
IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013 489

Security Applications of Formal Language Theory
Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E. Locasto

Abstract—We present a formal language theory approach to
improving the security aspects of protocol design and message-
based interactions in complex composed systems. We argue
that these aspects are responsible for a large share of modern
computing systems’ insecurity. We show how our approach leads
to advances in input validation, security modeling, attack surface
reduction, and ultimately, software design and programming
methodology. We cite examples based on real-world security
flaws in common protocols, representing different classes of
protocol complexity. We also introduce a formalization of an
exploit development technique, the parse tree differential attack,
made possible by our conception of the role of formal grammars
in security. We also discuss the negative impact unnecessarily
increased protocol complexity has on security. This paper pro-
vides a foundation for designing verifiable critical implementation
components with considerably less burden to developers than is
offered by the current state of the art. In addition, it offers a
rich basis for further exploration in the areas of offensive analysis
and, conversely, automated defense tools, and techniques.

Index Terms—Language-theoretic security, secure composition,
secure protocol design.

I. Introduction

Composition is the primary engineering means of complex
system construction. No matter what other engineering ap-
proaches or design patterns are applied, the economic reality is
that a complex computing system will ultimately be pulled to-
gether from components made by different people and groups
of people. The interactions between these components imply
creation of the components’ communication boundaries and
usher in messaging protocols. These boundaries and protocols
then become attack surfaces, dominating the current landscape
of Internet insecurity.

For the traditional division of a system into hardware,
firmware, and software, and of software into device drivers,
generic OS kernel and its sublayers, and various application
software stacks and libraries, the fact of this composition is so
obvious that it is commonly dismissed as trivial. How else can
one build modern computers and modern software if not in a
modular way? Moreover, modularity is supposed to be good

Manuscript received October 9, 2011; revised April 17, 2012; accepted
September 22, 2012. Date of current version July 3, 2013. The work of L.
Sassaman was supported in part by the Research Council K. U. Leuven: GOA
TENSE under Grant GOA/11/007, and by the IAP Program P6/26 BCRYPT
of the Belgian State (Belgian Science Policy).

L. Sassaman was with Katholieke Universiteit Leuven, Leuven Bus 5005
3000, Belgium.

M. L. Patterson is with Red Lambda, Longwood, FL 32779 USA (e-mail:
mlp@upstandinghackers.com).

S. Bratus is with the Dartmouth College, Hanover, NH 03755 USA (e-mail:
sergey@cs.dartmouth.edu).

M. E. Locasto is with the University of Calgary, Calgary, AB T2N 1N4,
Canada (e-mail: locasto@ucalgary.ca).

Digital Object Identifier 10.1109/JSYST.2012.2222000

for security and reliability because without them programming
would be intractable.

However, composing communicating components securely
has emerged as the primary challenge to secure system
construction. Security practitioners know that communication
boundaries become attack targets of choice, and that vulner-
abilities are often caused by unexpected interactions across
components. Yet, the reasons for this are elusive. Attackers
naturally desire reliable execution of their exploits, which
leads them to target communication boundaries as the best-
described parts of components, with tractable state. Still, this
does not explain our collective inability to design systems
without unwanted interactions.

In this paper, we argue that to finally get it right security-
wise, we need a new stronger computational-theoretic under-
standing of message-based interactions between components.
We use formal language complexity arguments to explain
why certain protocol and message format design decisions are
empirically known to be wellsprings of vulnerabilities, and
why the respective software components do not seem to yield
to concerted industry efforts to secure them.

We show that there are strong computational-theoretic and
formal language-theoretic reasons for the challenges of secure
messaging-based composition, and chart basic design princi-
ples to reduce these challenges. In particular, we show that the
hard challenges of safe input handling and secure communica-
tion arise due to the underlying theoretically hard or unsolv-
able (i.e., undecidable) problems that certain protocol designs
and implementations force programmers to solve to secure
them. We posit that the (unwitting) introduction of such prob-
lems in the protocol design stage explains the extreme propen-
sity of certain protocols and message formats to yield a seem-
ingly endless stream of 0-day vulnerabilities despite efforts to
stem it, and the empirical hopelessness of fixing these proto-
cols and message formats without a fundamental redesign.

We also chart ways to avoid designs that are prone to
turning into security nightmares for future Internet protocols.
Empirically, attempts to solve an engineering problem that
implies a good enough (or 80%/20%) solution to the under-
lying undecidable theory problem are doomed to frustration
and failure, which manifests in many ways such as no amount
of testing sufficing to get rid of bugs, or the overwhelming
complexity and not-quite-correct operation of the automation
or detection tools created to deal with the problem. Thus,
avoiding such problems in the first place (at the design
stage) saves both misinvestment of programming effort and
operational costs.

We note that many practical systems were neither designed
not developed with security in mind. However, simply giving

1932-8184/$31.00 c© 2012 IEEE

490 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

up on them wholesale and rebuilding them from scratch is
hardly an option. Rather than condemning such systems based
on their history of exploitation, we show a path to improving
them, as long as their commmunication boundaries can be
identified, analyzed, and improved according to our proposed
approach.

Our argument focuses on the application of fundamental de-
cidability results to the two basic challenges of composed and
distributed system construction that replies on communication
between components: safely accepting and handling inputs
in every component, and identical interpretation of messages
passed between components at every endpoint. In particular,
we consider the following two perspectives on composition.

1) Single-component perspective: A component in a com-
plex system must accept inputs or messages across
one or more interfaces. This creates an attack surface,
leveraged by an absolute majority of exploitation tech-
niques. We discuss hardening the attack surface of each
component against malicious crafted inputs, so that a
component is capable of rejecting them without losing
integrity and exhibiting unexpected behavior—in short,
without being exploited.

2) Multicomponent perspective: As components exchange
messages, they must ensure that, despite possible im-
plementation differences, they interpret the messages
identically. Although this requirement appears to be
trivially necessary for correct operation, in reality dif-
ferent implementations of a protocol by different com-
ponents produce variations, or mutually intelligible di-
alects, with message semantic differences masked (and
therefore ignored) in nonmalicious exchanges. A smaller
but important class of attack techniques leverages such
differences, and can lead to devastating attacks such as
those on X.509 and ASN.1 discussed in this paper.

The importance of these requirements is an empirical fact of
the Internet security experience (see [1]–[3]), which our paper
puts in solid theory perspective.

A. Structure of This Paper

We start with the motivation of our approach in Section II
and outline our case for the formal language-theoretic ap-
proach to security in view of state-of-the-art exploits and
defenses. We review the necessary background formalisms in
Section III.

Then, in Section IV, we explain how these general for-
malisms apply to exploitation of computing systems, and
illustrate this application for several well-known classes of
practical exploitation techniques. In doing so, we connect the
corresponding classes of attacks with the formal language
properties of targeted data structures, which provides a novel
and definitive way to analyze various suggested defenses.

In Section V, we show how to apply formal language-
theoretic techniques to achieve rigorous nonheuristic input
validation. We start our discussion with SQL validation, but
also show that the same approach applies to more com-
plex languages such as PKCS#1 (in Section V-B we prove
that PKCS#1 is context-sensitive). We also discuss flaws in

previous validation approaches, and show why these flaws
matter for practical security.

The discussion of flaws leads us to Section VI, in which
we present a new technique for security analysis of differences
between mutually intelligible language dialects that arise from
implementation differences. This technique, parse tree differ-
ential analysis, proved a powerful tool for enhancing code
auditing and protocol analysis.

In Section VII, we show that the challenges and failures of
IDS/IPS, arguably the most common form of security compo-
sition, can be explained via language-theoretic computational
equivalence. We conclude with an outline of future work.

II. Why Security Needs Formal Language Theory

We posit that input verification using formal language
theoretic methods—whether simply verifying that an input to a
protocol constitutes a valid expression in the protocol’s gram-
mar or also verifying the semantics of input transformations—
is an overlooked but vital component of protocol security,
particularly with respect to implementations. Simply put, a
protocol implementation cannot be correct unless it recognizes
input correctly, and should otherwise be considered broken.

