
Phantom Boundaries and Cross-layer Illusions in 802.15.4 Digital Radio
(Research Report)

Travis Goodspeed
Straw Hat Security

travis@radiantmachines.com

Abstract—The classic design of protocol stacks, where each
layer of the stack receives and unwraps the payload of the
next layer, implies that each layer has a parser that accepts
Protocol Data Units and extracts the intended Service Data
Units from them. The PHY layer plays a special role, because
it must create frames, i.e., original PDUs, from a stream of bits
or symbols. An important property implicitly expected from
these parsers is that SDUs are passed to the next layer only if
the encapsulating PDUs from all previous layers were received
exactly as transmitted by the sender and were syntactically
correct.

The Packet-in-packet attack (WOOT 2011) showed that this
false assumption could be easily violated and exploited on
IEEE 802.15.4 and similar PHY layers; however, it did not
challenge the assumption that symbols and bytes recognized by
the receiver were as transmitted by the sender. This work shows
that even that assumption is wrong: in fact, a valid received
frame may share no symbols with the sent one! This property is
due to a particular choice of low-level chip encoding of 802.15.4,
which enables the attacker to co-opt the receiver’s error
correction. This case study demonstrates that PHY layer logic
is as susceptible to the input language manipulation attacks
as other layers, or perhaps more so. Consequently, when
designing protocol stacks, language-theoretic considerations
must be taken into account from the very bottom of the PHY
layer; no layer is too low to be considered “mere engineering.”

Keywords-LangSec, 802.15.4, Packet-in-packet

I. BACKGROUND

Key property of network stacks: The key property of
network stacks is that the objects constructed by the receiv-
ing stack at any layer are equivalent to those transmitted by
the sending stack. Platform differences like endianness and
message loss due to noise notwithstanding, the assumption
that the contents of successfully received messages are
exactly the same as of those transmitted is so fundamental
that it hardly ever gets explicitly specified as a security
requirement. Yet this implicitly assumed property deserves
a closer look.

Each layer of the OSI stack model deals with its par-
ticular kind of object: Physical layer (PHY) with encoded
continuous signals, Link layer (LNK) with frames, Network
layer with packets, and so on for Transport, and, where

A short version of this paper, describing a practical, hands-on bypass
of the protection technique in [1], appeared in [2]. This paper gives a
theoretical LangSec perspective on the original attack, the bypass, and the
challenges of designing defensible PHY layers.

implemented, for Session and Presentation layers. Thus the
primary function of a receiving layer is to produce respective
objects for the next layer, in a manner faithful to the intent
and content of the sender’s transmissions.

Functioning of layers is commonly understood and de-
scribed in terms of addressing: e.g., LNK frames are ad-
dressed to specific nodes or broadcast to groups of nodes
on a local link, Network packets are uniquely addressable
to nodes in a global network, Transport layer specifies
receiving applications on a (globally addressed) node, and
so on. Formats and fields of these layers’ data structures are
explained in terms of such addressing. However, this view
obscures the key fact that each layer in the receiving stack
serves as first and foremost a constructor of specific data
objects from a serialized form in which they exist in the
SDU.

Layers as transducers: The key fact of the OSI stack
and similar network stack designs is that each layer is actu-
ally a transducer for received data, consisting of a recognizer
for the intended objects’ serial presentation (which may be
a stream of encoded bits, symbols, bytes, or tokens) and a
constructor of the resulting objects to pass to the next layer
(provided that recognition succeeded). As is common with
input-handling code at communication boundaries, recog-
nizer false positives lead to constructor code being handed
data it doesn’t expect, which in turn leads to computation
driven by such data taking unexpected paths, that is to say,
exploitation. This paper, however, focuses on code never
leaving expected paths, but we still achieve those delightfully
counter-intuitive results that make security worth studying.

The recognizer’s first task is to detect the boundaries of
such representations in the stream and to accumulate them
for parsing. The PHY layer handles this problem in its most
pure form, being tasked with distinguishing between the out-
of-frame state in which it judges received bits or symbols to
be line/ether noise and the in-frame state in which it judges
and records the incoming data as contents of a frame.

Unlike PHY, the higher layers aren’t tasked with discard-
ing “noise” or “garbage” bytes, but must still find boundaries
of their respective objects such as protocol headers in their
PDUs. The key—though often implicit—security property
of the stack implementation is that these boundaries must
be matched exactly as meant and encoded by the sender. In
presence of noise, this is a non-trivial computational task,

which requires an appropriate automaton with that specific
property.

