
"Sections are types, linking is policy"

Intra-Process Memory Protection
for Applications on ARM and
x86: Leveraging the ELF ABI

Sergey Bratus
Julian Bangert
Maxwell Koo

The Problem

❖ A buggy library can read or corrupt any of your process
memory

❖ "An image parser just stole my private keys"

"What's your angle?"

❖ Software is already split into parts

❖ Libraries, compilation units, functions, ...

❖ Their interactions tell a lot about them

❖ Linkers/binary toolchains already know a lot about
intended & unintended interactions between these parts

❖ But: runtime discards all this information, wastefully

With ELFbac, you can describe  
how parts of your application interact

(via ELF metadata)

"Sections are types, linking is policy"

Key architectural idea
❖ ELF sections describe identities & layout of program's

code & data parts in memory

❖ Great for policy, but discarded by loaders :(

❖ Kernel's virtual memory structures describe layout of
process' parts in memory

❖ Intent (r?,w?,x?) is enforced via PTEs & page faults

❖ Connect ELF structs -> VM structs via a "non-forgetful"
loader! Enforce intended code & data interaction

Outline
❖ Why use ELF ABI for policy

❖ Unforgetful loader for intra-memory ACLs

❖ Case studies:

❖ OpenSSH policy vs CVE-2016-0777 (roaming bug)

❖ ICS protocol proxy

❖ Internals

❖ Linux x86 prototype (Julian)

❖ ARM prototype (Max)

Background/Motivation

❖ File-level policies (e.g., SELinux) fail to capture what happens
inside a process (cf. Heartbleed, etc.)

❖ CFI, DFI, SFI, etc. are good mitigations, but they aren't policy:
they don't describe intended operation of code

❖ ELF ABI has plenty of structure to encode intent of a process'
parts: libraries, code & data sections

❖ Already supported by the GCC toolchain!

❖ Policy is easy to create, intuitive for C/C++ programmers

Policy vs mitigations
❖ Both aim to block unintended execution (exploits)

❖ Mitigations attempt to derive intent

❖ E.g., no calls into middles of functions, no returns to non-
call sites, etc.

❖ Policy attempts to express intent explicitly

❖ E.g., no execution from data areas, no syscalls beyond a
whitelist, no access to files not properly labeled

❖ Policy should be relevant & concise (or else it's ignored)

Policy wish list
❖ Relevance: describe what matters

❖ E.g.: SELinux is a "bag of permissions" on file ops.
Can't describe order of ops, number of ops, memory
accesses, any parts of a process

❖ Once your key is in memory, its file label is irrelevant

❖ Brevity: describe only what matters

❖ E.g.: SELinux makes you describe all file ops; you
need tools to compute allowed data flows

What matters?
❖ Composition: a process is no longer "a program"; it's also

many different components & libraries, all in one space,
but with very different purposes & intents

❖ Order of things: a process has phases, which have
different purposes & intents

❖ Exclusive relationships: pieces of code and data have
exclusive relationships by function & intent

❖ "This is my data, only I should be using it"

Process phases

❖ "Phase" ~ code unit ~ EIP range ~ memory section

Access relationships are key to
programmer intent

❖ Unit semantics ~ Explicit data flows (cf. qmail)

An inspiration: ELF RTLD

John Levine,  
"Linkers & loaders"

An inspiration: PaX/GrSec UDEREF

User

Kernel
Syscall

Args
Poisoned Data

Driver

Checks

UDEREF prevents kernel code from accessing userland data
it wasn't meant to access

Call gate

 http://cr.yp.to/qmail/qmailsec-20071101.pdf

"Some thoughts on security after ten years
of qmail", D.J. Bernstein, 2007

❖ Used process isolation as security boundaries

❖ Split functionality into many per-process pieces

❖ Enforced explicit data flow via process isolation

❖ "Least privilege was a distraction, but isolation worked"

Back to our example

SSL initialization SSL libpng app logic

SSL keys Input buffer Output
buffer

RW R RW R W RW

"Sections are types, linking is policy"

❖ The idea of a type is "objects with common operations"

❖ Methods of a class in OOP, typeclasses in FP, etc.