Formal software verification seeks to prove certain safety
(nothing bad happens) and liveness (something good happens,
eventually) properties of program computations: if every com-
putation a program can perform satisfies a particular property,
the program is safe (or, respectively, live) with respect to
that property [4]. Program verification in the general case is
undecidable, and although many approaches to falsification
and verification of properties have been developed, unsolved
and unsolvable problems with the scalability and completeness
of algorithmic verification have prevented formal correctness
from displacing testing and code auditing as the industry
gold standard for software quality assurance [5]. However,
programs that implement protocols—that is to say, routines
that operate over a well-defined input language1—share one
characteristic that can be leveraged to dramatically reduce
their attack surfaces: their input languages can—and, we
posit, should—in general be made decidable and decided in
a tractable fashion. We show that this requirement of being
well specified and tractably decidable is in fact a crucial
prerequisite of secure design and, in fact, its violation is the
source of much present-day computer insecurity.

Inputs to system components such as web browsers, network
stacks, cryptographic protocols, and databases are formally
specified in standards documents, but by and large, imple-
mentations’ input handling routines parse the languages these
standards specify in an ad hoc fashion. Attacks such as
the Bleichenbacher PKCS#1 forgery [6], [7] show what can
happen when an ad hoc input-language implementation fails
to provide all the properties of the input language as actually
specified. In more recent work [8], we have shown that varia-
tions among implementations can be exploited to subvert the
interoperation of these implementations, and that ambiguity or

1This includes file formats, wire formats and other encodings, and script-
ing languages, and the conventional meaning of the term, e.g., finite-state
concurrent systems such as network and security protocols.

SASSAMAN et al.: SECURITY APPLICATIONS OF FORMAL LANGUAGE THEORY 491

underspecification in a standard increases the chances of vul-
nerability in otherwise standards-compliant implementations.

On this basis, we argue that mutually intelligible dialects of
a protocol cannot make guarantees about their operation be-
cause the problem Equivalent(L(G) = L(H)) is undecidable
when G and H are grammars more powerful than deterministic
context-free [9], [10]. We also observe that systems that consist
of more than one component have inherent, de facto design
contracts for how their components interact, but generally do
not enforce these contracts; SQL injection attacks (hereafter
SQLIA), for instance, occur when an attacker presents a
database with an input query that is valid for the database
in isolation, but invalid within the context of the database’s
role in a larger application.

Since well-specified input languages are in the main de-
cidable2 (or can be made so), there is no excuse for failing
to verify inputs with the tools that have existed for this
exact purpose for decades: formal parsers. We will examine
input verification from several different angles and across
multiple computability classes, highlight the unique problems
that arise when different programs that interoperate over a
standard permit idiosyncratic variations to that standard, and
show formally how to restrict the input language of a general-
purpose system component (such as a database) so that it
accepts only those inputs that it is contractually obligated to
accept.

Given the recent advent of provably correct, guaranteed-
terminating parser combinators [16] and parser generators
based on both parsing expression grammars [17] and context-
free grammars (CFGs) [18], we hold that the goal of general
formal parsing of inputs is within practical reach. Moreover,
informal guarantees of correct input recognition are easy to
obtain via commonly available libraries and code generation
tools; we encourage broader use of these tools in protocol
implementations, as incorrect input handling jeopardizes other
properties of an implementation.

III. Background Formalisms

A. Computability Bounds and the Chomsky Hierarchy

Noam Chomsky classified formal grammars in a contain-
ment hierarchy according to their expressive power, which
correlates with the complexity of the automaton that accepts
exactly the language a grammar generates, as shown in
Fig. 1 [19].

Within this hierarchy, one class of automaton can decide
an equivalently powerful language or a less powerful one,
but a weaker automaton cannot decide a stronger language.
For example, a pushdown automaton can decide a regular lan-
guage, but a finite state machine cannot decide a context-free
language. Thus, formal input validation requires an automaton
(hereafter, parser) at least as strong as the input language. It is
a useful conceit to think of a protocol grammar in terms of its
place in the Chomsky hierarchy, and the processor and code

2Albeit with notable exceptions, such as XSLT [11], [12], HTML5+CSS3
(shown to be undecidable by virtue of its ability to implement Rule
110 [13], [14]), and PDF (for many reasons, including its ability to embed
Javascript [15]).

Fig. 1. Chomsky hierarchy of languages according to their expressive power.
Languages correspond to grammars and automata as follows.
� regular grammars, regular expressions, finite state machines;
† unambiguous CFGs, deterministic pushdown automata;
‡ ambiguous CFGs, nondeterministic pushdown automata;
†† context-sensitive grammars/languages, linear bounded automata;
‡‡ recursively enumerable languages, unrestricted grammars, Turing ma-
chines;
The shaded area denotes classes for which the equivalence problem is
DECIDABLE.

that accept input in terms of machine strength, while being
conscious of their equivalence.

Recursively enumerable languages are undecidable, which
presents a serious implementation problem: the Turing ma-
chine that accepts a given recursively enumerable language, or
recognizer3 language (which is stronger than context-sensitive
but weaker than recursively enumerable), rejects strings not
in the language, and is guaranteed to halt for that language,
halts in an accepting state on all strings in the language, but
either rejects or fails to halt on inputs not in the language.
All weaker language classes are decidable; their equivalent
automata always terminate in an accept or reject state [10],
[19]. A recursively enumerable protocol language is thus a
security risk, since malicious input could cause its parser to
fail to halt—a syntactic denial of service—or perform arbitrary
computation. The rubric we derive from these bounds on
expressiveness—use a sufficiently strong parser for an input
language, but no stronger—is echoed in the W3C’s Rule of
Least Power: Use the least powerful language suitable for
expressing information, constraints, or programs on the World
Wide Web [20].

Parsers also exhibit certain safety and liveness properties
(after Lamport [4]). Soundness is a safety property; a sound
parser only accepts strings in its corresponding language, and
rejects everything else. Completeness is a liveness property;
a complete parser accepts every string in its corresponding
language. Termination is also a safety property; a terminating
parser eventually halts on every string presented to it, whether
that string belongs to its language or not.

Two other decidability problems influence our analysis: the
context-free equivalence and containment problems. Given

3Compare with the decider, a turing machine that accepts strings in a
recursive.

492 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

two arbitrary CFGs, G and H , both L(G) = L(H) and
L(G) ⊆ L(H) are undecidable [10], except for a particular
construction detailed in [21]. The CFGs form two disjoint
sets: deterministic and nondeterministic, corresponding to de-
terministic and nondeterministic pushdown automata respec-
tively. All unambiguous CFGs are deterministic [22], and
the equivalence problem for deterministic CFGs is decidable
(though the containment problem is not) [9].

Any grammar in which the value of an element in the
string influences the structure of another part of the string
is at least context-sensitive [23]. This applies to most network
protocols and many file formats, where length fields, e.g., the
Content-Length field of an HTTP header [24] or the IHL and
Length fields of an IPv4 datagram [25], are commonplace.
Programming language grammars that support statements of
the form if B1 then if B2 then S1 else S2, e.g., Javascript [26],
are nondeterministic context-free (at best) due to the ambiguity
the dangling else problem introduces [27]; if the shift-reduce
conflict is resolved without adding braces or alternate syntax
(e.g., elif or end if), the resulting grammar is noncontext-free.
Conveniently, the PostgreSQL, SQLite, and MySQL database
engines all use LR grammars, which are deterministic context-
free [28]. Membership tests for certain subclasses of LR
(e.g., LALR, LR(k), etc.) and approximate ambiguity detection
methods exist [29]; however, determining whether an arbitrary
CFG is unambiguous is undecidable [30].

B. Modeling Communication From a Security Standpoint

Shannon [31] proposed a block-diagram model to describe
systems which generate information at one point and re-
produce it elsewhere. In it, an information source generates
messages (sequences drawn from an alphabet); a transmitter
encodes each message into a signal in an appropriate form
for the channel over which it can pass data, then sends
it; a receiver decodes signals into reconstructed messages;
and a destination associated with the receiver interprets the
message. The engineering problem of maximizing encoding
efficiency motivated Shannon’s work; he regarded the mean-
ings of messages as outside the scope of this transmission
model. Nevertheless, social scientists such as Schramm [32]
and Berlo [33] expanded the transmission model to incorpo-
rate semantic aspects of communication. Schramm recast the
destination as an interpreter, which takes actions according
to the decoded message’s semantic content, and replaced
Shannon’s one-way message path with a bidirectional one;
Berlo emphasized the difficulty of converting thoughts into
words and back, particularly when sender and receiver differ in
communication ability. These insights, combined with Hoare’s
axiomatic technique for defining programming language se-
mantics [34], have surprising implications for the practice of
computer security.

