
Towards Tiny Trusted Third Parties

Dartmouth Computer Science Technical Report TR2005-547

Alexander Iliev Sean Smith

July 2005

Abstract

Many security protocols hypothesize the existence of a trusted third party (TTP)
to ease handling of computation and data too sensitive for the other parties involved.
Subsequent discussion usually dismisses these protocols as hypothetical or imprac-
tical, under the assumption that trusted third parties cannot exist. However, the
last decade has seen the emergence of hardware-based devices that, to high assur-
ance, can carry out computation unmolested; emerging research promises more.
In theory, such devices can perform the role of a trusted third party in real-world
problems.

In practice, we have found problems. The devices aspire to be general-purpose
processors but are too small to accommodate real-world problem sizes. The small
size forces programmers to hand-tune each algorithm anew, if possible, to fit inside
the small space without losing security. This tuning heavily uses operations that
general-purpose processors do not perform well. Furthermore, perhaps by trying to
incorporate too much functionality, current devices are also too expensive to deploy
widely.

Our current research attempts to overcome these barriers, by focusing on the
effective use of tiny TTPs (T3Ps). To eliminate the programming obstacle, we used
our experience building hardware TTP apps to design and prototype an efficient way
to execute arbitrary programs on T3Ps while preserving the critical trust properties.
To eliminate the performance and cost obstacles, we are currently examining the
potential hardware design for a T3P optimized for these operations.

In previous papers, we reported our work on the programming obstacle. In
this paper, we examine the potential hardware designs. We estimate that such a
T3P could outperform existing devices by several orders of magnitude, while also
having a gate-count of only 30K-60K, one to three orders of magnitude smaller than
existing devices.

1 Introduction

Many distributed protocols consist of computation sensitive to two or more players,
who are potentially adversarial and with different interests and motivations. To ensure
that this computation possesses the desired security and privacy properties matching
the interests of these participants, designers often posit the existence of a trusted third
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party (TTP). If the main players trust this TTP not to cheat, then the desired security
properties can be obtained simply by moving the sensitive computation to the TTP. This
approach avoids the need for subtle and sometimes expensive cryptographic protocols
to achieve the same security without a TTP.

However, many regard the use of TTPs in protocols as cheating, on the part of the de-
signer. What organization or humans are sufficiently trustworthy? Even if an organiza-
tion might be sufficiently trustworthy right now, what about the future? Consequently,
although the addition of a TTP may make a design feasible from a computational per-
spective, it is considered akin to using magic or fairies [26]: not particularly appropriate
for the real world.

Organizational TTPs Traditionally, researchers tend to imagine a TTP as some
organization-based entity. In many applications, a third party can offer trust mostly on
the basis of being in a different, presumably impartial, organization than the participants
in the computation. Certification authorities usually fall into this category—a CA is
trusted because, as an organization, it is impartial about the secure computations its
certificates protect, and it must remain honest in order to maintain its reputation.
However, there is no technological way in which a relying party can decide if a given
certificate from a CA was actually generated properly.

This is presumably the kind of TTP that most people would not want to mediate their
multiparty secure computations.

Hardware On the other hand, computing devices designed to be trustworthy for re-
lying parties at remote locations have been designed and built. Such devices do actually
offer a possible incarnation of a TTP which does not rely on organizational trust, but
only on technological provisions, like strong physical security and self-authentication
mechanisms. Such devices, often called secure coprocessors in the literature, provide
secrecy and integrity for computation and data, against a wide variety of adversaries—
even those with physical access.

Unfortunately, these trustworthy devices tend to be small in computational power and
in memory. These limitations may even be inevitable; a TTP armored against an
adversary with physical access might not have a large memory because of the difficulty
of armoring a large device, nor run at high speed due to the difficulty of dissipating
heat. Although limited in size and power, these devices tend to be large and expensive
nonetheless; for example, the IBM 4758 housed an Intel 486-class processor and retailed
for approximately $2,500.

These limitations make it hard to actually use hardware-based TTPs in the real world:
how does one execute a large program with large data in a small box, in a way that
does not reveal information about the execution to the adversary?

We have nonetheless developed and implemented algorithms for solving some specific
large problems on hardware-based TTPs despite these size limitations. We have written
a compiler that transforms arbitrary programs into operations—including the above
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algorithms—that can easily fit inside limited-power TTPs.