We previously ([3]) demonstrated a non-obvious failure of
802.15.4 PHY recognizer: the simple form of the Packet-in-
packet attack that works by including the symbols that make
up a Physical layer frame in the payload of Application layer.
Normally, the interior bytes of a packet are escaped by the
outer frame’s header, but collisions sometimes destroy that
header. However, these collisions tend to be short and often
leave the interior of the packet intact, damaging only the
beginning or the end. On a busy band like 2.4GHz, this
happens often enough that it can be used reliably to inject
frames into a remote network, without owning a radio.

Our description of the Packet-in-packet attack prompted
mitigations such as [1]. However, these transmitter-side
mitigations took for granted that the symbols recognized by
the receiver—i.e., nybbles of bytes passed from the PHY to
the LNK layer—were exactly as transmitted by the sender.
In this paper we show that this assumption is incorrect, and
that the design of 802.15.4 PHY actually allows a received
frame to share no symbols at all with the transmitted one.

In this paper we undertake a case study of one digital
radio stack, 802.15.4. Let the reader not mistake the specific
character of this case study for a lack of breadth: many
other PHY layers follow the same design and are therefore
susceptible to the surprises we describe. We argue that stack
security and correctness is a formal language recognition
problem even at the lowest layers of PHY, and that no layer
or sublayer design can hope to escape them and remain
defensible.

II. THE LAYER CAKE IS A PHY!

The PHY layer is often described as dealing with “raw
bits”, which it makes into frames. This presumes at least one
recognizer automaton that decides which raw bits belong in
a frame and which don’t. However, even a cursory look
at PHY shows that there are in fact several layers and
representations of bits, and therefore not one but many
automata.

In particular, the 802.15.4 PHY layer encodes its sym-
bols, corresponding to the nybbles of the PHY frame, as
sequences of 32 chips, the “native” ones and zeros of the
protocol’s modulation. Thus “raw bits” of the frame are
certainly not raw; rather, they are extracted from a stream
of chips by an appropriate automaton.

Are “raw bit” boundaries real?: All object boundaries
in higher protocol layers ultimately depend on the symbol
boundaries as constructed on the PHY layer. When even the
bits of a frame are themselves so constructed, correctness of
all the other layer’s interpretation of a message hinges on
the constructing automaton—including the above-mentioned
fundamental property that any successfully received object
was transmitted just so by the sender.

0 −− 11011001110000110101001000101110
1 −− 11101101100111000011010100100010
2 −− 00101110110110011100001101010010
3 −− 00100010111011011001110000110101
4 −− 01010010001011101101100111000011
5 −− 00110101001000101110110110011100
6 −− 11000011010100100010111011011001
7 −− 10011100001101010010001011101101

8 −− 10001100100101100000011101111011
9 −− 10111000110010010110000001110111
A −− 01111011100011001001011000000111
B −− 01110111101110001100100101100000
C −− 00000111011110111000110010010110
D −− 01100000011101111011100011001001
E −− 10010110000001110111101110001100
F −− 11001001011000000111011110111000

Figure 1. 802.15.4 symbols, encoded in chips.

Everything about how we represent frames and packets
in writing—or even in coding—seems to reinforce the idea
that nybble boundaries are “natural” and “hard.” We think
of noise-induced receiver errors as flipping bits, but we
implicitly assume that it’s the bits, not their boundaries, that
get corrupted. Even this corruption is conveniently swept
under the rug, due to checksums.

In fact, all such boundaries are imaginary, and even frame
boundaries detection (SFD matching) is dependent on a
lower layer of chip-level error correction.

Error correction: The chip sequences specified by the
802.15.4 standard to represent symbols (as in Fig. 1) are an
error connecting code that gets processed transparently to
the rest of the stack. This processing happens in a layer of
its own, before SFD matching and frame construction, and
is not normally a part of security modeling.

Thus the standard four zero-byte preamble of an 802.15.4
frame is actually eight repetitions of the zero-symbol
11011001110000110101001000101110 or any suffi-
ciently similar sequence of chips, and similarly with the A7
Start-of-Frame-Delimiter and the rest of the frame. Thus any
received frame has many potential chip-level representations
that will be received equivalently. Not only that, but these
representations also need to be extracted from the continuous
stream of chips received by the PHY radio.

Crucially, this stream does not honor any hard boundaries
between the contiguous chip groups that would be matched
as nybbles. Such boundaries are merely an abstraction, a
product of interpretation by the receiver—performed, at this
level, by error correcting logic. Can this logic be manip-
ulated by the sender to produce an unexpected, boundary
abstraction-busting result in the receiver?

The eighth-of-a-nybble misalignment trick: Consider
the chip code listings in Fig. 1 and apply a rotation by 1

8
of their length to each. This rotation brings each valid code

into another valid code, and the codes form two “rings”
under such rotation. In other words, this rotation maps the
set of codes into itself, and its repeated action separates it
into two orbits (formally speaking, these are the two orbits
of the cyclic group’s Z8 action on the set of codes, but we
won’t be using this formalism).