When a destination extracts a different meaning from a
decoded message than the one the source intended to transmit,
the actions the destination performs are likely to diverge—
perhaps significantly—from what the source expected. In hu-
man communication, it is difficult to evaluate whether an unex-
pected response signifies a failure in transmission of meaning
or that the source’s assessment of what behavior to expect

from the destination was wrong. In computer science, how-
ever, we can make formal assertions about the properties of
destinations (i.e., programs), reason about these properties, and
demonstrate that a program is correct up to decidability [34].
When a destination program’s semantics and implementation
are provably correct, whether or not it carries out its intended
function [34] is a question of whether the destination received
the intended message. If a verified destination’s response to
a source’s message M does not comport with the response
that deduction about the program and M predict, the receiver
has decoded something other than the M that the transmitter
encoded. In practice, this situation is all too frequent between
different implementations of a protocol.

Berlo’s and Schramm’s adaptations rightly drew criticism
for their focus on encoding and decoding, which implied the
existence of some metric for equivalence between one person’s
decoder and the inverse of another person’s encoder. However,
in transmissions over computer networks, where both source
and destination are universal Turing machines, we can test the
equivalence of these automata if they are weak enough; if they
are nondeterministic context-free or stronger, their equivalence
is undecidable. Points of encoder–decoder inequivalence—
specifically, instances where, for a message M, an encoding
function E , and a decoding function D, D(E(M)) �= M—
can cause the destination to take some action that the source
did not anticipate. An attacker who can generate a signal
E(M) such that D(E(M)) �= M can take advantage of this
inequivalence. Indeed, many classic exploits, such as buffer
overflows, involve crafting some E(M)—where the meaning
of M, if any, is irrelevant 4—such that applying D to E(M), or
passing D(E(M)) as an input to the destination, or both, elicits
a sequence of computations advantageous to the attacker (e.g.,
opening a remote shell).

Naturally, an attacker who can alter E(M) in the channel,
or who can modify M before its encoding, can also elicit
unexpected computation. The former is a man-in-the-middle
attack; the latter is an injection attack. Both affect systems
where the set of messages that the source can generate is a
subset of those on which the destination can operate.

Note that we do not consider situations where D(E(M)) = M

but different destinations respond to M with different actions;
these constitute divergent program semantics, which is relevant
to correctness reasoning in general but outside the scope of this
paper. We are only interested in the semantics of D and E .

IV. Exploits As Unexpected Computation

Sending a protocol message is a request for the receiving
computer to perform computation over untrusted input. The
receiving computer executes the decoding (parsing) algorithm
D(M), followed by (i.e., composed with) subsequent oper-
ations C conditional on the result of D; thus, E(M) →
D(E(M)) ·C(D(E(M))). It is never the case that simply parsing
an input from an untrusted source should result in mali-
cious code execution or unauthorized disclosure of sensitive

4This phenomenon suggests that Grice’s maxim of relation [35], be relevant,
applies to the pragmatics of artificial languages and natural ones.

SASSAMAN et al.: SECURITY APPLICATIONS OF FORMAL LANGUAGE THEORY 493

information; yet, this is the basis of most effective attacks
on modern networked computer systems, specifically because
they permit, though they do not expect, the execution of
malicious algorithms when provided the corresponding input.
That this computation is unexpected is what leads to such
vulnerabilities being considered exploits, but ultimately, the
problem constitutes a failure in design. Whether implicitly or
explicitly, designers go to work with a contract [36] in mind
for the behavior of their software, but if the code does not
establish and enforce preconditions to describe valid input,
many types of exploits are possible.

This behavior is especially harmful across layers of ab-
straction and their corresponding interfaces, since in practice
these layer boundaries become boundaries of programmers’
competence.

A. Injection Attacks

Injection attacks target applications at points where one
system component acquires input from a user in order to
construct an input for another component, such as a database,
a scripting engine, or the DOM environment in a browser. The
attacker crafts an input to the first component that results in the
constructed input producing some computation in the second
component that falls outside the scope of the operations the
system designer intended the second component to perform.
Some examples:

Example 1 (Command Injection): Functions such as sys-
tem() in PHP, Perl, and C; nearly all SQL query execu-
tion functions; and Javascript’s eval() take as argument a
string representation of a command to be evaluated in some
execution environment (here, the system shell, a database
engine, and the Javascript interpreter respectively). Most such
environments support arbitrary computation in their own right,
though developers only intend their systems to use a very
limited subset of this functionality. However, when these
functions invoke commands constructed from unvalidated user
input, an attacker can design an input that appends additional,
unauthorized commands to those intended by the developer—
which the environment dutifully executes, using the same
privileges afforded to the desired commands [37].

Example 2 (HTTP Parameter Pollution): RFC 3986 [38]
observes that the query component of a URI often contains
key=value pairs that the receiving server must handle, but
specifies nothing about the syntax or semantics of such pairs.
The W3C’s form-urlencoded media type [39] has become the
de facto parameter encoding for both HTTP GET query strings
and HTTP POST message bodies, but parameter handling
semantics are left to implementer discretion. Idiosyncratic
precedence behavior for duplicate keys, in a query string
or across input channels, can enable an attacker to override
user-supplied data, control web application behavior, and even
bypass filters against other attacks [40].

All types of injection leverage a weak boundary between
control and data channels [41] to modify the structure, and
thereby the execution semantics, of an input to an appli-
cation component [21], [41]. Halfond et al. [42] enumerate
many heuristic injection defenses; in Section V-A we describe
parse tree validation, a verifiable defense technique. There

are several categories of defense against injection: escaping,
which attempts to transform user input that might alter the
structure of a subsequently constructed input into a string-
literal equivalent; tainting, which flags user input as untrusted
and warns if that input is used unsafely; blacklisting of
known malicious inputs; and programmatic abstraction, which
provides control channel access through an API and relegates
user input to the data channel [42]. Another technique, parse
tree validation, passes constructed inputs through a validator
that parses them, compares the resulting parse tree to a set
of acceptable candidate parse trees, and rejects inputs whose
structure is not in that set.

B. Other Attack Surfaces

Other attack vectors blur the boundaries between control
and data channels in subtler ways; rather than targeting the
higher level languages that injection exploits, they take ad-
vantage of input handling failure modes to alter the machine
code or bytecode in an already-executing process. Many such
attacks, e.g., shellcode attacks [43], contain a sequence of
opcodes that are written to a location within the process’s
address space and executed by means of a jump from an
overwritten stack frame return address; other techniques, such
as return-to-libc [44] and its generalization, return-oriented
programming [45], [46], overwrite the return address to point
to a function or a code fragment (a.k.a. gadget, e.g., in the
program’s code section, or in a library such as libc) not meant
to be a part of the stack-backed control flow and adjacent
memory to contain any arguments the attacker wants to pass
to that function, enabling arbitrary code execution even on
platforms with nonexecutable stacks [47].

Example 3 (Buffer Overflows): When a function designed
to write data to a bounded region of memory (a buffer)
attempts to write more data than the buffer can contain, it may
overwrite the values of data in adjacent memory locations—
possibly including the stack frame return address [48] or a
memory allocator’s heap control structures [49]–[51]. Con-
straining such a function’s input language to values that the
function cannot transform into data larger than the buffer can
prevent an overflow, although the presence of format string
arguments (see below) can complicate matters.

Example 4 (Format String Attacks): Certain C conversion
functions permit placeholders in their format string argument
which interpolate subsequent arguments into the string the
function constructs. If a process allows an attacker to populate
the format string argument, he can include placeholders that
let him inspect stack variables and write arbitrary values to
arbitrary memory locations [52]. Other languages that support
format strings exhibit similar vulnerabilities [53], and lan-
guages implemented in C, such as PHP, can succumb indirectly
if unsafe input reaches a format string argument in the underly-
ing implementation [54]. Fortunately, C’s placeholder syntax
is regular, and since the regular languages are closed under
complement [10], it is easy to define a positive validation
routine [42] which admits only user input that contains no
formatting placeholders.

Thus, we see that hardening input routines, so that they do
not provide subsequent operations with arguments that violate

494 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

those operations’ preconditions or fail in ways that permit an
attacker to execute arbitrary code, is at the core of all defensive
coding practices. We now examine in detail the mechanics of
validating input languages of various classes in a provable and
tractable fashion.

