
Editors: Patrick McDaniel, mcdaniel@cse.psu.edu | Sean W. Smith, sws@cs.dartmouth.edu

SECURE SYSTEMS

1540-7993/12/$31.00 © 2012 IEEE	 Copublished by the IEEE Computer and Reliability Societies	 March/April 2012� 87

A Patch for Postel’s
Robustness Principle
Len Sassaman | Katholieke Universiteit Leuven
Meredith L. Patterson | Red Lambda
Sergey Bratus | Dartmouth College

J on Postel’s Robustness Prin-
ciple—“Be conservative in

what you do, and liberal in what
you accept from others”—played
a fundamental role in how Inter-
net protocols were designed and
implemented. Its influence went
far beyond direct application by
Internet Engineering Task Force
(IETF) designers, as generations of
programmers learned from exam-
ples of the protocols and server
implementations it had shaped.

However, we argue that its mis-
interpretations were also responsi-
ble for the proliferation of Internet
insecurity. In particular, several
mistakes in interpreting Postel’s
principle lead to the opposite of
robustness—unmanageable inse-
curity. These misinterpretations,
although frequent, are subtle, and
recognizing them requires closely
examining fundamental concepts
of computation and exploitation
(or equivalent intuitions). By dis-
cussing them, we intend neither
an attack on the principle nor its
deconstruction, any more than a
patch on a useful program intends
to slight the program. Our inten-
tion is to present a view of protocol

design that helps avoid these mis-
takes and to “patch” the principle’s
common formulation to remove
the potential weakness that these
mistakes represent.

Robustness and
Internet Freedom
Postel’s principle acquired deep
philosophical and political signifi-
cance—discussed, for instance,
in Dan Geer’s groundbreaking
essay “Vulnerable Compliance.”1
It created a world of programming
thought, intuition, and attitude
that made the Internet what it is:
a ubiquitous, generally interoper-
able system that enables the use of
communication technology to fur-
ther political freedoms.

Yet this world of revolutionary
forms of communication faces an
insecurity crisis that erodes users’
trust in its software and platforms.
If users continue to see Internet
communication platforms as weak
and vulnerable to push-button
attack tools that are easily acquired
by a repressive authority, they will
eventually become unwilling to use
these platforms for important tasks.

The world of free, private

Internet communication must go
on, and we must reexamine our
design and engineering principles
to protect it. Geer makes a con-
vincing practical case for reexam-
ining Postel’s principle from the
defender’s position; Len Sassaman
and Meredith L. Patterson arrived
at a similar conclusion from a com-
bination of formal-language the-
ory and exploitation experience.2

Robustness
versus Malevolence
Postel’s principle wasn’t meant to
be oblivious of security. For exam-
ple, consider the context in which
it appears in the IETF’s Request
for Comments (RFC) 1122, Sec-
tion 1.2.2 “Robustness Principle”:3

At every layer of the protocols,
there is a general rule whose
application can lead to enor-
mous benefits in robustness
and interoperability [IP:1]:

“Be liberal in what you accept,
and conservative in what you
send.”

Software should be written to
deal with every conceivable
error, no matter how unlikely;
sooner or later a packet will
come in with that particu-
lar combination of errors and
attributes, and unless the soft-
ware is prepared, chaos can
ensue. In general, it is best to
assume that the network is
filled with malevolent enti-
ties that will send in packets
designed to have the worst pos-
sible effect. This assumption
will lead to suitable protective

design, although the most seri-
ous problems in the Internet
have been caused by unenvis-
aged mechanisms triggered by
low-probability events; mere
human malice would never
have taken so devious a course!

This formulation of the prin-
ciple shows awareness of security
problems caused by lax input han-
dling misunderstood as “liberal
acceptance.” So, reading Postel’s
principle as encouraging imple-
menters to generally trust network
inputs would be wrong.