Throughout our prototyping work, we used the IBM 4758 TTP, and noticed that we
overtaxed certain hardware capabilities, but barely used others; this experience sug-
gests that building a tiny TTP optimized for these operations might both improve
performance and lower cost.

This Paper This paper develops our vision for building tiny TTPs and using them
to build practical solutions to real security problems.

• Section 2 presents some background in current hardware-based TTPs, particularly
the IBM 4758.

• Section 3 reviews our experience using limited-power TTPs for private information
retrieval (PIR).

• Section 4 reviews how we compile arbitrary-size programs into circuits consist-
ing of arithmetic and logic gates, and “array gates” (which essentially perform
PIR), each of which we can handle with limited-power hardware-based TTPs. We
have demonstrated that this solution is considerably more efficient than tradi-
tional scrambled-circuit-evaluation techniques for secure multi-party computation
(SMC).

• Section 5 discusses the basic hardware elements we envision for an optimized tiny
TTP.

• Section 6 discusses how these elements might be assembled into a private execution
engine.

• Section 7 estimates how the performance and gate-count for this T3P compares
to prior hardware-based TTPs.

• Section 8 discusses related work.

• Section 9 concludes.

2 Current Hardware

The current incarnation of a hardware-based TTP is the secure coprocessor—a small
general purpose computer armored to be secure against physical attack, such that code
running on it has strong assurance of running unmolested and unobserved [33]. It also
includes mechanisms, called outbound authentication (OA)1 to prove that some given
output came from a genuine instance of some given code running in an untampered co-
processor [25]. The coprocessor is attached to a host computer, which provides storage,
network and fast (but untrusted) CPU services to the HW TTP. The TTP is assumed to

1OA is more recently referred to as attestation in the context of the Trusted Computing Group.
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M size of database or array record
N length of database or array
k in square-root algorithm, how many accesses before a re-permute
g number of record pairs each super-switch (g-switch) operates on
π a (pseudo)random permutation on [1..N ]

Table 1: Summary of parameters and notation used in this paper.

be trusted by clients (by virtue of all the above provisions), but the host is not trusted
(not even its root user). The strongest adversary against the schemes presented here is
the superuser on the host, who may also be equipped with a drill and logic analyzer.

IBM 4758 Secure Coprocessor

The 4758 is a commercially available device, validated to the highest level of software
and physical security scrutiny then (around 1999) offered—FIPS 140-1 level 4 [28]2. It
has an Intel 486 processor at 99 MHz, 4MB of RAM and 4MB of FLASH memory. It
connects to its host via the PCI bus.

The 4758 also has cryptographic acceleration hardware, and notably a “fast path” DES
and TDES mode of operation, where data can be streamed from the host through the
device’s DES engine and back out without touching the internal RAM. The only oper-
ation possible in this mode however, is a single encrypt, decrypt or MAC computation.
If anything more needs to be done, like decryption and MAC computation, or any data
processing, the data needs to be read into the device’s RAM, and can be processed only
much more slowly than in the fast-path mode.

In production, the 4758 runs IBM’s CP/Q++ embedded OS; however, experimental
research devices can run a version of Linux (as does the follow-on product from IBM,
the PCIXCC [1]). Linux has considerable advantages over CP/Q++ in terms of code
portability and ease of development.

3 Using Limited-size Hardware TTPs for the PIR Prob-
lem

Our lab has designed and built a number of applications using hardware-based TTPs.

The solutions we have studied and implemented share some structure, which can be
used to design more efficient hardware-based TTP architectures, much like graphics
processing benefits from optimized hardware to deal with a small set of computationally
intensive primitives. In this section we describe the problems and outline the structure
of these solutions.

2FIPS 140-1 has been superseded by 140-2 since 2002, but the new standard does not provide any
higher assurance levels [29].
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3.1 Private Information Retrieval

One of the problems we have worked on is private information retrieval (PIR): Boris
has a database of items X = 〈x1, x2, . . . , xN 〉 and Agnes selects an index i ∈ [1..N ]. We
want Agnes to learn xi without Boris learning i.

After this problem had received much treatment in the theoretical literature (eg. [7,
8, 17]), Smith and Safford suggested the practical PIR (PPIR) variant: Agnes should
need to do no more work than set up an SSL tunnel, ask for a record, and receive the
response; no other parties should be involved; and the solution should provide reasonable
performance on real-world dataset sizes [27].