V. Provably Correct Input Validation

Despite the majority of work in this area focusing on
injection attacks, formal language theoretic input validation
offers security protections against a much wider range of
exploits. Any attack that exploits a process’s parsing such that
it accepts an input that does not conform to the valid grammar
of the intended protocol can and should be prevented via strict
validation of inputs.

A. Injection Attacks and Context-Free Parse Tree Validation

Dejector [21] presented a context-free parse tree valida-
tion approach to preventing SQLIA.5 It introduced a formal
construction for restricted sublanguages of SQL;6 using this
approach, validating an SQL query consists of testing it for
membership in the sublanguage. Given a set of known-good
queries—derived, for instance, from the string-interpolated
query templates that an application programmer has defined
for a particular application—and the formal grammar for the
appropriate dialect of SQL, Dejector transforms the SQL
grammar into a subgrammar that contains only the rules
required to produce exactly the queries in the known-good
set.7 Strings recognized by the subgrammar are guaranteed to
be structurally identical to those in the known-good set—a
validity metric attested throughout the injection attack litera-
ture [57], [58]. The subgrammar is then used with a parser
generator such as bison or ANTLR to produce a recognizer
for the sublanguage. Notably, this automaton is exact rather
than heuristic (as in [55]) or approximate (as in [59] and [60]),
and has the optimizing effect of comparing inbound queries
to all known-good structures simultaneously.

Subsequent research has produced improvements to the
original approach, primarily focused on identifying the initial
legitimate-query set and automatically integrating validation
into an application. Unfortunately, each of these efforts suffers
from flaws which prevent them from guaranteeing correct
validation or correct application behavior. These include:

5The technique was independently discovered by a number of research
teams. References [55] and [56] published similar approaches around the
same time; [57] popularized the idea, but Dejector has thus far been mostly
overlooked by the academic community due to its publication at a hacker
conference. This is, to our knowledge, the first peer-reviewed description of
Dejector, with an emphasis placed on the features that distinguish it from later
attempts to implement these core ideas.

6Su and Wassermann [58] independently arrived at the same construction.
7Unused production rules are removed, as are unused alternatives from

retained production rules. If the rule A ::= B|C appears in the grammar, but
the known-good set only requires the application of the A ⇒ C branch, the
corresponding subgrammar rule is A ::= C. Note that for grammars where a
nonterminal whose right-hand side contains more than one alternative appears
on the right-hand side of more than one nonterminal that appears in the
parses of known-good queries, these alternatives must be distinguished in
the subgrammar.

1) Insufficiently Strong Automaton: Several automata-
based validators [59]–[63] model the set of acceptable queries
using a finite state machine, following the approach of Chris-
tensen et al. [64], wherein static analysis of calls to methods
that issue SQL queries yields a flow graph representing
possible generated strings, which is then widened to a regular
language for tractability. Sun and Besnozov identify cases
where such FSA models generate false-positive reports [65],
and indeed Wassermann et al. concede that their approxima-
tion of the set of legitimate query strings is overly permissive.
However, they assert:

In practice, we do not find a function that concate-
nates some string, the return value of a recursive call
to itself, and another string (which would construct
a language such as {(na)n}), so this widening step
does not hurt the precision of the analysis.

We examined the bison grammar that generates the Post-
greSQL parser and, regrettably, discovered four such func-
tions. The right-hand sides of the production rules se-
lect with parens and joined table contain the precise
parenthesis-balancing syntax that Wassermann et al. claimed
not to find in practice. Unbalanced parentheses alone are suffi-
cient to trigger those vulnerabilities classified in the taxonomy
of Halfond et al. as illegal/logically incorrect queries [42].

The other functions we found are subtler and more
troubling. The right-hand side of the production com-
mon table expr, which can precede SELECT, INSERT, UP-
DATE, or DELETE statements, contains the sequence ’(’
PreparableStmt ’)’; a PreparableStmt is itself a SELECT,
INSERT, UPDATE or DELETE statement. Furthermore, the
a expr and c expr productions, which recognize unary,
binary, and other expressions—such as x NOT NULL,
x LIKE y, and all arithmetic expressions—are mutually re-
cursive. These productions appear throughout the PostgreSQL
grammar, and are the grammatical targets of nearly every
category of SQLIA, since user-supplied inputs typically cor-
respond to productions on the right-hand side of an a expr.

Thus, while tools using this methodology have performed
well against SQLIA suites such as the AMNESIA testbed [66],
[67], we question their efficacy against attacks that deliberately
target the impedance mismatch between a generated FSA
model and an underlying SQL grammar.

2) Validator and Database Use Different Grammars:
Many parse tree validation approaches properly represent
the set of acceptable structures using a CFG, but derive
their acceptable-structure set from a grammar other than
that of the target database system, possibly introducing an
impedance mismatch. SQLGuard [56] compares parse trees of
queries assembled with and without user input, using the ZQL
parser [68]; CANDID [57] uses a standard SQL parser based
on SQL ANSI 92 standard, augmented with MySQL-specific
language extensions; SQLPrevent [65] uses ANSI SQL but
does not mention which version. Others only state that the
grammars they use are context-free [58], [69], [70].

While it is possible to demonstrate the equivalence of two
LR grammars, none of these authors have provided equiva-
lence proofs for their implementation grammars and the SQL

SASSAMAN et al.: SECURITY APPLICATIONS OF FORMAL LANGUAGE THEORY 495

dialects they aim to validate. Dejector sidesteps this problem
by directly using PostgreSQL’s lexer and bison grammar. De-
jector’s drawback is that its implementation is coupled not only
to the database distribution, but the specific parser revision;
however, it prevents an attacker from constructing an input
that looks right to the validator but yields unwanted behavior
when it reaches the database. As an example, CVE-2006-
2313 and CVE-2006-2314 describe a relevant vulnerability in
PostgreSQL multibyte encodings [71], [72]. An attacker could
craft a string that an encoding-unaware validator (i.e., one that
assumes input to be in ASCII, Latin-1 or some other single-
byte encoding) accepts, but which a server using a multibyte
encoding (UTF-8, Shift-JIS, etc.) parses in such a way as to
terminate a string literal early. We examine such parse tree
differential attacks in more detail in Section VI.

B. Parse Tree Validation in the Context-Sensitive Languages

Bleichenbacher [6] presented an RSA signature forgery
attack against PKCS#1 implementations that do not correctly
validate padding bytes. We show that PKCS#1 is context-
sensitive and can be validated in the same fashion as SQL,
using an attribute grammar representation [73].

Theorem 1: PKCS#1 is context-sensitive.
Lemma 1: Upper bound: a linear-bounded automaton for

PKCS#1.
Proof: Let P = {wn|w is a hexadecimal octet, n is

the size of the RSA modulus in bits, and wn = ’00’
’01’ ’FF’n−len(hash)−len(d.e.)−3 ’00’ digest-encoding hash, where
digest-encoding is a fixed string ∈ {0, 1} as specified in RFC
2313 [74] and hash is a message hash ∈ {0, 1} of length
appropriate for the digest-encoding}. We define a linear-
bounded automaton, AP , that accepts only strings in P . The
length of AP ’s tape is n, and it has states q0, q1, ...q67 and a
reject state, qR. q67 is the start state.

1) Go to the leftmost cell on the tape.
2) Consume octet 00 and transition to state q66. If any other

octet is present, transition to qR and halt.
3) Consume octet 01 and transition to state q65. If any other

octet is present, transition to qR and halt.
4) Consume FF octets until any other octet is observed, and

transition to state q64. (If the first octet following the 01
is anything other than FF, transition to qR and halt.)

5) Simulate regular expression matching of the fixed digest-
encoding strings (as described in the attribute grammar
in the next subsection) over the next 15-19 octets as
follows.

a) MD2 sequence → q15.
b) MD5 sequence → q15.
c) SHA-1 sequence → q19.
d) SHA-256 sequence → q31.
e) SHA-384 sequence → q47.
f) SHA-512 sequence → q63.
g) No match → qR.

6) Until q0 is reached, or the rightmost end of the tape is
reached, apply the following procedure.

a) Consume an octet.
b) qn → qn−1.

7) If in state q0 and the tape head is at the rightmost end
of the tape, accept. Otherwise, reject.

Because P can be described by a linear-bounded automaton,
it is therefore at most context sensitive.