Note also the RFC’s statement
that the principle should apply at
every network layer. Unfortunately,
this crucial design insight is almost
universally ignored. Instead, imple-
mentations of layered designs are
dominated by implicit assumptions
that layer boundaries serve as “fil-
ters” that pass only well-formed data
conforming to expected abstrac-
tions. Such expectations can be so
pervasive that cross-layer vulner-
abilities might persist unnoticed for
decades. These layers of abstraction
become boundaries of competence.4

Robustness and
the Language
Recognition Problem
Insecurity owing to input data han-
dling appears ubiquitous and is
commonly associated with message
format complexity. Of course, com-
plexity shouldn’t be decried lightly;
progress in programming has pro-
duced ever-more-complex machine
behaviors and thus more complex
data structures. But when do these
structures become too complex,
and how does message complexity
interact with Postel’s principle?

The formal language-theoretic
approach we outline here lets us
quantify the interplay of complex-
ity with Postel’s principle and draw
a bright line beyond which message
complexity should be discouraged
by a strict reading of the principle.

We then offer a “patch” that makes
this discouragement more explicit.

The Language-
Theoretic Approach
At every layer of an Internet pro-
tocol stack, implementations face
a recognition problem—they must
recognize and accept valid or
expected inputs and reject mali-
cious ones in a manner that doesn’t
expose their recognition or process-
ing logic to exploitation. We speak
of valid or expected inputs to stress
that, in the name of robustness,
some inputs can be accepted rather
than rejected without being valid
or defined for a given implementa-
tion. However, they must be safe—
that is, not lead the current layer or
higher layers to perform a malicious
computation or exploitation.

In previous research, we
showed that, starting at certain
message complexity levels, recog-
nizing the formal language—which
is made up by the totality of valid
or expected protocol messages or
formats—becomes undecidable.5,6
Such protocols can’t tell valid or
expected inputs from exploitative
ones, and exploitation by crafted
input is only a matter of exploit
programming techniques.7 No
80/20 engineering solution for
such problems exists, any more
than you can solve the Halting
Problem by throwing in enough
programming or testing effort.

For complex message languages
and formats that correspond to
context-sensitive languages, full
recognition, although decidable,
requires implementing powerful
automata, equivalent to a Turing
machine with a finite tape. When
input languages require this much
computational power, handling
them safely is difficult, because vari-
ous input data elements’ validity
can be established only by checking
bits of context that might not be in
the checking code’s scope. Security-
minded programmers understand

that each function (or basic block)
that works with input data must first
check that the data is as expected;
however, the context required to
fully check the current data element
is too rich to pass around. Program-
mers are intimately familiar with
this frustration: even though they
know they must validate the data,
they can’t do so fully, wherever in
the code they look. When operat-
ing with some data derived from
the inputs, programmers are left to
wonder how far back they should
go to determine if using the data as
is would lead to a memory corrup-
tion, overflow, or hijacked computa-
tion. The context necessary to make
this determination is often scattered
or too far down the stack. Similarly,
during code review, code auditors
often have difficulty ascertaining
whether the data has been fully vali-
dated and is safe to use at a given
code location.

Indeed, second-guessing devel-
opers’ data safety assumptions that
are unlikely to be matched by actual
ad hoc recognizer code (also called
input validation or sanity checking
code) has been a fruitful exploi-
tation approach. This is because
developers rarely implement full
recognition of input messages but
rather end up with an equivalent
of an underpowered automaton,
which fails to enforce their expec-
tations. A familiar but important
example of this failure is trying to
match recursively nested struc-
tures with regular expressions.

“Liberal” parsing would seem
to discourage a formal languages
approach, which prescribes gen-
erating parsers from formal gram-
mars and thus provides little
leeway for liberalism. However,
we argue that the entirety of Pos-
tel’s principle actually favors this
approach. Although the prin-
ciple doesn’t explicitly mention
input rejection—and would seem
to discourage it—proper, pow-
erful rejection is crucial to safe

88	 IEEE Security & Privacy� March/April 2012

SECURE SYSTEMS

recognition. Our patch suggests
a language in which the balance
between acceptance and rejection
can be productively discussed.

