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ABSTRACT
Producing IEEE 802.15.4 PHY-frames reliably accepted by
some digital radio receivers, but rejected by others—depending
on the receiver chip’s make and model—has strong implica-
tions for wireless security. Attackers could target specific
receivers by crafting “shaped charges,” attack frames that
appear valid to the intended target and are ignored by all
other recipients. By transmitting in the unique, slightly
non-compliant “dialect” of the intended receivers, attackers
would be able to create entire communication streams in-
visible to others, including wireless intrusion detection and
prevention systems (WIDS/WIPS).

These scenarios are no longer theoretic. We present meth-
ods of producing such IEEE 802.15.4 frames with commod-
ity digital radio chips widely used in building inexpensive
802.15.4-conformant devices. Typically, PHY-layer finger-
printing requires software-defined radios that cost orders of
magnitude more than the chips they fingerprint; however,
our methods do not require a software-defined radio and use
the same inexpensive chips.

Knowledge of such differences, and the ability to fingerprint
them is crucial for defenders. We investigate new methods
of fingerprinting IEEE 802.15.4 devices by exploring tech-

niques to differentiate between multiple 802.15.4-conformant
radio-hardware manufacturers and firmware distributions.
Further, we point out the implications of these results for
WIDS, both with respect to WIDS evasion techniques and
countering such evasion.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

Keywords
IEEE 802.15.4; ZigBee; wireless sensor networks; security

1. INTRODUCTION
Ubiquity of digital radios. Wireless sensor networks (WSN)
represent a massive and rapidly growing technology sector.
These devices will monitor and control many aspects of our
daily lives, from home automation to health care monitoring
to industrial management. Some market research estimates
1 billion radio frequency integrated circuit (RFIC) devices
will be deployed by 2017 [29], the majority of which will be
IEEE 802.15.4 [4] and ZigBee [43] standards compliant. It
is estimated that by 2015, nearly 65 million digital utility
meters, or “smart meters,” will be installed in homes around
the United States [30].

Importance of studying commodity hardware capabil-
ities. Increasing dependence on these digital radios calls
for understanding their stacks from the ground up, includ-
ing the peculiarities and capabilities of their various PHY-
layer commodity implementations. In particular, manipula-
tions of PHY- and LNK-frames achievable with commodity
means—and other commodity stacks’ reactions to them—
are of special interest for defenders. Overlooked capabilities
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of commodity hardware leads to nasty surprises for the de-
fenders of a deployed base previously considered reasonably
secure. For example, discovery of methods to inject arbi-
trary crafted 802.11 LNK-frames with commodity 802.11
hardware around 2005 led to the embarrassing “Month of
Kernel Bugs” (MoKB) in 2006 that exposed multiple vulner-
abilities in Wi-Fi drivers across all operating systems and in
many embedded implementations. Wi-Fi suddenly became
the path to Ring 0 attacks that merely required a user to
open a laptop to be penetrated.1

In this work, we demonstrate just such effects on IEEE
802.15.4-conformant devices via PHY-layer frame shaping
with commodity hardware. Our techniques impact the de-
fensive monitoring, fingerprinting, and offensive targeting of
802.15.4 networks, including bypasses of wireless intrusion
detection and prevention systems (WIDS/WIPS).

Operational importance of device fingerprinting. Ac-
tive fingerprinting of wireless devices at the PHY-layer is
important for operational reasons, especially when the op-
erator suspects that rogue or “evil twin” devices may be
present. The deeper the layer at which active fingerprinting
operates, the tougher are the timing requirements for the at-
tacker to imitate a particular behavioral profile logically, on
non-native hardware. For mission-critical systems, such as
patient insulin pumps and power grid monitors, quick-and-
dirty, but accurate identification of network devices in field
environments is very useful—perhaps more practically useful
than the corresponding capabilities of tools like Nmap [7],
Xprobe [12], or P0f [8] in enterprise networks.

Offensive implications of commodity-level PHY-receiver
differences. We demonstrate that commodity 802.15.4 dig-
ital radios are capable of producing PHY-frames that differ
in appearance between various 802.15.4 receivers; while be-
ing accepted as valid by some receivers, these frames may
be rejected by others—depending on the radio chip’s make
(and, occasionally, firmware). This has direct implications
for attack planning. Using this physical-frame-level tech-
nique the attacker can:

• Craft and broadcast “shaped charges,” attack payloads
that appear valid to only the intended target.