Lemma 2: Lower bound: PKCS#1 is not context-free.
Proof: We show that P is noncontext-free using the

context-free pumping lemma, which states that if L is a
context-free language, any string s ∈ L of at least the pumping
length p can be divided into substrings vwxyz such that
|wy| > 0, |wxy| ≤ p, and for any i ≥ 0, vwixyiz ∈ A [10].

As stated above, n is the size of the RSA modulus in bits. (n
can vary from case to case; different users will have different-
sized RSA moduli, but the grammar is the same no matter
the size of n.) Neither w nor y can be any of the fixed bits,
00, 01 and 00, since the resulting string would be too long to
be in P . Nor can w or y correspond to any part of the hash,
as the pumping lemma requires that w and y can be pumped
an arbitrary number of times, and eventually the length of the
hash alone would exceed n. Indeed, since n is fixed, the only
way to pump s without obtaining a string that is either too
long or too short would be if both w and y were the empty
string. However, the pumping lemma requires that |wy| ≥ 0,
and thus P cannot be context-free. Since P is at most context-
sensitive and must be stronger than context-free, P is therefore
context-sensitive.

1) An Attribute Grammar for PKCS#1: Attribute gram-
mars and parsing expression grammars [75] are concrete
formalisms that are commonly used to implement parsers and
generators for context-sensitive languages. Parsing expression
grammars can describe some context-sensitive languages, e.g.,
the well-known {anbncn : n ≥ 1}, but not all of them; attribute
grammars are sufficient to describe any context-sensitive lan-
guage. As Finney pointed out, the Bleichenbacher padding at-
tack produces strings which vulnerable implementations inter-
preted as valid encodings, but which are not actually members
of P because they have too few padding bytes and extra data
beyond the message hash. Therefore, a sound and complete
attribute-grammar-based parser for PKCS#1 functions as a
validator for PKCS#1 and defeats the Bleichenbacher attack
by rejecting its crafted strings. Since the follow-on attack of
Izu et al. also assumes the same implementation error as in the
original attack, our validator also defeats their mathematically
more sophisticated attack.

Note that here we describe a validator for PKCS#1 in toto,
rather than a restricted sublanguage of P . One could define
a restricted sublanguage of P—for instance, one that does
not support the deprecated MD5 and MD2 hash functions—
by pruning out the corresponding production rules and any
alternatives that contain references to them, but here we focus
on the language in its entirety.

The following attribute grammar, where 〈T〉 represents any
valid octet from 00 to FF, generates strings in P for arbitrary
n:
〈S〉 ::= 00 01 〈FFs〉 00 〈ASN.1〉
Valid(〈S〉) ← Valid(〈ASN.1〉) & Len(〈FFs〉) = n − Len(〈ASN.1〉) − 3
〈FFs〉 ::= FF FF FF FF FF FF FF FF
Len(〈FFs〉) ← 8

| 〈FFs〉2 FF
Len(〈FFs〉) ← (Len(〈FFs〉2) + 1)

496 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

〈ASN.1〉 ::= 〈Digest-Algo〉 〈Hash〉
Valid(〈ASN.1〉) ← (HashLen(〈Digest-Algo〉) = Len(〈Hash〉))
Len(〈ASN.1〉) ← (Len(〈Digest-Algo〉) + Len(〈Hash〉))
〈Digest-Algo〉 ::= 〈MD2〉
HashLen(〈Digest-Algo〉) ← HashLen(〈MD2〉)
Len(〈Digest-Algo〉) ← 18

| 〈MD5〉
HashLen(〈Digest-Algo〉) ← HashLen(〈MD5〉)
Len(〈Digest-Algo〉) ← 18

| 〈SHA-1〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-1〉)
Len(〈Digest-Algo〉) ← 15

| 〈SHA-256〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-256〉)
Len(〈Digest-Algo〉) ← 19

| 〈SHA-384〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-384〉)
Len(〈Digest-Algo〉) ← 19

| 〈SHA-512〉
HashLen(〈Digest-Algo〉) ← HashLen(〈SHA-512〉)
Len(〈Digest-Algo〉) ← 19
〈MD2〉 ::= 30 20 30 0C 06 08 2A 86 48 86 F7 0D 02 02 05 00 04 10
HashLen(〈MD2〉) ← 16
〈MD5〉 ::= 30 20 30 0C 06 08 2A 86 48 86 F7 0D 02 05 05 00 04 10
HashLen(〈MD5〉) ← 16
〈SHA-1〉 ::= 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14
HashLen(〈SHA-1〉) ← 20
〈SHA-256〉 ::= 30 31 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20
HashLen(〈SHA-256〉) ← 32
〈SHA-384〉 ::= 30 41 30 0D 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30
HashLen(〈SHA-384〉) ← 48
〈SHA-512〉 ::= 30 51 30 0D 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40
HashLen(〈SHA-512〉) ← 64

〈Hash〉 ::= 〈T〉16

Len(〈Hash〉) ← 16

| 〈Hash〉2 〈T〉
Len(〈Hash〉) ← Len(〈Hash〉2) + 1

VI. Parse Tree Differential Analysis

We observe that, while different implementations of the
same specification should process input and perform tasks
in effectively the same way as each other, it is often the
case that different implementations parse inputs to the pro-
gram (or messages passed internally) differently depending
on how the specification was interpreted or implemented.
Such implementations provide distinct dialects of a protocol.
While these dialects may be mutually intelligible for the
purpose of nonmalicious information exchange, prior security
assumptions may fail.

We have developed a powerful technique to enhance code
auditing and protocol analysis, known as the parse tree dif-
ferential attack [8], wherein we give two different imple-
mentations of the same specification identical state and input
parameters, consider their decodings as concrete parse trees,
and enumerate the differences between the trees. Deviations
between the trees indicate potential problems, e.g., an area of
implementor discretion due to specification ambiguity or an
implementation mistake.

Looking back to the work of Shannon et al. in Sec-
tion III-B, the goal of a parse tree differential attack is to
find combinations of Msource, Esource, and Ddestination such that
M �= D(E(M)), with M semantically valid for the source
and D(E(M)) semantically valid for the destination, where the

destination’s response to D(E(M)) includes computations that
its response to M would not have. The set

{MA ∪ MB | MA �= DB(EA(MA)), MB �= DA(EB(MB))}
describes a lower bound on the set of vulnerabilities present on
the attack surface of the composed system that has implemen-
tations (i.e., processes) A and B as endpoints of a common
channel (after Howard et al. [76]).

A. Attack Surface Discovery

We have used edge cases identified by parse tree differential
analysis to isolate serious vulnerabilities in X.509 [77]. We
found many instances where two implementations of the X.509
system behaved differently when given the same input, in
such a way that these differences led to a certificate authority
signing a certificate that it viewed as being granted one
privilege, while the client-side application (the web browser)
parsed the same input in a manner yielding different security
assertions, leading to a compromise of the system [8].

Example 5 (Null Terminator Attack): The attacker presents
a certificate signing request to a certificate authority (CA)
that will read the Common Name as www.paypal.com\x00.
badguy.com and return a signed certificate for this Subject
CN. The message that this certificate represents is M, and the
certificate itself is E(M). Now present E(M)) to a browser
vulnerable to the null terminator attack. Although the CN
field’s value in M is www.paypal.com\x00.badguy.com, its
value in D(E(M)) is www.paypal.com.

In this case, the decoder at the CA correctly interprets
the CN as a Pascal-style string (which can include the \x00
character), compares its reading of the CN with the credentials
presented by the source, and responds with an encoding of a
message incorporating this valid-but-peculiar CN. Little does
the destination know, other destinations’ decoders interpret the
CN as a C-style string, for which \x00 is an end-of-string
indicator, and decode the CA’s encoding into a signed message
vouching that the certificate is valid for www.paypal.com!

B. Other Applications of Parse Tree Differentials

In certain settings, aspects of protocol implementation di-
vergence are of particular sensitivity; a prime example is
anonymity systems. Prior work has shown that the anonymity
provided by a lower layer tool can be compromised if higher
layer differences are revealed to an attacker; the EFF’s Panop-
ticlick tool demonstrates how to use web browser identifiers
to whittle away the assurances offered by low-level anonymity
systems such as Tor [78]. The potential for an attacker to
perform parse tree differential analysis of common client
application implementations of standard protocols a priori
allows her to generate a codebook of sorts, consisting of the
inputs which, when sent to the unsuspecting user, will trigger
the user’s client (web browser, etc.) to respond in a way that
will enable the attacker to partition the anonymity set [79].
Similarly, the use of a parse tree differential analysis tool may
enhance other fingerprinting-based attacks.