Computational Power
versus Robustness
It’s easy to assume that Postel’s
principle compels acceptance
of arbitrarily complex protocols
requiring significant computa-
tional power to parse. This is a mis-
take. In fact, such protocols should
be deemed incompatible with the
RFC 1122 formulation.3

The devil here is in the details.
Writing a protocol handler that
can deal with “every conceivable
error”3 can be an insur-
mountable task for complex
protocols, inviting further
implementation error—or
it might be impossible.

This becomes clear
once we consider protocol
messages as an input lan-
guage to be recognized,
and the protocol handler
as the recognizer automa-
ton. Whereas for regular
and context-free languages
as well as some classes of context-
sensitive languages, recognition is
decidable and can be performed
by sub-Turing automata, for more
powerful classes of formal lan-
guages, it’s generally undecidable.

In the face of undecidability,
dealing with every conceivable
error is impossible. For context-
sensitive protocols requiring full
Turing-machine power for recog-
nition, it might be theoretically
possible but utterly thankless.
These complex protocols, hungry
for computational power, should
be deemed incompatible with Pos-
tel’s Robustness Principle.

Robust recognition—and
therefore robust error handling—
is possible only when the input
messages are understood and
treated as a formal language, with
the recognizer preferably derived

from its explicit grammar (or at
least checked against one). Con-
versely, no other form of imple-
menting acceptance will provide a
way to enumerate and contain the
space of errors and error states into
which crafted inputs can drive an
ad hoc recognizer. Indeed, had this
problem been amenable to an algo-
rithmic solution, we would have
solved the Halting Problem.

Clarity versus Ambiguity
in the Presence of Errors
It’s also easy to assume that, no
matter the protocol’s syntax, Pos-
tel’s principle compels acceptance
of ambiguous messages and silent

“fixing” of errors. This is also a mis-
take. Prior formulations, such as
IETF RFC 761, clarify the bound-
ary between being accepting and
rejecting ambiguity:8

The implementation of a pro-
tocol must be robust. Each
implementation must expect
to interoperate with others cre-
ated by different individuals.
While the goal of this specifica-
tion is to be explicit about the
protocol there is the possibil-
ity of differing interpretations.
In general, an implementation
must be conservative in its
sending behavior, and liberal in
its receiving behavior. That is, it
must accept any datagram that
it can interpret (e.g., not object
to technical errors where the
meaning is still clear).

A strict reading of the last sen-
tence would forbid ambiguity (non-
clarity) of “meaning.” However,
deciding a packet’s meaning in the
presence of any particular set of
“technical errors” can be tricky, and
some meanings might be confused
for others, owing to errors. So, what
makes a protocol message’s mean-
ing clear and unambiguous, and
how can we judge this clarity in the
presence of errors?

This property of nonambiguity
can’t belong to an individual mes-
sage of a protocol. To know what a
message can be confused with, we
need to know what other kinds of
messages are possible. So, clarity

must be a property of the
protocol as a whole.

We posit that this prop-
erty correlates with the non-
ambiguity of the protocol’s
grammar and, generally,
with its ease of parsing. It’s
unlikely that the parser of a
hard-to-parse protocol can
be further burdened with
fixing technical errors with-
out introducing the poten-
tial for programmer error.

Thus, clarity can be a property of
only an easy-to-parse protocol.

As before, consider the totality
of a protocol’s messages as an input
language to be recognized by the
protocol’s handler (which serves as
a de facto recognizing automaton).
Easy-to-parse languages with no or
controllable ambiguity are usually
in regular or context-free classes.