❖ For data sections, their dedicated code sections are their
operations

❖ It's dual: data accessed by code tells much about code

❖ Linkers collect similar sections into contiguous pieces

❖ Linkers see much info, but discard it all

Enforcing: Unforgetful loader

❖ Modern OS loaders discard section information

❖ New architecture:

❖ 'Unforgetful loader' preserves section identity after
loading

❖ Enforcement scheme for intent-level semantics

❖ Better tools to capture semantics in ABI

Motivating Example

Example policies
❖ Web application decompresses a PNG file

❖ Mental model

.PNG file

Bitmap

libpng

What attackers see

malicious .PNG

Bitmap with
leaked data

.PNG file

private key

libpng
w/ bugs

no-longer-private
key

Or

malicious .PNG

Bitmap overwrites
critical data

.PNG file, with
exploit

libpng
w/ bugs

Authorized keys

Mapping it into the ABI

malicious .PNG

private keylibssl .data

bitmap

libpng .input

libpng .output

• Easy to introduce new sections

• Each code segment can get
different permissions

• Only libssl.text can access
libssl.data

• libpng.text can only access
libpng.input and libpng.output

• And libpng.input can only be
read by libpng.

ELFbac Policy Case Studies

I. OpenSSH

OpenSSH policy
❖ OpenSSH attacked via crafted inputs

❖ GOBBLES pre-auth RCE 2002 -- CVE-2016-077{7,8}

❖ OpenSSH introduced the original privilege drop as a
policy primitive

❖ "If the process asks for a privileged op after this point,
it's no longer trustworthy; kill it"

❖ But accesses to (a) non-raw data by a parser (b) raw data
beyond the parser are also privilege!

OpenSSH policy at a glance

OpenSSH demo
ELFbac vs CVE-2016-0777

ELFbac for OpenSSH
❖ Policies for both the OpenSSH client and server

❖ Isolate portions of OpenSSH responsible for crypto/key
management from those responsible for processing & parsing
packets

❖ Create separate sections for sensitive data blobs, allowing for
finer-grained access control

❖ Control access to libraries used by OpenSSH based on where used

❖ Prevent direct leaking of sensitive data like private keys from, e.g.,
CVE-2016-0777 (roaming vuln)

❖ Separate heaps for dynamic allocations, with specific access
permissions across process phase boundaries

II. ICS/SCADA proxy

ELFbac for SCADA/ICS
❖ DNP3 is a complex ICS protocol; prone to parser errors

❖ S4x14: "Robus Master Serial Killer", Crain & Sistrunk

❖ Only a small subset of the protocol is used on any single
device. Whitelisting this syntax is natural.

❖ A filtering proxy is a DNP3 device's best friend

❖ "Exhaustive syntactic inspection": langsec.org/dnp3/

❖ ELFbac policy: isolate the parser from the rest of the app

Parser isolation

❖ Raw data is (likely) poison; parsing code is the riskiest
part of the app & its only defense

❖ Parser must be separated from the rest of the code

❖ No other section touches raw input

❖ Parser touches no memory outside of its output area,
where it outputs checked, well-typed objects

❖ Input => Parser => Well-typed data => Processing code

Our ARM target

ICS proxy policy at a glance

Parser

Processor

ELFbac & Grsecurity/PaX for ARM
❖ We worked with the Grsecurity to integrate ELFbac on

ARM with Grsecurity for ICS hardening:

❖ Cohesive set of protections for ICS systems on ARM
❖ PAX_KERNEXEC, PAX_UDEREF, PAX_USERCOPY, PAX_CONSTIFY,

PAX_PAGEEXEC, PAX_ASLR, and PAX_MPROTECT

❖ Available from https://grsecurity.net/ics.php

❖ ELFbac + Grsecurity ICS tested with our DNP3 proxy on
a common industrial computer Moxa UC-8100, ARM v7
(Cortex-A8)

Implementation internals

Linux x86 prototype sketch
❖ Prototype on Linux via virtual memory system

❖ Each phase of execution (=policy-labeled code section) sees a
different subset of the address space (=labeled data sections)

❖ Traps handle phase transitions by changing CR3

❖ Each phase has its own page tables that cache part of the
address space, reusing existing TLB invalidation primitives.