SASSAMAN et al.: SECURITY APPLICATIONS OF FORMAL LANGUAGE THEORY 497

A more indirect means of using parse tree differentials
as oracles appears in Clayton’s work on British Telecom’s
CleanFeed anti-pornography system [80]. He constructed TCP
packets with a specially chosen TTL value which, if actually
used, would leverage the CleanFeed proxy system’s traffic-
redirection behavior against the behavior of noninterdicted
traffic so as to selectively reveal exactly which IP addresses
hosted material that BT was attempting to block!

Notably, Clayton’s attack makes use of three separate
protocols—TCP, IP, and ICMP—being used by multiple sys-
tems (a user’s, BTs, and that of a banned site). This high-
lights the empirically well-known observation that composed
systems tend to have characteristic behaviors that result from
composition and are not obviously inherent in the individual
components. In critical applications (such as an anonymity
system used to evade violent repression), such behaviors can
be deadly. To quote a hacker maxim, Composition Kills.

1) A Well-Defined Order on Parse Tree Differentials: Con-
sider a parse tree differential attack executed between two
different implementations of the same protocol a zeroth-order
parse tree differential. It has two steps, protocol encoding and
protocol decoding.

Now consider a parse tree differential attack executed
between two different implementations of two different pro-
tocols, e.g., ASN.1 → HTTP. (e.g., X generates ASN.1
which is transformed into HTTP which is parsed by Y). The
transformation between one protocol and another is a point of
interest; can, for instance, malformed ASN.1 be generated with
respect to the transformation function to HTTP such that Y
performs some unexpected computation? This is a first-order
parse tree differential. It has three steps: protocol encoding,
protocol transformation (to protocol’) and protocol’ decoding.

The construction extends recursively.

VII. Why Johnny Cannot Detect

One arguably nonprincipled but practically common form of
composition is that of adding an intrusion detection/prevention
system (IDS) to a target known to be susceptible to exploita-
tion. The IDS monitors the target’s inputs and/or state, models
the target’s computation, and is expected to catch the exploits.
This design obviously relies on the ability of the IDS to match
at least those aspects of the target’s input processing that
serve as attack vectors; without such matching the IDS does
not reduce insecurity, and may in fact increase it by adding
exploitable bugs of its own. Far from being merely theoretical,
the latter is a hard reality well-known to security practitioners
on both the attack and defense sides (see [81]).

The language-theoretic and computational magnitude of the
challenge involved in constructing such an effective matching
in this de facto composed design should by now be clear to
the reader, as it requires approaching de facto computational
equivalence between the IDS and the target input handling
units. The first work [82] to comprehensively demonstrate the
fundamental weakness of network intrusion detection systems
(NIDS) was, predictably, based on hacker intuitions. These
intuitions were likely informed by previous use of TCP/IP
stack implementation differences for system fingerprinting in

tools like Nmap, Xprobe, and Hping2 (e.g., [83] methodically
explores the differences in OS network stacks’ response to
various ICMP features). Subsequent research established that
the only hope of addressing this weakness was precise match-
ing of each target’s session (re)assembly logic by the NIDS
(e.g., [84]–[86]).

In host-based intrusion detection systems, the problem of
matching the defending computation with the targeted com-
putation is no less pronounced. For example, Garfinkel [87]
enumerates a number of traps and pitfalls of implementing
a system call-monitoring reference monitor and warns that
duplicating OS functionality/code should be avoided at all
costs. We note that isolating the reference monitor logic
from the rest of the system would seem advantageous were
it possible to validate the matching between the system’s
own computation and the isolated, duplicated computation;
however, as we have seen, such validation could easily be
undecidable.

In a word, hardening a weak system by composing it with
a monitor that replicates the computation known or suspected
to be vulnerable likely attempts to convert an input-validation
kind of undecidable problem into a computational-equivalence
undecidable problem—hardly an improvement in the long run,
even though initially it might appear to gain some ground
against well-known exploits. However, it leaves intact the core
cause of the target’s insecurity, and should not therefore be
considered a viable solution.

One common approach for modeling program behavior
involves sequences of system calls [88], [89]. Because system
calls represent the method by which processes affect the
external world, these sequences are thought to provide the
most tangible notion of system behavior. Despite their apparent
success in detecting anomalies due to attacks, such models
have several shortcomings, including susceptibility to mimicry
attacks [90]; an attacker can keep the system within some
epsilon of the normal patterns while executing calls of their
choosing. This problem suggests that we should investigate the
extraction and use of a more fine-grained notion of program
activity. Note that our goal is not to criticize system call
approaches for being susceptible to mimicry attacks; instead,
the lesson we should learn is that relatively large amounts of
work can happen between system calls, and it is the more
precise nature of this activity that can help inform models of
program behavior.

Popular flavors of model or anomaly based intrusion detec-
tion often offer only very slight deltas from each other; Taylor
and Gates [91] supply a good critique of current approaches,
and a recent paper by Sommer and Paxson also explores the
reasons why we as a community might not successfully use
machine learning for intrusion detection [92]. The prevailing
approach to detection (matching sequences of system calls) is
a glorified form of the oft-critized regular expression string
matching used in misuse signature-based systems like Snort
and Bro.

An impressive number of RAID, CCS, and Oakland papers
have spilled a lot of digital ink offering slight twists or
improvements on the original system call sequence model
proposed by Denning and matured by Forrest, Somayaji

498 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

et al. [88], [93], [94]. This follow-on pack of work considers,
in turn, changes that include: longer sequences, sequences
with more context information (e.g., instruction pointer at time
of call, arguments, machine CPU register state, sets of open
files and resources), anomalous system call arguments, cross-
validation of system call sequences across operating systems,
and other various insignificant changes in what information is
examined as the basis of a model.

The most natural next step was to attempt to characterize
normal behavior, abnormal behavior, and malware behavior
using control-flow graph structures. From this perspective,
sequences of system calls are very simple graphs with a linear
relationship.

Unfortunately, this move toward more complicated models
of representing execution behavior reveal just how limited we
are in our expected success. When viewed from the pattern
of language-theoretic equivalence, this style of intrusion de-
tection is essentially a problem of matching grammars, and it
suffers from the same limitations as proving that two protocol
implementations of sufficient complexity actually accept the
same strings.

The intrusion detection community overlooks this critically
important point in its search for ever more efficient or rep-
resentative models of malicious (or benign) behavior. Adding
incremental adornments to a language model will not result in
a dramatic advancement of our ability to detect malicious com-
putation; it can only serve to increase the complexity of the
language—and hence increase the difficulty of showing that
the particular model accepts some precise notion of malicious
or abnormal. This is a counter-intuitive result: initiatives aimed
at improving the power of an IDS model actually detract from
its ability to reliably recognize equivalent behavior. In this
case, more powerful maps to less reliable.

We note that, to the best of our knowledge, Schneider [95]
comes closest to considering the limits of security policy
enforceability as a computation-theoretic and formal language-
theoretic phenomenon, by matching desired policy goals such
as bounded memory or real-time availability to classes of
automata capable of guaranteeing the acceptance or rejection
of the respective strings of events. In particular, Büchi au-
tomata are introduced as a class of security automata that can
terminate insecure executions defined by the Lamport’s safety
property: execution traces excluded from the policy can be
characterized as having a (finite) set of bad prefixes (i.e., no
execution with a bad trace prefix is deemed to be safe).

Schneider’s approach connects enforceable security policies
with the language-theoretic properties of the system’s language
of event traces. We note that the next step is to consider
this language is an input language to the automaton imple-
menting the policy mechanism, and to frame its enforcement
capabilities as a language recognition problem for such trace
languages.

VIII. Future Work

Our future work will integrate existing work on generation
of verifiable, guaranteed-terminating parsers [16]–[18] with
verification of finite-state concurrent systems and the work

of Bhargavan et al. [96] on the use of refinement types to
carry security invariants (and, by extension, input-language
preconditions) in order to develop a complete verified network
stack that is compositionally correct from end to end. We also
plan to build on previous work in automated implementation
checking, such as aspier [97], to develop automated parse tree
differential analysis tools (akin to smart fuzzers) for the benefit
of security auditors.