Context-sensitive languages
require more computational power
to parse and more state to extract
the message elements’ mean-
ing. So, they’re more sensitive to
errors that make such meaning
ambiguous. Length fields, which
control the parsing of subsequent
variable-length protocol fields, are
a fundamental example. Should
such a field be damaged, the rest
of the message bytes will likely be
misinterpreted before the whole

In the face of undecidability, dealing

with every conceivable error is

impossible. … Complex protocols,

hungry for computational power,

should be deemed incompatible

with Postel’s Robustness Principle.

www.computer.org/security� 89

message can be rejected thanks to
a control sum, if any. If such a sum
follows the erroneous length field,
it might also be misidentified.4

Thus ambiguous input languages
should be deemed dangerous and
excluded from Postel’s Robustness
Principle requirements.

Adaptability
versus Ambiguity
Postel’s principle postulates adapt-
ability. As RFC 1122 states,3

Adaptability to change must be
designed into all levels of Inter-
net host software. As a simple
example, consider a protocol
specification that contains an
enumeration of values for a
particular header field—e.g.,
a type field, a port number, or
an error code; this enumera-
tion must be assumed to be

incomplete. Thus, if a protocol
specification defines four pos-
sible error codes, the software
must not break when a fifth
code shows up. An undefined
code might be logged … but it
must not cause a failure.

This example operates with an
error code—a fixed-length field
that can be unambiguously rep-
resented and parsed and doesn’t
affect the interpretation of the rest
of the message. That is, this exam-
ple of “liberal” acceptance is lim-
ited to a language construct with
the best formal language proper-
ties. Indeed, fixed-length fields
make context-free or regular lan-
guages; tolerating their undefined
values wouldn’t introduce context
sensitivity or necessitate another
computational power step-up for
the recognizer.

So, by intuition or otherwise,
this example of laudable tolerance
stays on the safe side of recog-
nition, from a formal language-
theoretic perspective.

Other Views
Postel’s principle has come under
recent scrutiny from several well-
known authors. We already men-
tioned Dan Geer’s insightful essay;
Eric Allman recently called for bal-
ance and moderation in the prin-
ciple’s application.9

We agree, but posit that such
balance can exist only for proto-
cols that moderate their messages’
language complexity—and thus
the computational complexity and
power demanded of their imple-
mentations. We further posit that
moderating said complexity is the
only way to create such balance. We
believe that the culprit in the inse-
curity epidemic and the driver for
patching Postel’s principle isn’t the
modern Internet’s “hostility” per se
(noted as far back as RFC 11223),
but modern protocols’ excessive
computational power greed.

The issues that, according to
Allman, make interoperability
notoriously hard are precisely
those we point out as challenges
to the security of composed, com-
plex system designs.6 We agree
with much in Allman’s discus-
sion. In particular, we see his “dark
side” examples of “liberality taken
too far”9 as precisely the ad hoc
recognizer practices that we call
on implementers to eschew. His
examples of misplaced trust in
ostensibly internal (and therefore
assumed safe) data sources help
drive home one of the general les-
son we argue for: 5,6

Authentication is no substitu-
tion for recognition, and trust
in data should only be based
on recognition, not source
authentication.

90	 IEEE Security & Privacy� March/April 2012

SECURE SYSTEMS

We fully agree with the need
for “checking everything, includ-
ing results from local cooperat-
ing services and even function
parameters,”9 not just user inputs.
However, we believe that a more
definite line is needed for proto-
col designers and implementers to
make such checking work. A good
example is the missing checks for
Web input data reasonableness that
Allman names as the cause of SQL
injection attacks. The downstream
developer expectations of such rea-
sonableness in combination with
data format complexity might place
undecidable burdens on the imple-
menter and prevent any reasonable
balance from being struck.

The Postel’s Principle Patch
Here’s our proposed patch:

■■ Be definite about what you accept.
■■ Treat valid or expected inputs as

formal languages, accept them
with a matching computational
power, and generate their recog-
nizer from their grammar.

■■ Treat input-handling computa-
tional power as a privilege, and
reduce it whenever possible.