• Covertly communicate with target nodes by construct-
ing a “dialect” of IEEE 802.15.4 PHY-frames that will
be intelligible to only these nodes, not others of a dif-
ferent make or firmware. We call this covert channel
technique a deliberate partial compatibility channel, or
dialect channel.2

• Bypass WIDS/WIPS systems that utilize a different
digital radio receiver, as monitor(s), than that of the

1The title of the presentation that set off MoKB, “Hijack-
ing a MacBook in 60 seconds,” aptly captured the security
community’s dismay at this new attack vector; previously,
the primary danger to Wi-Fi connections was believed to be
sniffing of unencrypted frames.
2In Frank Herbert’s epic science fiction novel “Dune,” op-
posing military forces used battle languages unintelligible to
enemies, due to shared religious proscriptions on computing
systems that excluded most kinds of complex automation.
We decided for a more neutral term, but recognize that it
would perfectly fit a more developed version of the dialect
channels we describe.

network nodes they protects. This is a specific use of
deliberate partial compatibility of PHY-frame dialects.

The purpose of this work is to expand the state-of-the-art in
IEEE 802.15.4 physical-layer manipulation achievable with
commodity 802.15.4/ZigBee devices, enabling device identi-
fication, targeted attacks, and WIDS/WIPS bypasses. We
have built an experimental framework, code-named Isotope,
around commodity hardware and open-source software. We
have also developed several techniques that we hope to prove
effective, with experimental and statistical significance, in
differentiating between multiple devices’ hardware and firmwares.

The remainder of this paper is organized as follows: Section
2 discusses previous work and provides context for our con-
tributions; Section 3 introduces the offensive implications of
this work; Section 4 provides a brief primer on the IEEE
802.15.4 standard and introduces the frame crafting tech-
niques we have developed; Section 5 describes our experi-
mental setup; Section 6 reveals our preliminary results; and,
finally, Section 7 offers concluding remarks and a nod toward
future work.

2. PREVIOUS WORK
Our work extends previous work on active fingerprinting
from our lab [19, 13, 22, 40]. It also harkens back to
the classic work on evading intrusion detection and preven-
tion systems (IDS/IPS) [36, 28] that exploited differences in
network streams reassembly by the attack targets and the
IDS/IPS protecting them—which have since been general-
ized as parser differential attacks [32, 37].

We note that previous work in digital radio fingerprinting
has focused primarily on transmitters rather than receivers.
In constrast, we focus on fingerprinting receivers, which im-
mediately delivers the attack insights that we describe in
Section 3.

2.1 Digital Radio Fingerprinting
In this subsection, we briefly describe the types of digital ra-
dio fingerprinting and their application to offensive and de-
fensive exploits. For a more detailed understanding, Danev,
Zanetti, and Capkun provide a thorough survey of the state-
of-the-art in wireless fingerprinting [21].

Physical-layer device identification, or fingerprinting, endeav-
ors to exploit unique (often subtle) characteristics in the
digital circuitry or firmware implementation of a device.
Slight imperfections in the radio circuitry, introduced during
the manufacturing process, might be detectable during ra-
dio transmissions. In addition, bugs or deviations from the
standard in the firmware implementation may also be ob-
servable during radio operation. These imperfections, bugs,
or deviations are known as fingerprints or device signatures.

There are both passive [23, 24, 31] and active [19, 13] meth-
ods of fingerprinting wireless radio devices. In passive meth-
ods, a third party attempts to unobtrusively sniff the com-
munications channel. Unique signals or transmission timing
may be considered a fingerprint. Naturally, this approach
is often lossy or error prone due to the potential lack of
traffic over the wire or interference from the multiple layers
of the radio stack [36]. Alternatively, active techniques at-
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tempt to interact with a device, often by sending specially
crafted requests, in hopes of eliciting a response. Both the
data contained in the response and the response itself can
be considered a fingerprint.