Acknowledgment

The authors would like to thank E. Feustel for his observa-
tions on the security of composed systems, D. Kaminsky for
his collaboration in the analysis of flaws in ASN.1 parsers,
A. Bogk, R. Farrow, D. McCardle, J. Oakley, F. Piessens, A.
Shubina, and S. W. Smith for their helpful suggestions on
earlier versions of this paper, and N. Borisov, N. Kisserli,
F. Lindner, D. McIlroy, and D. Molnar for their insightful
conversations during the process of this research.

References

[1] D. Geer, “Vulnerable compliance,” login: The USENIX Mag., vol. 35,
no. 6, Dec. 2010.

[2] F. “FX” Lindner, “The compromised observer effect,” McAfee Security
J., vol. 6, 2010.

[3] D. J. Bernstein, “Some thoughts on security after ten years of qmail
1.0,” in Proc. ACM CSAW, 2007, pp. 1–10.

[4] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. Softw. Eng., vol. 3, no. 2, pp. 125–143, Mar. 1977.

[5] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., vol. 41, no. 4, 2009.

[6] H. Finney, “Bleichenbacher’s RSA signature forgery based on imple-
mentation error,” Aug. 2006.

[7] T. Izu, T. Shimoyama, and M. Takenaka, “Extending Bleichenbacher’s
forgery attack,” J. Inform. Process., vol. 16, pp. 122–129, Sep. 2008.

[8] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI layer cake: New
collision attacks against the global X.509 infrastructure,” in Financial
Cryptography. Berlin, Germany: Springer, 2010, pp. 289–303.

[9] G. Sénizergues, “L(A) = L(B)? Decidability results from complete
formal systems,” Theor. Comput. Sci., vol. 251, nos. 1–2, pp. 1–166,
2001.

[10] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Interna-
tional ed. Clifton Park, NY: Thompson Course Technology, 2006.

[11] S. Kepser, “A simple proof for the turing-completeness of XSLT and
xQuery,” in Proc. Extreme Markup Lang., 2004.

[12] R. Onder and Z. Bayram, “XSLT version 2.0 is turing-complete: A
purely transformation based proof,” in Proc. Implementation Appl.
Automata, LNCS 4094. 2006, pp. 275–276.

[13] E. Fox-Epstein. (2011, Mar.). Experimentations With Abstract Machines
[Online]. Available: https://github.com/elitheeli/oddities

[14] M. Cook, “Universality in elementary cellular automata,” Complex Syst.,
vol. 15, no. 1, pp. 1–40, 2004.

[15] J. Wolf, “OMG-WTF-PDF,” in Proc. 27th Chaos Comput. Congr., Dec.
2010.

[16] N. A. Danielsson, “Total parser combinators,” in Proc. 15th ACM
SIGPLAN ICFP, 2010, pp. 285–296.

[17] A. Koprowski and H. Binsztok, “TRX: A formally verified
parser interpreter,” in Proc. Prog. Lang. Syst., LNCS 6012. 2010,
pp. 345–365.

[18] T. Ridge, “Simple, functional, sound and complete parsing for all
context-free grammars,” submitted for publication.

[19] N. Chomsky, “On certain formal properties of grammars,” Inform.
Comput./Inform. Control, vol. 2, pp. 137–167, 1959.

[20] T. Berners-Lee and N. Mendelsohn. (2006). The Rule of Least Power,
Tag Finding [Online]. Available: http://www.w3.org/2001/tag/doc/
leastPower.html

[21] R. J. Hansen and M. L. Patterson, “Guns and butter: Toward formal
axioms of input validation,” in Proc. Black Hat Briefings, 2005.

SASSAMAN et al.: SECURITY APPLICATIONS OF FORMAL LANGUAGE THEORY 499

[22] S. Ginsburg and S. Greibach, “Deterministic context free languages,”
in Proc. 6th Symp. Switching Circuit Theory Logical Design, 1965, pp.
203–220.

[23] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in Proc. USENIX Sec. Symp.,
2007.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext Transfer Protocol: HTTP/1.1, Request
for Comments: 2616, Jun. 1999.

[25] Information Sciences Institute, Internet Protocol, Request for Com-
ments: 791, Sep. 1981.

[26] W. Ali, K. Sultana, and S. Pervez, “A study on visual programming
extension of JavaScript,” Int. J. Comput. Appl., vol. 17, no. 1, pp. 13–
19, Mar. 2011.

[27] P. W. Abrahams, “A final solution to the dangling else of ALGOL
60 and related languages,” Commun. ACM, vol. 9, pp. 679–682,
Sep. 1966.

[28] D. E. Knuth, “On the translation of languages from left to right,” Inform.
Control, vol. 8, no. 6, pp. 607–639, 1965.

[29] H. J. S. Basten, “The usability of ambiguity detection methods for
context-free grammars,” Electron. Notes Theor. Comput. Sci., vol. 238,
pp. 35–46, Oct. 2009.

[30] R. W. Floyd, “On ambiguity in phrase structure languages,” Commun.
ACM, vol. 5, p. 526, Oct. 1962.

[31] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

[32] W. Schramm, “How communication works,” in The Process and Effects
of Communication. Champaign, IL: Univ. Illinois Press, 1954.

[33] D. K. Berlo, The Process of Communication. Concord, CA: Holt,
Rinehart, and Winston, 1960.

[34] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commu. ACM, vol. 12, no. 10, pp. 576–583, 1969.

[35] H. P. Grice, Studies in the Way of Words. Cambridge, MA: Harvard
Univ. Press, 1989.

[36] B. Meyer, “Applying dsign by contract,” Computer, vol. 25, pp. 40–51,
Oct. 1992.

[37] “CWE-77,” in Common Weakness Enumeration. Jul. 2008.
[38] T. Berners-Lee, R. Fielding, and L. Masinter, RFC 3986, Uniform

Resource Identifier (URI): Generic Syntax, Request for Comments:
3986. Jan. 2005.

[39] D. Raggett, A. Le Hors, and I. Jacobs, Forms in HTML Documents,
HTML 4.01 Specification, Dec. 1999.

[40] L. Carettoni and S. di Paola, HTTP Parameter Pollution. OWASP EU
Poland, 2009.

[41] T. Pietraszek and C. V. Berghe, “Defending against injection attacks
through context-sensitive string evaluation,” in Proc. RAID, 2005, pp.
124–145.

[42] W. G. J. Halfond, J. Viegas, and A. Orso, “A classification of SQL-
injection attacks and countermeasures,” in Proc. IEEE Int. Symp. Secure
Softw. Eng., Mar. 2006.

[43] rix. (2001, Aug.). Writing ia32 alphanumeric shellcodes. Phrack [On-
line]. 57(5). Available: http://www.phrack.com/issues.html?issue=57\
&id=15

[44] Nergal. (2001, Dec.). The advanced return-into-lib(c) exploits: PaX
case study. Phrack [Online]. 58(4). Available: http://www.phrack.com/
issues.html?issue=58&id=4

[45] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” to be published.

[46] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proc. CCS, 2007.

[47] T. Durden. (2002, Jul.). Bypassing PaX ASLR protection. Phrack
[Online]. 59(9). Available: http://www.phrack.com/issues.html?issue=
59\&id=9

[48] A. One. (1996, Aug.). Smashing the stack for fun and profit. Phrack
[Online]. 49(14). Available: http://www.phrack.com/issues.html?issue=
49\&id=14

[49] MaXX. Vudo malloc Tricks. Phrack [Online]. 57(8). Available:
http://phrack.org/issues.html?issue=57&id=8

[50] Anonymous author. Once upon a free(). Phrack [Online]. 57(9). Avail-
able: http://phrack.org/issues.html?issue=57&id=9

[51] jp. (2003, Aug.). Advanced Doug Lea’s malloc exploits. Phrack [On-
line]. 61(6). Available: http://www.phrack.com/issues.html?issue=61\
&id=6

[52] T. Newsham. (2000, Sep.). Format String Attacks [Online]. Available:
http://www.thenewsh.com/∼newsham/format-string-attacks.pdf

[53] National Vulnerability Database, CVE-2005-3962, Dec. 2005.
[54] National Vulnerability Database, CVE-2011-1153, Mar. 2011.

[55] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the
detection of SQL attacks,” in Proc. DIMVA, Jul. 2005, pp. 123–140.

[56] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree
validation to prevent SQL injection attacks,” in Proc. Int. Workshop
Softw. Eng. Middleware, 2005, pp. 106–113.