Our work focuses on providing practical solutions with the assistance of a hardware
TTP [13, 15]. The PPIR problem nicely embodies the challenge of a limited-size hard-
ware TTP: if the TTP is big enough to store the entire database X, then the problem
is easy; however, what if the TTP is too small?

We accepted this challenge, and assumed that the TTP is small: if the records are of
size O(M), that the TTP can only fit O(M + log N) bits—the minimum required to
fit a constant number of records and indices. The whole database, and any additional
working storage, resides on the TTP’s host and is fully accessible to the adversary.

The basic algorithm we use was initially developed by Goldreich and Ostrovsky in their
oblivious RAM work [11], and later also used by Asonov [2]. Figure 1 sketches the
algorithm. First, the TTP generates a shuffle: a randomly permuted (and of course
encrypted) version of the database. For example, suppose π is a random permutation
on {1, .., N} and E denotes encryption under a new random key. Then a shuffle of X
can be denoted as Y = 〈y1, y2, . . . , yN 〉, where each yi = E(xπ−1(i)). We denote such a
shuffle under π as π(X). During this process, the host’s view of the TTP’s I/O should
be independent (or look independent when restricted to feasible computations) of the
actual permutation π—the database permutation procedure must be oblivious.

After generating a shuffle, suppose the TTP has received and answered a sequence of
requests r1, r2, .., rm from clients. How does the TTP service the next request, for rm+1?
The TTP could just fetch π(X)[π(rm+1)] from the host. This would hide the actual
identity of rm+1 from the host, who does not know π. However the host would still
learn whether rm+1 is the same as or different than all the previous ri’s respectively. To
hide these relationships, the TTP fetches all the previous ri’s. If rm+1 was not among
them, the TTP then fetches it. If it was among them, the TTP fetches a random rj

which has not been fetched yet. What the host observes is that all the previous fetched
records are fetched again, and then one more. It does not know which among all these
is the actual current query.

Since the time to handle a request thus grows with the number of requests since the
shuffle, each permuted database can only be used a limited number of times before a
new one, using a new random permutation, needs to be generated.3

3This is a simplified exposition, we refer the reader to [13, 15] for the full details, and some extensions
from the original prototype.
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Figure 1: The TTP randomly encrypts and permutes the dataset X to give π(X), reading in only
a few items at a time, and hiding π from the host.

In subsequent work, we extended our solution to allow Agnes to change the value of xi.

The most time-consuming part of this scheme is permuting the database obliviously
while using only very little trusted storage. It can be achieved in O(N log2 N) time
using Batcher’s bitonic sorting network [3]. Such networks are an important theme
here–we elaborate on them in the next section. Using a Beneš network would reduce
the time to O(N log N), but, to current knowledge, it requires O(N log N) trusted space
to calculate the network’s switch settings for a given π.

Since the permutation step is the most time consuming, it makes sense to try to optimize
it, in the form of a tiny TTP, described in the following sections.

To give an idea of the performance of our prototype, Table 2 shows the approximate
quality of service for different dataset sizes.

N Response Time
1024 5.5
2048 5.5
4096 8.7
8192 18.5

Table 2: Maximum query response times (in seconds) attainable by current PPIR prototype, with
different sizes of datasets. Record size is 850 bytes. As the dataset grows larger, the time to re-
permute it periodically dominates the overhead of re-fetching records. We had set the number of
queries before re-permutation to 200.

3.2 Oblivious Networks

A common theme in our work was the need for the TTP to perform operations obliviously
on a sequence X of N items residing on the host. Operations include permuting with
a given permutation π, sorting with a given sorting key k(xi), and merging two sorted
subsequences. Our non-standard requirements are:

Obliviousness the adversary (bounded to feasible computations) does not learn any-
thing about the parameters of the operation from observing the IO that the TTP
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performs. Equivalently, the IO sequence that the host observes is independent of
the operation parameters4.

Tiny secure memory The TTP has space to read in and operate on only a constant
number of records and indices at a time.

From other fields of computer science (eg. communication routing) comes the construct
of oblivious networks which can perform any of these tasks. These networks consists of
small operators whose settings are operation-dependent (eg. depend on the permutation
π), wired together in a fixed manner, independent of the operation.