Applications of Fingerprinting. Fingerprinting digital sys-
tems has a long history of offensive and defensive applica-
tions. Security tool collections such as BackTrack Linux [1]
include a growing number of fingerprinting tools, and secu-
rity education organizations such as SANS [9] treat it as an
essential topic.

For attackers, fingerprinting targets has long been a way of
focusing effort on finding systems known to be vulnerable.
It is essential in the presence of defensive misdirection mea-
sures such as false bannering or redirecting honeypots [11],
as it helps to see through the defenders’ deception. Not
surprisingly, as soon as fingerprinting techniques became a
part of standard TCP/IP network reconnaissance (in toolk-
its such as Nmap and Xprobe) an arms race ensued with
tools such as Honeyd [3] and IP Personality [5] offering func-
tionality to deceive fingerprinting techniques by imitating
known signatures.

Impersonating trusted wireless nodes has long been a pre-
mier tool in attackers’ arsenals. A tool that can identify
software, firmware, or hardware and its version by highlight-
ing differences between implementations, is especially useful
when identifying wireless nodes, both benign and malignant,
and finding vulnerable software, firmware, and hardware
combinations. The IEEE 802.15.4 and ZigBee standards
offer no exception to this rule. By design, these are com-
modity technologies (in particular, much more so at their
origins than 802.11/Wi-Fi). Impersonating a wireless node
does not pose a considerable challenge to attackers, bar-
ring strong cryptographic identification of nodes. Fully func-
tional IEEE 802.15.4- and ZigBee-conformant digital radios
can be acquired cheaply3.

Ubiquitous deployments of IEEE 802.15.4 devices pose con-
siderable authentication challenges [39], and it is not clear
if classic PKI-based two-way authentication schemes will be
a practical solution. Given the lack of strong cryptographic
authentication during a device’s commissioning phase 4, to
be able to fingerprint an IEEE 802.15.4 radio on a device
as belonging to a particular vendor’s fleet may provide a
piece of crucial evidence for trusting the device. Even when
cryptographic authentication is in use, the implementation
details of key storage and management may be problem-
atic5, and may lead to the keys being extracted and used by
adversaries. In such situations, the capability to fingerprint
physical devices may provide an additional layer of assur-
ance when authentication material comes under suspicion.

3See http://www.adafruit.com/category/29 for some ex-
ample products.
4Some ZigBee profiles, such as the Home Automation Pro-
file, have a defined initial key (included in the specification)
which it uses to encrypt the initial key transport frame which
distributes the network-wide key.
5For example, although the specification says that up to 255
ACL entries may be supported, some radios like the CC2420
only support 2 ACL entries [35].

It is worth noting, to the authors’ knowledge, the methods
we describe in this paper and their application to the IEEE
802.15.4 standard represent the state-of-the-art in wireless
fingerprinting without using software-defined radios.

2.2 Parser differential attacks
The requirement for security components to interpret poten-
tially hostile inputs the same way as the rest of the system or
network they protect has long been an implicit requirement
for such components’ efficacy. For TCP/IP stacks, Ptacek
and Newsham previously highlighted it [36], however, it was
not yet made formal. The analysis of X.509 parser imple-
mentation differences [32]—leading to a plethora of attacks
on the SSL Certificate Authority (CA) infrastructure us-
ing crafted Common Names interpreted differently by CAs
(as low-value domain name) and SSL clients (as high-value
domain name)—exposed it as a formal requirement for dis-
tributed systems.

Since then, such parser differential attacks have been gener-
alized to many kinds of systems and protocols [37, 38], in-
cluding the 802.15.4, 802.11/Wi-Fi, and similar PHY-layers [27],
and recently even to 802.3/Ethernet [18].

3. ATTACK AND EVADE VIA RECEIVER
FINGERPRINTING

As we noted above, digital radio fingerprinting efforts have
primarily focused on fingerprinting transmitters, down to
the individual radio frequency (RF) characteristics of a sin-
gle radio. Such fingerprinting focus helps security models
that stress authentication and attribution but do not in-
form defenders about “sneaky” targeted attacks that may
be launched against their systems. In contrast, our active
fingerprinting methods focus on weaknesses of receivers and
their use by attackers.