Thinking geometrically, this property is merely a symme-
try of the set of 802.15.4’s chosen code points in the hy-
percube {0, 1}32. Such symmetries are expected of optimal
error correcting codes that place their points at the largest
possible Hamming distance from each other. Assuming that
errors randomly flip the chips of a transmitted code, which
is then mapped to the closest code point, largest-distance
placement helps the code survive the largest number of chip-
flip errors without actually producing a wrong symbol.

However, code chips are received as a stream rather than
as separate words with enforced boundaries; the boundaries
are merely an abstraction. This, shifting the chip stream by
“an eighth of a nybble”—that is, changing the receiver’s
idea of the stream’s start or timing—will produce a valid
sequence of symbols! For example, a zero shifted once will
produce 1 (or 7 if the shift is in the opposite direction),
while the same zero shifted twice will produce 2 (or 6), and
so on.

0 11011001110000110101001000101110
1 11101101100111000011010100100010
2 00101110110110011100001101010010
3 00100010111011011001110000110101
4 01010010001011101101100111000011
5 00110101001000101110110110011100
6 11000011010100100010111011011001
7 10011100001101010010001011101101

8 10001100100101100000011101111011
9 10111000110010010110000001110111
A 01111011100011001001011000000111
B 01110111101110001100100101100000
C 00000111011110111000110010010110
D 01100000011101111011100011001001
E 10010110000001110111101110001100
F 11001001011000000111011110111000

In the more convenient hexadecimal notation (but remem-
bering that each nybble is actually a 32-bit chip sequence):

0 D9C3522E
1 ED9C3522
2 2ED9C352
3 22ED9C35
4 522ED9C3
5 3522ED9C
6 C3522ED9
7 9C3522ED

8 8C96077B
9 B8C96077
A 7B8C9607
B 77B8C960
C 077B8C96
D 6077B8C9
E 96077B8C
F C96077B8

Receiving a frame that was never transmitted: The
stream misalignment trick described above allows a sender
to craft a frame that would cause a different frame to

be received by a standard-compliant receiver. The received
frame would, in fact, share no symbols at all with the
transmitted one.

Furthermore, such transmission can be accomplished on
an fully standards-compliant sender. Access to the trans-
mitting digital radio’s configuration registers to change the
transmitted SFD (such as is provided by the CC2420 digital
radio IC) would simplify matters, but is not required, since
the sender can at worst use the Packet-in-packet technique
and rely on noise for successful injection, as detailed in [3].

Let us now send a frame using nothing but misaligned
symbols. The frame needs to start with the standard pream-
ble and SFD; by the time we figure out how to represent
them, the principle for crafting the rest of the frame will be
clear.

First, consider sending a preamble of eight 0 symbols. At
the chip sublayer of PHY, we have, in the shorthand notation
above:

0 0 0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E

Instead of 0-symbols, we will send 1-symbols, as follows.
In this new crafted sequence, the central part is exactly
correct, with sub-symbol errors occurring only at the edges.
Note that these errors never exceed 1

8 of a symbol.
0 0 0 0 0 0 0 0

D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E
1 1 1 1 1 1 1 1

ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

Similarly, considering the opposite rotation, we can send
77777777, incurring just as much error as above: at most
4 chips.

Next, we must follow up the preamble with the Start of
Frame Delimiter, (A7). Instead of sending 00000000A7,
we can send 11111111B0 or 7777777796.

Would the receiver be fooled? Dealing in actuality with
the stream of chips and having no idea where the actual
intended symbol boundaries are, the receiver must match
arriving chip sequences with the standard code points; it
cannot produce any other output than a defined symbol
(based on matching against the Hamming-closest code-
point)—no matter what the input sample!

So when the “in-frame” recognizer expects A7 and re-
ceives B0, the first chip sequence 7B8C960D instead of
the 7B8C9607 is only off by the last four chips, with a
Hamming distance of merely 2:

BO −− 77B8C960D9C3522E
| | | | | | | |

A7 −− 7B8C96079C3522ED

Continuing into the frame body, we can keep the Ham-
ming distance between the misaligned crafted frame and the
receiver’s idea of it modulo error correction at or below 4.
This Hamming distance is obviously less than that of the
intended error correction distance of the 802.15.4 code.

Thus we can craft entire sender frames, complete with

their preambles and SFDs, that have no symbols in common
with the received frame!