Example: Permutation network A Beneš permutation network can perform any
permutation π of N input items by passing them through N log N crossbar switches
(the operators), each of which operates on two items, either crossing them or passing
them straight. The crossbar settings differ for different π, but the connections between
the switches is fixed for a given input size N . In Figure 2 we illustrate a small Beneš
network.

A bitonic sorting network is similar to the Beneš network, but it sorts its input, and
consists of N

4 log2 N comparators, each of which sorts two items. The comparators are
arranged in log2 N

2 stages.

These networks provide a way for the TTP to perform sorting and permutation obliv-
iously. For example, in the Beneš network case, to execute a switch the TTP reads in
the two items involved, internally crosses them or not, and writes them out re-encrypted
(using a new pseudorandom IV) so the host cannot tell if it was a cross or not. We call
this implementation of a switch an encrypted switch.

In general, oblivious networks work for our problem because (1) the TTP can use
cryptography to make each operator look the same (ie. independent of its setting) to
the host, and (2) the network wiring is intrinsically independent of the inputs. Thus
the TTP can emulate the whole network on any dataset while keeping the host’s view
independent of the dataset and the secret parameters (like π).

4 Using Limited-size Hardware TTPs for Arbitrary Prob-
lems

Suppose we wanted to execute a program with the security and privacy properties a
TTP provides (as defined in Section 4.1). If a TTP were big enough, we could just run
the entire program inside there. If the TTP is small, what can we do? In Section 3, we
discussed how, with much work, we could fit the PIR problem for large datasets into

4For an adversary bounded to feasible computation, the requirement is that the adversary has a
negligible success probability in distinguishing an actual TTP I/O pattern from a randomly generated
one, informally speaking.
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Figure 2: A Beneš permutation network with 4 inputs, performing the permutation 〈2, 3, 1, 0〉. The
dashed lines represent switch settings, which depend on the permutation. The rest of the network
only depends on the number of inputs.

a small TTP without sacrificing the security properties. Can we extend this result to
arbitrary programs?

We addressed this more general problem by looking at secure multi-party computation
(SMC) (also known as secure function evaluation—SFE). Restricted to two parties, the
SFE problem asks how Agnes and Boris can evaluate a function f , with 2 inputs and 2
outputs, on their respective private inputs xA and xB, such that each only learns their
own partial result.

An ideal solution to this problem is that Agnes and Boris send their inputs to an ideal
TTP, which computes f and distributes the results. In practice most current work on
SFE declares that such an ideal TTP does not exist, so Agnes and Boris need to achieve
a similar result by themselves. Most protocols to achieve this make use of a scrambled
or blinded circuit representation of f , as introduced by Yao [32]. One of the players
blinds the circuit, and the other evaluates the blinded circuit, without knowing what
actual values the blinded values he is computing represent. Recently a two-party SFE
prototype, Fairplay, has been implemented. [21].

One major weakness of the blinded circuit approach to SFE is that the use of indirectly-
addressed arrays is very expensive—accessing an N -element array requires O(N) gates,
and hence O(N) time. Observing that array access in the SFE setting is very similar to
PIR (i.e,. should leak no information about the value or index), we started a project
to use a hardware TTP to accelerate SFE protocols. Our current progress is reported
in [14]. We have built a new compiler for Fairplay’s Secure Function Definition Language
(SFDL), which produces an arithmetic circuit augmented with array access gates.

Then we used a 4758 to evaluate the circuit. (We pretended the 4758 had more limited
memory than it does, so that our results might be meaningful for future T3Ps.) The
circuit is stored as an array of gates, sorted in topological order. Each gate has a
corresponding value slot, which is where the gate’s output value is stored (encrypted).
The TTP writes the players’ input values into the value slots of input gates, then it
evaluates the circuit gates one by one, filling in their value slots. Array access gates
are handled using PPIR, so that the adversary on the TTP’s host (which is where the
array is stored) learns nothing about the array access pattern.

This early prototype shows a large improvement in performance over Fairplay (running
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on 2.7 GHz Intel Xeon processors with 4GB RAM and gigabit ethernet connection) for
array-intensive code, and similar performance as Fairplay for scalar code.

4.1 Properties of a “TTP application”

The security requirements of an SFE protocol are defined in Section 4—the inputs
and outputs of the computation have clear “owners”, and only the owner of a datum
should learn it. This definition covers many useful scenarios, but we see several useful
extensions in defining what a TTP application does and what the security requirements
are.