Shaped charges for targeted receivers. Digital radios en-
able supervisory control and data acquisions (SCADA) ap-
plications in physical systems, such as buildings or entire
neighborhoods, where the wired connectivity costs of in-
stalling sensors and remotely controlling units would be pro-
hibitive. With 802.15.4 radios at the forefront of these SCADA
applications, an attacker or a penetration tester of a SCADA
wireless network may soon need to consider the presence of
other radios while planning an attack or even a casual scan.6

For example, a “smart” building may feature several digital
radio systems from different vendors, using different makes
of radios, with an admixture of personal wireless devices of
various degrees of criticality. Planning an attack on one of
these subsystems would require avoiding accidental damage
to others. Luckily, crafting the attack frames to a particular
vendor’s radio used by the targeted system may solve this
problem. We call such attacks shaped charges, where the
intended damage is limited to a particular subset of receiving
systems.
6Penetration testing folklore has many stories of legacy sys-
tems unexpectedly crashing due to a scan, and of customers
expressing such concerns during assessment planning. While
hard data on such occurrences may be impossible to get, we
are reminded of the popular early 90s hoax, “don’t open
suspicious email, it may infect your computer with a virus”;
which a decade later turned into a user education mantra.
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WIDS/WIPS-resistant dialects. Our work has significant
implications for the design of future IDPS. At the very least,
it would inform digital radio monitoring and IDPS with
some clues of what to look for below the level of the log-
ical bytes of captured frames, i.e., what attacks may be
facilitated—and so also, detected and disrupted—by craft-
ing not just the frame payloads, but also their physical layer
(PHY) and physical layer convergence protocol (PLCP) rep-
resentations.

Critical to defense is the knowledge of and ability to recog-
nize WIDS/WIPS evasion. Thus, it is key to understand
any stable ways in which a WIDS/WIPS may not see a
frame (beyond just being out of range), but the target would.
These types of attacks are introduced in the seminal work by
Ptacek and Newsham [36]. They introduced injection and
evasion attacks in which the data seen over the wire differed
between the receiver and the IDPS.

If a frame is ignored by a receiving radio, then carefully
crafted packets can be injected into the WIDS/WIPS’s view
of a monitored communication. On the other hand, frames
that the WIDS/WIPS may ignore, but that are accepted
by a receiving radio represent the potential for an entire
back-channel of communications that a monitor would never
see—an entire attack dialect that escapes the monitor’s no-
tice or confuses the WIDS/WIPS into judging attack com-
munications meaningless or innocuous. We anticipate the
emergence of tools that produce such dialects for digital ra-
dio protocols, just as they appeared for wired protocol fea-
tures such as IP fragmentation (fragroute), TCP/UDP seg-
ment injection (firewalk), and similar tools for manipulating
TCP/IP stack differences.7

4. METHODS
In this section, we look at the IEEE 802.15.4 standard and
describe the receiver fingerprinting and targeting techniques
we have developed.

4.1 IEEE 802.15.4 Standard
The Institute of Electrical and Electronics Engineers (IEEE) [4]
created the 802.15 workgroup for Wireless Personal Area
Networks (WPAN) in the early 2000s to establish standards
for Layers 1 and 2 (physical and link, respectively). The
IEEE 802.15 workgroup defined standards that include 802.15.1,
a derivative of Bluetooth intended for general WPANs, and
802.15.4, designed for low-rate WPANs (LR-WPANs). LR-
WPANs are attractive for low-power, low-range, low-bandwidth,
and low-cost applications of wireless networking, particu-
larly for industrial control and embedded systems.

ZigBee is a Layer 3 (network layer) specification which layers
on top of the 802.15.4 layers and is more well-known than
802.15.4. While ZigBee is ripe for investigation in many
different forms of fingerprinting, this paper focuses on the
layer beneath ZigBee—the IEEE 802.15.4 standard.

In the IEEE 802.15.4 standard, the smallest amount of in-
formation that can be sent over the air is four bits, also

7For examples see, “Building Open Source Network Security
Tools: Components and Techniques”, Mike Schiffman, Wiley
2002.