III. CONCLUSIONS AND FUTURE DIRECTIONS

Our 802.15.4 case study shows that the lowest layers of
PHY are susceptible to unintended interpretations of data.
By now we are used to such unintended interpretations
in higher layers, such as various kinds of SQL injection
(SQLi), command injection, and, more generally, “in-band
signaling” vulnerabilities in application protocols. However,
on the byte level there is little conceptual difference between
Packet-in-packet and SQLi, as they are caused by similar
mismatches between the downstream code’s expectations of
input-processing logic and the algorithmic reality of this
logic (cf. [4], which applied language-theoretic insights to
input validation, using SQLi as an example). Computation-
ally simple recognizers cannot discern the intent of bytes or
symbols in the input stream, yet subsequent code is written
as if they could.

Why We Need LangSec Stacks: We see this case study
as evidence that no part of the stack that transforms inputs
can be left to “mere engineering,” be it ever so classic and
venerable. Wherever there is recognition and interpretation
of data, formal language-theoretic principles of recognizing
input must underlie that layer’s or sublayer’s design.[5]

Specifically, any structures in the input must be extracted
and the validity of the entire input decided only by a
well-defined computation model, such as a finite state or
pushdown automaton, and the validity of input data must
be specified in terms of a formal language matching that
model, such as a regular grammar or a context-free grammar,
with simplest possible language preferred. The alternative is
confusion between convenient higher layer abstractions such
as intended meanings or even boundaries of input bytes,
symbols or bits, and the actual properties of the recognizers
that are expected to faithfully recreate these abstractions
while altogether lacking the computational power to do so.

Since data recognition and transforming action is central
to network stacks no matter what other functions (such as
encapsulation, addressing, or routing) guide their design,
we envision secure stacks designed around strict language
recognition disciplines: LangSec Stacks.

A New Hope?: A promising new direction to avoid the
confusion between data and signaling from the PHY layer up
has been presented by Michael Ossmann and Dominic Spill
in [6], [7]. They present an Isolated Complementary Binary
Linear Block Code (ICBLBC) encoding scheme that uses
two distinct, separated error correcting codes for data and
signaling info, and spaces the points of these codes to avoid
confusion due to error. While designed explicitly to avoid
traditional packet-in-packet attacks, these codes also resist
our new variant of that technique for receiver manipulation,
and may provide a way forward for lower sublayers of PHY.

Not only digital radio: Finally, we note that just as
Packet-in-packet attacks aren’t limited to digital radio—as
demonstrated by Barisani et al. in [8]—the above PHY
manipulation technique is likely not so limited either.

ACKNOWLEDGMENTS

We would like to thank Julien Vanegue for pointing out
the role of transducers in unexpected computation models
(weird machines) and Felix ‘FX’ Lindner for the discussion
of a LangSec Stack as a principle for future networking
architectures. Thanks are also due to Sergey Bratus for
his stubborn—and valuable!—refusal to stop harping about
fingerprinting.

REFERENCES

[1] A. Biswas, A. Alkhalid, T. Kunz, and C.-H. Lung, “A
Lightweight Defence against the Packet in Packet Attack in
ZigBee Networks,” Wireless Days (WD), IFIP, November
2012.

[2] T. Goodspeed, “An Advanced Mitigation Bypass for Packet-
in-Packet; or, I’m burning 0day to use the phrase ‘eighth of
a nybble’ in print,” International Journal of PoC——GTFO,
vol. 3, no. 5, March 2014.

[3] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and
R. Speers, “Packets in Packets: Orson Welles’ In-Band Sig-
naling Attacks for Modern Radios,” in 5th USENIX Workshop
on Offensive Technologies, D. Brumley and M. Zalewski, Eds.
USENIX, August 2011.

[4] R. J. Hansen and M. L. Patterson, “Guns and Butter: Towards
Formal Axioms of Input Validation,” Black Hat USA, Au-
gust 2005, http://www.blackhat.com/presentations/bh-usa-05/
BH US 05-Hansen-Patterson/HP2005.pdf.

[5] L. Sassaman, M. L. Patterson, S. Bratus, and M. E. Lo-
casto, “Security Applications of Formal Language Theory,”
IEEE Systems Journal, vol. 7, no. 3, pp. 489–500, 2013,
http://langsec.org/.

[6] M. Ossmann and D. Spill, “Unambiguous Encapsulation -
Separating Data and Signaling,” Great Scott Gadgets Technical
Report 2014-03-1, March 2014, http://greatscottgadgets.com/
tr/gsg-tr-2014-1.txt.

[7] D. Spill and M. Ossmann, “Unambiguous Encapsulation:
Separating Data and Signaling,” ShmooCon 2014,
January 2014, https://archive.org/details/ShmooCon2014
Unambiguous Encapsulation.

[8] A. Barisani and D. Bianco, “Fully Arbitrary 802.3 Packet
Injection: Maximizing the Ethernet Attack Surface,” BlackHat
USA, August 2013, https://media.blackhat.com/us-13/
US-13-Barisani-Fully-Arbitrary-802-3-Packet-Injection-WP.
pdf.