[57] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, “CANDID: Dy-
namic candidate evaluations for automatic prevention of SQL injection
attacks,” ACM Trans. Inf. Syst. Security, vol. 13, no. 2, pp. 1–39,
2010.

[58] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in Proc. 33rd Symp. Principles Program. Lang.,
2006, pp. 372–382.

[59] W. G. J. Halfond and A. Orso, “Preventing SQL injection attacks
using AMNESIA,” in Proc. 28th Int. Conf. Softw. Eng., 2006, pp. 795–
798.

[60] G. Wassermann, C. Gould, Z. Su, and P. Devanbu, “Static checking of
dynamically generated queries in database applications,” J. ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, 2007.

[61] K. Wei, M. Muthuprasanna, and S. Kothari, “Preventing SQL injection
attacks in stored procedures,” in Proc. Aus. Softw. Eng. Conf., 2006, pp.
191–198.

[62] M. Muthuprasanna, K. Wei, and S. Kothari, “Eliminating SQL injection
attacks: A transparent defense mechanism,” in Proc. 8th IEEE Int. Symp.
Web Site Evol., Sep. 2006, pp. 22–32.

[63] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: A static analysis tool
for SQL/JDBC applications,” in Proc. Int. Conf. Soft. Eng., 2004, pp.
697–698.

[64] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis
of string expressions,” in Proc. 10th Int. Static Anal. Symp., 2003, pp.
1–18.

[65] S.-T. Sun and K. Beznosov, “Retrofitting existing web applications
with effective dynamic protection against SQL injection attacks,” Int.
J. Secure Softw. Eng., vol. 1, pp. 20–40, Jan. 2010.

[66] W. G. J. Halfond and A. Orso, “AMNESIA: Analysis and monitoring
for NEutralizing SQL-injection attacks,” in Proc. ASE 2005, Nov. 2005,
pp. 174–183.

[67] W. Halfond, A. Orso, and P. Manolios, “Using positive tainting and
syntax-aware evaluation to counter SQL injection attacks,” in Proc. FSE
2006, Nov. 2006, pp. 175–185.

[68] P. Y. Gibello. (2002). ZQL: A Java SQL Parser [Online]. Available:
http://zql.sourceforge.net/

[69] K. Kemalis and T. Tzouramanis, “SQL-IDS: A specification-based
approach for SQL-injection detection,” in Proc. Symp. Appl. Comput.,
2008, pp. 2153–2158.

[70] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb: A proxy-
based architecture toward preventing SQL injection attacks,” in Proc.
ACM Symp. Appl. Comput., 2009, pp. 2054–2061.

[71] National Vulnerability Database, CVE-2006-2313, May 2006.
[72] National Vulnerability Database, CVE-2006-2314, May 2006.
[73] D. Knuth, “Semantics of context-free languages,” Math. Syst. Theory,

vol. 2, pp. 127–145, 1968.
[74] B. Kaliski. (1998, Mar.). PKCS #1: RSA Encryption [Online]. Available:

http://tools.ietf.org/html/rfc2313
[75] B. Ford, “Parsing expression grammars: A recognition-based syntactic

foundation,” in Proc. 31st ACM SIGPLAN-SIGACT Symp. POPL, 2004
pp. 111–122.

[76] M. Howard, J. Pincus, and J. Wing, “Measuring relative attack surfaces,”
in Computer Security in the 21st Century, D. T. Lee, S. P. Shieh, and
J. D. Tygar, Eds. New York: Springer, 2005, pp. 109–137.

[77] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation list (CRL) Profile, RFC 5280, Obsoletes RFCs 3280, 4325,
4630, May 2008.

[78] P. Eckersley, “How unique is your web browser?,” Electronic Frontier
Foundation, Tech. Rep., 2009.

[79] N. Mathewson and R. Dingledine, “Practical traffic analysis: Extending
and resisting statistical disclosure,” in Proc. PET Workshop, LNCS 3424.
May 2004, pp. 17–34.

[80] R. Clayton, “Failures in a hybrid content blocking system,” in Proc.
Fifth PET Workshop, 2005, p. 1.

[81] F. Lindner, “The compromised observer effect,” McAfee Security J., vol.
6, 2010.

[82] T. Ptacek, T. Newsham, and H. J. Simpson, “Insertion, evasion, and de-
nial of service: Eluding network intrusion detection,” Secure Networks,
Inc., West Palm Beach, FL, Tech. Rep., 1998.

[83] O. Arkin, “ICMP usage in scanning, the complete know-how,” Sys-
Security Group, Tech. Rep., version 3.0, 2001.

500 IEEE SYSTEMS JOURNAL, VOL. 7, NO. 3, SEPTEMBER 2013

[84] M Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics,” in
Proc. 10th USENIX Security Symp., 2001, p. 9.

[85] U. Shankar and V. Paxson, “Active mapping: Resisting NIDS evasion
without altering traffic,” in Proc. IEEE Symp. Security Privacy, May
2003, pp. 44–61.

[86] S. Siddharth. (2005, Dec.). Evading NIDS, Revisited [Online]. Available:
http://www.symantec.com/connect/articles/evading-nids-revisited

[87] T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in Proc. Netw. Distributed Syst.
Security Symp., Feb. 2003, pp. 163–176.

[88] S. A. Hofmeyr, A. Somayaji, and S. Forrest, “Intrusion detection system
using sequences of system calls,” J. Comput. Security, vol. 6, no. 3, pp.
151–180, 1998.

[89] H. H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong, “Anomaly
detection using call stack information,” in Proc. IEEE Symp. Security
Privacy, May 2003, p. 62.

[90] D. Wagner and P. Soto, “Mimicry attacks on host-based intru-
sion detection systems,” in Proc. ACM Conf. CCS, Nov. 2002,
pp. 255–264.

[91] C. Taylor and C. Gates, “Challenging the anomaly detection paradigm:
A provocative discussion,” in Proc. 15th NSPW, Sep. 2006, pp. 21–29.

[92] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in Proc. IEEE Symp. Security
Privacy, May 2010, pp. 305–316.

[93] A. Somayaji, S. Hofmeyer, and S. Forrest, “Principles of a computer
immune system,” in Proc. NPSW, 1998, pp. 75–82.

[94] A. Somayaji and S. Forrest, “Automated response using system-call
delays,” in Proc. 9th USENIX Security Symp., Aug. 2000.

[95] F. B. Schneider, “Enforceable security policies,” ACM Trans. Inf. Syst.
Secur., vol. 3, pp. 30–50, Feb. 2000.

[96] K. Bhargavan, C. Fournet, and A. D. Gordon, “Modular verification of
security protocol code by typing,” SIGPLAN Not., vol. 45, 2010.

[97] S. Chaki and A. Datta, “ASPIER: An automated framework for verifying
security protocol implementations,” in Proc. CSF, 2009, pp. 172–185.

Len Sassaman was a member of the COSIC Research Group, Katholieke
Universiteit Leuven, Belgium. His early work with Cypherpunks on the
Mixmaster anonymous remailer system and the Tor Project helped establish
the field of anonymity research. In 2009, he and M. L. Patterson began
formalizing the foundations of language-theoretic security, which he was
involved with until the end of his life.

Dr. Sassaman passed away in July 2011. He was 31 years old.

Meredith L. Patterson lives in Brussels, Belgium.
As a Ph.D. student, she developed the first language-theoretic defense

against SQL injection in 2005 and has continued expanding the technique
since then. She is currently with Nuance Communications of Burlington, MA,
USA. She is a Founder of Upstanding Hackers LLC, Cheyenne, WY, USA.

Sergey Bratus received the Ph.D. degree in mathematics from Northeastern
University, Boston, MA.

He is currently a Research Assistant Professor of computer science with
Dartmouth College, Hanover, NH. He sees state-of-the-art hacking as a
distinct research and engineering discipline that, although not yet recognized
as such, harbors deep insights into the nature of computing. He was with
BBN Technologies, Cambridge, MA, working on natural language processing
research before coming to Dartmouth College.

Michael E. Locasto received the B.Sc. degree in computer science
(Magna Cum Laude) from the College of New Jersey, Ewing, and the M.Sc.
and Ph.D. degrees from Columbia University, New York.

He is currently an Assistant Professor with the Department of Computer
Science, University of Calgary, Calgary, AB, Canada. He seeks to understand
why it seems difficult to build secure, trustworthy systems, and how we can
get better at it.