Figure 1: An IEEE 802.15.4 standard physical
frame. For all physical frames, the SHR should be 8
symbols of zero (0x0) followed by 0xA7. The frame
length, in octets, varies with the size of the physical
payload. Physical frame types differ in their payload
requirements. The final element of the payload, not
shown, may be the FCS.

known as a symbol. The standard defines four types of
physical frames: beacon, data, acknowledgement, and com-
mand. The standard physical frame layout, for all four types
of frames, is shown in Figure 1. A standard frame consists
of a synchronization header (SHR), a physical layer (PHY)
header (PHR), and a payload within the physical service
data unit (PSDU). The physical frames differ in their pay-
load, but all contain a standard SHR and PHR. The SHR
comprises an 8-symbol wide preamble of zeros (0x0) and the
start-of-frame delimiter (SFD), which must be 0xA78. This
header, as its name implies, serves to synchronize the re-
ceiving radio with the transmitting radio so that symbols
are correctly pulled out of the signal. The frame length, a 7-
bit number representing the number of octets in the physical
payload, and a single reserved bit compose the PHR. The
payload, or packet, follows the length and contains all the
data for Layer 2 and higher. Each type of physical frame re-
quires a different payload structure. Finally, not shown here,
the optional 4-symbol wide frame control sequence (FCS) is
a checksum used to check for data corruption in the payload
during transit.

4.2 Fingerprinting Techniques
Here we will describe four new techniques for fingerprint-
ing IEEE 802.15.4 stacks, with a focus on the physical layer.
Each technique is active—a stimulus frame with a non-standard
physical-layer header is transmitted and the target’s response
or lack thereof is recorded. Our hypothesis is that we can
distinguish different radio chipsets by which type of stimu-
lus packets they are able to receive. To determine whether a
given chipset has indeed received a packet, we send a frame
whose payload triggers a response by a higher layer—such
as beacon request. If we receive the correct response to our
stimulus, we assume that our crafted frame was received.

Crafting Physical Frame Headers. Before introducing
the designed methods, it should be noted that many com-
modity radios cannot craft arbitrary physical frame headers,
SHR and PHR. By design, the radio hardware manages the
frame headers to assure proper functionality. In order to
fully control a physical frame’s contents, we make use of our
good neighbor Travis Goodspeed, et al’s packets-in-packets
(PIP) frame-injection technique [27].

The PIP technique for IEEE 802.15.4 digital radios is rela-
tively simple. The 802.15.4 standard requires the SFD to be
0xA7. If an 802.15.4-compliant radio receives an SFD of any

8Some radios deviate from the standard and allow the SFD
to be set via an internal register.
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other value, the receiving radio resets itself into a fresh re-
ceiving state, listening again for a new SHR. As noted above,
some radios permit us to specify the SFD value via a regis-
ter, which allows us to transmit frames with non-compliant
SFDs. Any receivers expecting the standard SFD will reset
themselves after seeing the unexpected symbols. The trans-
mitting radio, however, will continue to send the remainder
of the frame. If the remainder of the frame contains a stan-
dard SHR the receiver will think it is receiving a fresh packet.
In this way, we are able to transmit a non-standard phys-
ical frame that contains a fully-standard physical frame, a
packet in a packet.

A Variable Preamble Length. The variable preamble length
fingerprinting technique focuses on the preamble used to put
the receiving radio into a state where it is ready to accept
an SFD followed by the remainder of the frame. While the
IEEE 802.15.4 standard defines the preamble length to be
eight symbols containing the value 0x0, some radios might
accept frames with fewer than the stated number, while oth-
ers do not. Figure 2 shows the general layout of a frame gen-
erated to test a target’s response to non-standard preambles.
The aim of this technique is to measure the number of zero
symbols, before the SFD, a chipset requires in order to ac-
cept a frame. Note that the only portion of the frame that
is altered from the IEEE 802.15.4 standard is the preamble
length.

Figure 2: A physical frame with variable preamble
length. The number of zero (0x0) symbols that com-
pose the preamble is varied between 0 and 8. Any
response to a non-standard preamble might signify
a fingerprint.