❖ Use PCID on newer processors to reduce TLB misses

Life of a program:  
from ELF file to a process

Bridging the gap between ELF program metadata  
and kernel's virtual memory structs

ELF sections

libpng.so .init
...

libc.o
.text
.data

.text

program.o
.text
.data

ELF consists of sections:
❖ Code
❖ Data (RW/RO)
❖ GOT/PLT jump tables for

dynamic linking
❖ Metadata: Symbols, ...
❖ Can be controlled from C:  

 __section__(section_name)
❖ Flexible mechanism
❖ ~30 sections in typical file

Sections turn into segments

libpng.o .data
...

libc.o
.text
.data

.text

program.o
.text

.rodata

Linker combines sections & groups them into segments:

.text(program.o)
.text(libc)

.text(libpng)
.rodata

.data(program.o)
.data(libc)
.data(libc)
.bss (heap)

R_X

RW_

Only RWX bits enforced

How a process is set up
❖ Static linking:

❖ kernel (binfmt_elf.{c,ko}) reads segments

❖ calls mmap() for each segment

❖ jumps to the entry point

❖ Dynamic linking

❖ Kernel loads ld.so (as in the above)

❖ ld.so parses ELF file again (bugs happen here)

❖ ld.so opens shared libraries, mmaps and maintains .PLT/.GOT tables

❖ One mmap() call per segment

What the kernel does:

❖ Kernel:

❖ task_struct for each thread

❖ registers, execution context => state

❖ pid, uid, capabilities => identity of the process

❖ mm_struct for address space

task_struct thread_1 task_struct thread_2

mm_struct

task_struct thread_1 task_struct thread_2

mm_struct
mmap

FS
./foo

.text(program.o)
.text(libc)

.text(libpng)
.rodata

0x40000

.data(program.o)
.data(libc)

.data(libpng)
.bss (heap)

0x80000

vm_area_struct

Linked list of vm_area_structs
Points to file system or anonymous

memory structure

task_struct thread_1 task_struct thread_2

mm_struct
mmap

RB-tree

mm_rb

RB tree for faster lookups
LRU cache for even faster lookups

FS
./foo
FS

./foo

.text(program.o)
.text(libc)

.text(libpng)
.rodata

0x40000

.data(program.o)
.data(libc)

.data(libpng)
.bss (heap)

0x80000

vm_area_struct

What the CPU sees
mm_struct/CPU CR3

pud_t*[512]

pmd_t*[512]

PGD

pmd_t*[512] pmd_t*[512]

pte_t*[512] pte_t*[512] pmd_t*[512]

pte_t[512] pte[512] pte_t[512]

PUD

PMD

PTE
physical address + flag

All three structures have to be kept in sync

Caching

❖ Walking these structures on every memory access
would be prohibitively slow

❖ TLBs cache every level of this hierarchy

❖ Originally invalidated on reload

❖ Tagged TLBs (PCID on intel). ELFbac also had the first
PCID patch for linux. Transparent on AMD

Caches enforce policy!

❖ NX bit is seen as a mere mitigation

❖ Actually it is policy that express intent

❖ First implementations of NX used cache state (split TLB)
meant for performance to add semantics

❖ ELFbac does the same with TLBs and PCID

It's all about caching

❖ Each VM system layer is a cache

❖ And performs checks

❖ Checks get semantically less expressive as you get
closer to hardware

❖ ELFbac adds another layer of per-phase caching

❖ Allows us to enforce a semantically rich policy

Example: Page faults
❖ If the page table lookup fails, CPU calls the kernel

❖ Kernel looks for the vm_area_struct (rb_tree)

❖ Check: If not present, SIGSEGV

❖ Fill in page table, with added semantics

❖ Swap-in

❖ Copy-on-write

❖ Grow stacks

ELFbac execution model

❖ Old n-to-1 relationship:

❖ task_struct (n threads) <-> mm_struct (1 process)

❖ New n-to-m relationship:

