.

3 Repeat until all legitimate code paths are covered.

Problems:
Friendly network: too little diversity.
Real network: what is the average time to attack?

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Policy complexity vs. admin concerns

Not all profile violations are of the same concern;
...but all may kill the offending process.
Again, all actually legitimate accesses will need to be
explicitly allowed.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Policy complexity vs. admin concerns

Not all profile violations are of the same concern;
...but all may kill the offending process.
Again, all actually legitimate accesses will need to be
explicitly allowed.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Policy complexity vs. admin concerns

Not all profile violations are of the same concern;
...but all may kill the offending process.
Again, all actually legitimate accesses will need to be
explicitly allowed.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Observations summarized

Principal usability obstacles:
Any degree of integrity protection requires a large and
complex policy that profiles all allowed accesses.
Policy mimics software’s execution profile, and becomes as
complex as software itself (but without software
engineering tools).
No protection before profiles are compiled.

The reason for these inconveniences is fundamental:

The “Least Privilege” principle
Deny all accesses and operations unless explicitly allowed by
the policy.

... but is it really a security goal in and of itself?

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Questions of goals and trade-offs

In an actual operational environment:
1 Can the cost of developing an access profile for a new

application or daemon that needs be installed be somehow
postponed without compromising integrity of the rest of the
system?

2 While a policy addition is still being “debugged”, how bad
are crashes due to a legitimate code path not covered by
the policy?

3 VMs are conceptually simple, but where is the trade-off
between that simplicity and maintaining multiple OS
instances?

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Alternatives?

Popular practical solutions:
1 BSD jails (“chroot on steroids” + private IP address)
2 Linux Vserver (separate non-communicating process

contexts, separate virtual filesystems)
3 Solaris 10 Zones (no sharing by default, high privilege

granularity, resource access can be inherited)
4 OS emulation approaches: User Mode Linux (UML), Xen,

etc.

The lesson: Usability ∼ Virtualization
Simpler management, less attention to partition insides.
Flows between partitions are absent by default.
Integrity is provided by separation rather than by profiling.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Vserver review (1)

At a glance

One kernel: no virtual machines, no OS emulation.
∼ BSD Jails, ∼ Solaris 10 Zones.
Security through by-default isolation.

Processes
Processes are assigned to Security Contexts and labeled
with a context ID (XID) label (added to task struct and
elsewhere).
These is no communication between processes in different
contexts – separation enforced by system call hooks.
The system starts in Host context (XID = 1).
Each context has its own root filesystem (via chroot +
extra anti-escaping measures. But: see “Unification”.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Vserver review (2)

File systems
Each context has its own FS root.
Inodes store the context ID (XID) of the creating context
Inode access checked against XID (except for the special
Spectator context).
No pre-labeling: untagged files are OK to access, modified
files get the creator’s XID.

But:

Maintaining separate filesystems is expensive:
Library and utility upgrades,
Security updates,
Matching configurations between partitions.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Vserver Unification

“A truly great idea”

Share files between contexts when they are unlikely to
change (libraries, standard binaries)

Reduces admin effort
Reduces inode caches and memory mappings.

The contexts’ filesystems start out populated with special
type of hard links: immutable but unlink-able.
Once changed from within and context, the link is removed
and replaced with a new file, private to a context.

Combines the benefits of:
a single FS/namespace for admin tasks,
keeps file changes private to a context.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Observations

We see a pattern in the use of virtualization-based solutions:

1 Isolation and separation by default
2 The de-facto access policy exists as exceptions to (1):

Some files can be shared between Vserver contexts
Some host filesystems can be mounted “live” from inside a
VM (UML, BSD jails)

3 A unified admin view of partitions’ filesystems saves effort.

Not all would-be policy violations are of the same concern
w.r.t. the actual security goals
It is often preferable to let a process continue after an
access violation rather than kill it outright. (Liang, Sekar,
ACSAC ’03, “Alcatraz”)

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Our approach

Copy-on-write (COW) as a fundamental policy primitive.
Protected processes run in isolated “pastures”.

1 All accesses not explicitly allowed or denied by a policy
statement result in COW duplication of the accessed
object, rather than a denial.

2 Sharing objects between pastures becomes a basic policy
statement type.

Advantages:
New progams can be introduced without audit2allow risks.
Write flow properties are specified rather than derived.
Less crashes: EACCESS errors fatal under SELinux but
not critical to security goals are no longer fatal.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



What’s in a name?

We thought of calling our compartments “COW jails”...