A Franconian Notch. According to the IEEE 802.15.4 spec-
ification, a preamble field should contain 32 binary zeros—
eight zero (0x0) symbols. However, some chipsets may ac-
cept non-standard preambles. For example, the CC2420 [41]
can be programmed to ignore some of the least significant
symbols in the synchronization header to help it be more
resilient to noise. Figure 3 shows the physical frame crafted
for the Franconian Notch9 method. Here we modulate each
subsequent symbol of the standard preamble from 0x0 to
0xF10, going from all zeros (0x0s) to all 0xFs. The aim of
this technique is to measure the number of invalid preamble
symbols a radio is willing to accept. Note, again, that the
only portion of the frame that is modified from the IEEE
802.15.4 standard is the preamble symbols.

A Franconian Bridge. Inspired by the previous approaches,
the Franconian Bridge method “spans the gap” between the
variable preamble length and Franconian Notch techniques.
As shown in Figure 4, the Franconian Bridge checks to see
how a target responds to having a varying number of 0xF
symbols placed between the fully-standard preamble and the
SFD. Technically, this will evaluate a radios behavior in the

9The Franconian Notch is a mountain pass through the
White Mountains of New Hampshire.

10It should be noted that we do not attempt to modulate all
of the possible combinations of 0x0s and 0x1s.

Figure 3: A physical frame with Franconian Notch.
The number of zero (0x0) symbols that compose the
preamble is varied between 0 and 8, with the lengths
remainder transformed into 0xF symbols. Any re-
sponse to a non-standard preamble might signify a
fingerprint.

presence of a seemingly non-standard SFD. As before, the
only portion of the frame that is modified from the IEEE
802.15.4 standard is that which follows the preamble and
precedes an SFD.

Figure 4: A physical frame with Franconian Bridge.
A varying number of 0xF symbols are inserted be-
tween a fully-standard preamble and SFD. Any re-
sponse to a non-standard SFD might signify a fin-
gerprint.

A Cumberland Gap. The Cumberland Gap11 technique,
as seen in Figure 5, measures how a target behaves with re-
spect to receiving frames immediately after receiving a valid
preamble and an invalid SFD, followed by a standard frame.

Figure 5: A physical frame with Cumberland Gap.
An invalid SFD is injected, followed by a varying
amount of garbage symbols. Any unique response
might signify a fingerprint.

It is important to remember that when radios are listening
for data, they read whatever they find into a symbol. There-
fore, it is quite common for a radio to be prepared to accept
a frame when it is merely listening to interference and read-
ing garbage as symbols. There are a few discrete states that
a radio state machine has to go through when finding an
SFD. In this method, we intentionally make the SFD very
close to the standard to nudge the receiver as close as pos-
sible to the state in which it receives a full frame without
outright telling it to take the remainder of the frame. When
the incorrect SFD arrives, the chip goes back to listening for
a preamble—we seek to measure the timing of this behavior.
The fewer symbols that we can inject and still get a response
may imply a faster turn-over time, and might also signify a
fingerprint.

5. EXPERIMENTAL SETUP
To test the functionality of our proposed fingerprinting meth-
ods, we built a testbed to examine how different IEEE 802.15.4
stacks respond to the types of non-standard physical headers
previously described.

5.1 Testbed Layout
11The Cumberland Gap is a mountain pass through the
Appalachian Mountains between Tennessee, Kentucky, and
Virginia.
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Our testbed consists of only commodity hardware and open-
source software. As shown in Figure 6, two IEEE 802.15.4-
conformant radios are connected (via serial over USB) to a
single workstation running Isotope, our fingerprinting soft-
ware. Isotope is a Python framework that utilizes the open
source libraries Scapy [10], to build 802.15.4 physical frames,
and KillerBee [6], to configure the radios, monitor commu-
nications traffic, and inject arbitrary frames. One radio is
used solely to transmit crafted frames and the other radio
is used to sniff all traffic on a particular channel. The third,
unknown, device is setup to listen on a specific channel and
respond to beacon requests.

Figure 6: The fingerprinting testbed. Our Python
framework, Isotope, manages separate transmitting
and receiving radios and monitors communications.
All radios operate on the same channel, with the
transmitter sending out non-standard beacon re-
quests. The unknown device is configured to listen
for valid requests and respond. The receiving radio
listens for beacon responses.