❖ task_struct (n threads) <-> mm_struct (m ELFbac
phases)

❖ A lot of kernel code would have to change to update m
copies

Caching as a solution
❖ ELFbac states are subsets of the base address space

❖ Base address space still represented by mm

❖ Squint enough, and a subset is like a cache

❖ Only need invalidation instead of mutation

❖ Caches already have to be invalidated (TLB)

❖ Linux: mm_notifier plug-in API (virtualization)

ELFbac page fault handler

❖ If the access would fault on the base page tables

❖ Fall back to the old page fault handler

❖ Look up the address in ELFbac policy

❖ Move process to new phase if necessary

❖ Otherwise copy page table entry to allow future
accesses

What each part sees:

task_struct thread_1 task_struct thread_2

base
mm_struct

vm_area_struct

page tables

Rest of kernel :

elfbac policy

mm_struct
Authenticate

mm_struct
ProcessInput

page tables page tables

ELFbac:

CPU

Performance overheads
❖ NGINX benchmarked with a policy isolating all libraries from the

main process:

❖ Best case: around ~5% (AMD Opteron Piledriver)

❖ worst case: ~30% on some Intel platforms

❖ Too many state transitions on the hot path

❖ Policy must be adapted to the application structure

❖ Average ~15% when running on KVM

❖ KVM already incurs performance costs

❖ KVM optimizes virtual memory handling

Porting to embedded ARM
❖ Focused on compartmentalizing ELF binaries under

static linking

❖ Dynamic linking case supportable by creating an
ELFbac-aware ld.so, left to future work

❖ Policies generated from a JSON descriptor file

❖ tool produces both the linker script and the binary
policy

❖ Binary policy is packed into a special segment, loaded by
the kernel during ELF loading time

Internals of ARM port

❖ Page fault handler enforces state & transition rules

❖ Changed to accommodate simpler binary policy

❖ ARM ASIDs (tagged TLB) reduce overhead between
state transitions

❖ Essential to reduce overhead

Binary Rewriting Tools
❖ Storing policy in an ELF executable as a section requires

binary rewriting

❖ Made our own tool Mithril, currently only implemented
for ELF (github.com/jbangert/mithril)

❖ Translates binaries into a canonical form that is less
context-dependent and can be easily modified

❖ Tested on the entire Debian x86_64 archive, producing a
bootable system

❖ ~25GB of packages rewritten, 260 core hours on S3

Drawbacks and TODOs
❖ Significant performance tuning still outstanding

❖ Implement an ELFbac-aware malloc

❖ Methods for easy labeling of anonymous allocations

❖ Integration with system call policy mechanisms (e.g.
Capsicum)

❖ Provide rich policies for many standard libraries

❖ ELFbac is not a mitigation, it's a way to design
policies and resilient applications

ELFbac is a design style
❖ "Who cares? That's not how code gets written"

❖ Availability of enforcement mechanisms reshapes
programming practice

❖ C++ took over the world by making contracts (e.g.,
encapsulation) enforceable (weakly, at compile time)

❖ Non-enforceable designs are harder to adopt & check

❖ Only enforceable separation matters; ELFbac makes
program separation into units enforceable

Application design considerations
❖ "Separating concerns" is good engineering, but has limited

security pay-offs

❖ All concerns still live in the same address space

❖ Separating heaps without ELFbac has limited returns:

❖ Proximity obstacles to overflows/massaging, but still the
same address space, accessible by all code

❖ Mitigation, not policy

❖ With ELFbac, keeping marked, separate heaps becomes
policy: clear intent, enforced w.r.t. code units

Takeaway
❖ Per-process bags of permission are no longer a suitable

basis for security policy

❖ Instead, ABI-level memory objects at process runtime are
the sweet spot for policy

❖ Modern ABIs provide enough granularity to capture
programmers intent w.r.t. code and data units

❖ ELFbac: Intent-level semantics compatible with ABI,
standard build/binary tool chains

Policy Granularity: ABI is the Sweet Spot

ABI

Thank you

❖ http://elfbac.org/

❖ https://github.com/sergeybratus/elfbac-arm/

ABI