But that sounds cruel...

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



What’s in a name?

We thought of calling our compartments “COW jails”...

So we called them “pastures” instead ;-)

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



“COW pastures” (1)

The policy specifies that certain processes are to be placed in a
“pasture”.
For a process placed in a pasture, any file modifications are
private by default. Any write-type access results in creating a
private copy:

   

Global “Pasture”

Private “Pasture”

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



“COW pastures” (2)

If processes in different “pastures” need to share resources, the
policy explicitly specifies the allowed sharing.
References from sharing pastures will resolve to the same
underlying object. This object may be global or private to those
pastures:

   

Global “Pasture”

Private “Pasture”

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Policy elements

Unidirectional write-flow
G → A: changes made to the namespace of pasture G by
processes running in G are visible to processes in the pasture
A, but not vice versa.

Example
Introducing a new server/application into a set of trusted ones.

Bidirectional write-flow
A ↔ B on file spec: specified files are shared between
pastures A and B.

Example
Servers sharing access to a database or filesystem.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Examples

Placing processes into pastures:
/usr/sbin/httpd => A
/usr/sbin/ftpd => A

/opt/matlab => D
/opt/lic-server => D

Sharing files:
A <-> B:
/path/to/file1
/path/to/file2

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Prototype implementation

A patch for the Linux 2.6.12 kernel.
Modifications to the ext2 filesystem.
Uses /proc pseudo-filesystem for control:

/proc/pastures/ – active pastures
/proc/<PID>/pasture – pasture ID
/proc/pastures/<pasture id>/cows/ – links to COW-ed files

Write-flows only.

Future work
Creating parametrized pastures “on the fly” (by user ID,
sudoers-style aliasing)
Read flow control policy primitives.
Support for other filesystems?
LSM integration?

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



References
LIDS: The linux intrusion detection system, http://www.lids.org/.
Linux vserver project, http://linux-vserver.org/paper.
L. Badger, D. F. Sterne, D. L. Sherman, and K. M. Walker.
A domain and type enforcement UNIX prototype.
Computing Systems, 9(1):47–83, 1996.
K.-H. Baek and S. W. Smith.
Preventing Theft of Quality of Service on Open Platforms.
In IEEE/CREATE-NET SecQoS 2005, September 2005.
W. Boebert.
The lock demonstration.
In Proceedings of the 11th National Computer Security Conference, 1988.
J. Dike.
User-mode linux.
P.-H. Kamp and R. N. M. Watson.
Jails: Confining the omnipotent root.
P.-H. Kamp and R. N. M. Watson.
Building systems to be shared securely.
ACM Queue, 2(5), July/August 2004.
D. Langille.
Virtualization with freebsd jails, 2006.
Z. Liang, V. Venkatakrishnan, and R. Sekar.
Isolated program execution: An application transparent approach for executing untrusted programs.
In Proceedings of the Annual Computer Security Applications Conference (ACSAC), December 2003.
P. Loscocco and S. Smalley.
Integrating flexible support for security policies into the linux operating system.
In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference (FREENIX ’01). The
USENIX Association, 2001.
D. Price and A. Tucker.
Solaris zones: Operating system support for consolidating commercial workloads.
In Proceedings of the 18th Large Installation Systems Administration Conference (USENIX LISA ’04). The
USENIX Association, 2004.
A. Tucker and D. Comay.
Solaris zones: Operating system support for server consolidation.
In USENIX 3rd Virtual Machine Research and Technology Symposium, 2004.
C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman.
Linux security modules: General security support for the linux kernel.
In Proceedings of the 11th USENIX Security Symposium, pages 17–31, Berkeley, CA, USA, 2002. USENIX
Association.
M. Zec.
Implementing a clonable network stack in the freebsd kernel.

In Proceedings of the USENIX 2003 Annual Technical Conference, FREENIX Track, pages 137–150. The

USENIX Association, 2003.

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Projects that provided the details

SELinux and the NSA Sample policies + FC3 policies
Linux Vserver, http://www.linux-vserver.org
BSD Jails, http://docs.freebsd.org/44doc/papers/jail/
Jeff Dike, User Mode Linux, http://user-mode-linux.sf.net
Liang, Sekar, Alcatraz (a ptrace-based private sandbox for
an application).
Solaris 10 Zones,
http://www.sun.com/bigadmin/content/zones/
. . .

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering



Questions?

Thank you!

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith Pastures: Towards Usable Security Policy Engineering