Although this setup may appear contrived—802.15.4 devices
may be configured to hop between various channels, as they
send and receive frames, for additional robustness or to frus-
trate reverse engineering—we believe that our setup is a
good starting point and that it can be extended to work
with a variety of target configurations.

5.2 Hardware and Software
We tested multiple devices12 including Zigduinos [33], RZUS-
Bsticks [17], and the popular (but now discontinued)Tmote
Sky [34]. Each of these devices contain different on-board
radio chips, namely an Atmel ATmega128RFA1 [16], an
Atmel AT86RF230 [15], and a Chipcon CC2420 [41], re-
spectively. Finally, each device has several associated open-
source firmware distributions including Arduino [14], Chibi [25,
26], Contiki OS [20], GoodFET [2], and Tiny OS [42]. Ta-
ble 1 summarizes the different possible combinations.

6. RESULTS
To-date, only the GoodFET firmware combinations have
yielded results. The following charts represent the individual
beacon responses received, out of 1000 non-standard beacon
requests, for each radio device with GoodFET firmware.

A variable preamble length. Figure 7 shows the results
of varying the number of preamble symbols from 0 to 7—
8 zero (0x0) symbols is the standard. Clearly, the Tmote

12We did not test the Freakduino, and only recently received
the Api-Mote to replace the Tmote Sky.

Device Radio Firmware

zigduino atmega128rfa1

Arduino
Contiki

GoodFET
TinyOS

freakduino

at86rf230

Arduino
Chibi

rzusbstick
Chibi

Contiki
Raven

apimote

cc2420

GoodFET

tmote sky
Contiki

GoodFET
TinyOS

Table 1: Hardware and Firmware Combinations
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Figure 7: Variable preamble results.

device responds to the fewest number of preamble symbols.
It is possible that this is by design. Remember, the Tmote
contains a CC2420 radio chip which allows a programmable
number of preamble bits to be accepted. Assuming normal
function, it seems obvious that the Tmote is distinguishable
from the Zigduino and RZUSBstick. Somewhat unsettling
is that the RZUSBstick responds to less than 200 beacon
requests with 6 or 7 symbols. It is possible that this device
is more strictly-standards compliant; a test run with exactly
8 symbols would verify this assumption.

A Franconian Notch. Figure 8 showcases the results of
transforming the preamble from 8 zero (0x0) symbols to 6
0xF symbols. Zero (0) on the Y-axis represents a fully stan-
dard physical frame, with zero 0xF symbols present. It ap-
pears as though the Tmote, previously loose with the stan-
dard, is now fully compliant. Since the Tmote previously
accepted fewer preamble symbols, this could be an artifact
of the radio interpreting the additional 0xF symbols as an in-
valid SFD, or it could have to do with the RF demodulator’s
sync circuit being thrown out of state by the additional bit
transitions. Again, the RZUSBstick responds to far fewer
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Figure 8: Franconian Notch results.

beacon requests. This may be explained by the position of
the mote during testing or the fact that both the Tmote and
Zigduinos use external antennas. In either case, the RZUS-
Bstick stands out by accepting as many as 4 0xF symbols
within the preamble. For both the Tmote and RZUSBstick,
this looks like a possible identifier.

To verify the integrity of these promising results, we re-ran
the Franconian Notch on even symbols with an RZUSBstick
and, in place of a Tmote, a newly acquired ApiMote. The
results from this limited test are shown in Figure 9. The
RZUSBstick was determined as having received a frame if
it produced the requisite beacon frame in response (results
also confirmed with it’s logs and the ApiMote’s PCAP), and
the ApiMote collected full PCAP which was processed to
count how many times it captured the Beacon Request frame
depending on which Franconian Notch preamble variation
was used.

Of particular note is that the RZUSBstick preforms remark-
ably well receiving packets with up to 6 symbols of 0xF be-
fore the SFD. However, the ApiMote’s CC2420 chip 13 did
not receive packets proceeded with a preamble which did not
have 8 symbols of 0x0. Both of these results seem consis-
ten with our earlier tests, and even tacitly suggest that the
ApiMote is a good successor to the Tmote.