Being definite about what you
accept is crucial for the security
and privacy of your users. Being
liberal works best for simpler pro-
tocols and languages and is in fact
limited to such languages. Keep
your language regular or at most
context free (without length fields).
Being more liberal didn’t work well
for early IPv4 stacks: they were ini-
tially vulnerable to weak packet
parser attacks and ended up elimi-
nating many options and features
from normal use. Furthermore,
presence of these options in traffic
came to be regarded as a sign of sus-
picious or malicious activities to be
mitigated by traffic normalization
or outright rejection. At current
protocol complexities, being lib-
eral actually means exposing your

software’s users to intractable or
malicious computations.

R eversing the ubiquitous inse-
curity of the Internet and

keeping it free require that we
rethink its protocol design from
the first principles. We posit that
insecurity comes from ambiguity
and the computational complexity
required for protocol recognition;
minimizing protocol ambiguity
and designing message formats
so they can be parsed by simpler
automata will vastly reduce inse-
curity. Our proposal isn’t incom-
patible with the intuitions behind
Postel’s principle, but can be seen
as its stricter reading that should
guide its application to more
secure protocol design.

Acknowledgments
While preparing this article for publi-
cation, we received extensive feedback
about both the Postel principle and our
patch for it. We asked for permission to
publish these letters in their entirety
and are grateful for permissions to do
so. Find these letters at http://langsec.
org/postel.

References
1.	 D. Geer, “Vulnerable Compli-

ance,” ;login:, vol. 35, no. 6, 2010,
pp. 26–30; http://db.usenix.org/
publ ic at ion s/ log i n/2 010 -12/
pdfs/geer.pdf.

2.	 L. Sassaman and M.L. Patterson,
“Exploiting a Forest with Trees,”
Black Hat USA, Aug. 2010; http://
langsec.org.

3.	 R. Braden, ed., Requirements for
Internet Hosts—Communica-
tion Layers, IETF RFC 1122, Oct.
1989; http://tools.ietf.org/html/
rfc1122.

4.	 S. Bratus and T. Goodspeed,
“How I Misunderstood Digital
Radio,” submitted for publication
to Phrack 68.

5.	 L. Sassaman et al., “The Halt-
ing Problems of Network Stack

Insecurity,” ;login:, vol. 36, no. 6,
2011, pp. 22–32; www.usenix.org/
publ ic at ion s/ log i n/2 011-12/
openpdfs/Sassaman.pdf.

6.	 L. Sassaman et al., Security Appli-
cations of Formal Language Theory,
tech. report TR2011-709, Com-
puter Science Dept., Dartmouth
College, 25 Nov. 2011; http://lang
sec.org/papers/langsec-tr.pdf.

7.	 S. Bratus et al., “Exploit Program-
ming: From Buffer Overflows to
‘Weird Machines’ and Theory of
Computation,” ;login:, vol. 36, no.
6, 2011, pp. 13–21.

8.	 J. Postel, ed., DoD Standard Trans-
mission Control Protocol, IETF
RFC 761, Jan. 1980; http://tools.
ietf.org/html/rfc761.

9.	 E. Allman, “The Robustness Prin-
ciple Reconsidered: Seeking a
Middle Ground,” ACM Queue, 22
June 2011; http://queue.acm.org/
detail.cfm?id=1999945.

Len Sassaman was a PhD student
in Katholieke Universiteit Leu-
ven’s COSIC research group.
His work with the Cypherpunks
on the Mixmaster anonymous
remailer system and the Tor
Project helped establish the field
of anonymity research. In 2009,
he and Meredith L. Patterson
began formalizing the founda-
tions of language-theoretic secu-
rity. Sassman passed away in July
2011. He was 31.

Meredith L. Patterson is a soft-
ware engineer at Red Lambda.
Contact her at mlp@thesmart
politenerd.com.

Sergey Bratus is a research assistant
professor in Dartmouth Col-
lege’s Computer Science Depart-
ment. Contact him at sergey@
cs.dartmouth.edu.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

www.computer.org/security� 91