A Franconian Bridge. The results for the Franconian Bridge
method are shown in Figure 10. Recall that this technique
inserts garbage between a valid preamble and a valid SFD.
Ideally, a radio would interpret the garbage as an invalid
SFD. As in the previous method’s results, the Tmote strictly
adheres to the standard; while, the RZUSBstick drastically
increases its responses from the previous two tests. The
RZUSBstick accepts up to 5 garbage symbols interposed be-
tween the preamble and SFD.

13The ApiMote was running the GoodFET firmware, with
the standard values unchanged in the CC2420 for both MDM-
CTRL0.PREAMBLE_LENGTH and SYNCWORD.
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Figure 9: Franconian Notch results on even-sized
symbols.
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Figure 10: Franconian Bridge results.
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Figure 11: Cumberland Gap results.

A Cumberland Gap. The results for the Cumberland Gap
method, seen in Figure 11, do not seem encouraging. None
of the motes respond to more than about 600 beacon re-
quests. There may have been some interference or chan-
nel noise during this test run. Additional tests should be
performed. It appears as though the Tmote has the fastest
turnaround time, while the RZUSBstick maintains the slow-
est.

7. CONCLUSIONS
With the number of wireless sensor networks exploding, a
large portion being IEEE 802.15.4 and ZigBee devices, it is
essential that we be able to secure and protect these devices
and networks for mission-critical systems. Fingerprinting
these radio devices is a first step along the path to achieving
that security. Device identification, both passive and active,
has been used on many other wireless network protocols.
Our work seeks to apply it to IEEE 802.15.4-conformant ra-
dio devices. By accurately identifying different devices, we
have another tool, on-top of PKI authentication schemes,
for verifying trusted nodes in a network. Similarly, by ana-
lyzing how frames and packets make their way through the
firmware and radio circuitry, it is possible that we may un-
cover hidden vulnerabilities and attack vectors.

With only preliminary results, it appears that the Tmote de-
vices (and new ApiMote devices), with the Chipcon CC2420
radio chipset, and the RZUSBsticks, with the Atmel AT86RF230
radio chipset, are identifiable. A summary of our results to-
date is shown in Table 2. The Tmotes clearly respond to
very non-standard preamble lengths, whether by design or
flaw; however, the same devices seem to be very strict on
preamble and SFD content. Meanwhile, the RZUSBsticks
present a conundrum. In three of the tests, the devices re-
spond with an alarmingly low rate. It is possible the devices
are very slow, are receiving too much noise, or simply do
not receive all the beacon requests without external anten-
nas. From the results that we do have, it looks like the
RZUSBsticks accept very non-standard preamble and SFD

content. The CC2420 chips look like the top contender so
far to avoid WIDS detection. Further work would need to
confirm this.

Firmware Preamble Franconia Notch Franconia Bridge Cumberland Gap

ATmega128RFA1

Contiki — — — —
Goodfet H H H H
TinyOS — — — —
Zigduino H H H H

AT86RF230
Chibi — — — —
Contiki — — — —
Raven I I I I

CC2420
Contiki — — — —
Goodfet H L L L
TinyOS H L L L

Table 2: Summary of results to-date. The following
table is labelled based on our current confidence in
identifiability. An ‘H’ means that for a specific ra-
dio/firmware combination, the given fingerprinting
technique is likely to be distinguishable from other
radio/firmware combinations. An ‘L’ means that,
at this time, little evidence suggests a specific ra-
dio/firmware combination is easily identifiable. An
‘I’ means inconclusive at this time. An ‘—’ means
that we have yet to test this radio/firmware combi-
nation.

7.1 Future Work
We feel this work is ripe for research. As shown above,
there are many more possible firmware and hardware com-
binations to test—we have really only just begun. Moving
forward, it will be necessary to evaluate the effect of noise
and interference on the testbed. Of course, our software
framework, Isotope, will also require some additional refine-
ments to make it more robust. Typically, in device identi-
fication, a database of fingerprints is used in combination
with some sort of machine learning method to analyze and
evaluate fingerprint matches. Our current work constitutes
only the first stage of identifying possible fingerprints. We
should also consider additional techniques for fingerprinting,
such as length overflow. Lastly, we would like to explore the
potential for WIDS evasion by these commodity radios.
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