• Servers The standard SFE scenario specifies a one-time computation. Our PIR
prototype is structured as a server which responds to queries interactively. It
cannot be structured as a one-time computation, because of the expensive pre-
processing (permutation) of the dataset, which needs to be amortized across many
queries. This structure can be accomodated by specifying a circuit which the TTP
executes in response to a stimulus, like a PIR query.

The security requirement would be similar to that of one-time SFE—inputs and
outputs are only learned by their owners.

• Less sensitive data Our TTP could support the notion of less sensitive data, as
specified in the function f and its circuit form 5. Such data may not need to be
accessed obliviously, or even need to be encrypted.

5 Optimizing Hardware Bottlenecks

As we have discussed in the previous sections, the bottlenecks of our TTP-based PPIR
and SFE schemes are the permutation and sorting and merging networks, and their
essential component is the encrypted switch. Logically, the switch does the following:

• read in two encrypted records, check integrity, labeling, etc.;

• depending on the control bit, switch them or not;

• send them back out again, with new labelling, and the contents re-encrypted.

In practice, re-encryption consists of decrypting and then encrypting with a pseudoran-
dom IV.

Also as mentioned before, we used the 4758 for our prototypes. Although the 4758 had
support for quickly streaming data through its internal symmetric crypto engine (see

5In this work we do not discuss the problems associated with writing secure code, in SFDL. If the
SFDL programmer introduces a way for sensitive data to flow to an output where it should not, the
TTP circuit evaluator has no way to detect this error. Sufficiently complex functions may be verified
with explicit information flow control tools (see [24] for an overview).
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Hash 486 CPU
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Physical security boundary

Figure 3: In our previous prototypes, we used the IBM 4758 platform, which let us bring records
in or out through the TDES engine (which was much faster than using an OpenSSL software imple-
mentation of TDES on the 486 CPU), but required storing the records internally in RAM for integrity
checking and switching.

[20] for a discussion), it only had one engine, and had no support for simultaneous en-
cryption and integrity checking, not to mention conditional switching without involving
the CPU and main RAM. These limitations forced us to implement encrypted switches
by bringing both of the two records into the internal memory, then running integrity
checking on each, then writing each out again. This usage of the 4758’s internal CPU
and RAM slowed performance; requiring storage for two plaintext records led to an
O(M) internal memory requirement. Figure 3 sketches this architecture.

What we needed for an encrypted switch did not match the hardware provisions of the
4758—its I/O channels and TDES engine could not be utilized in the fast-path mode,
the CPU was not fully used, and we did not use much RAM. This situation suggests
designing a new type of hardware, optimized for our purposes.

5.1 The Symmetric Engine

A basic building block of this hardware is an engine for fast symmetric cryptography.
Our 4758 prototype work used the TDES cipher; new-generation hardware should prob-
ably use AES.

The designs here are mostly concerned with streaming data through the device, but
internally most of the streaming data will be chunked into AES blocks, and processed
as those blocks.

Besides streaming the data through the cipher, we also want the engine to check the
integrity of the record. We see several ways of doing that.

• Encrypt in CBC mode, compute a CBC-MAC on the ciphertext, and concatenate
the MAC to the ciphertext. This is the standard and generically secure composi-
tion6 of encryption and MAC [16].

6Generically secure composition here means that if one has any secure encryption scheme and any
secure authentication scheme (eg. MAC), then combining/composing them in the order of encrypt-
then-autheticate is guaranteed to be secure.
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Figure 4: This sketch shows an example input-line symmetric crypto engine, a building block of
our T3Ps. Block by block, we bring the data in, decrypt it, and calculate its MAC.

• Compute a CBC-MAC on the plaintext, concatenate the MAC to the plaintext,
and encrypt in CBC mode. This order of MAC and encryption is not generically
secure, but is secure when using CBC mode for encryption. It has the advantage
that most of the MAC work can be re-used across re-encryptions.

• The newer GCM mode of authenticated encryption with associated data (AEAD)
fits our needs precisely, as it efficiently handles integrity for an unencrypted header,
it allows both MAC and decryption to be computed in arbitrary block order, it was
designed with performance in mind, and it carries no patents [22]. It is however
less vetted at this point (though proved secure).

Figure 4 sketches an example implementation of the CBC-mac-based approach.

We also need a similar engine to add the integrity check and encrypt.

5.2 A Simple Switch

We can then use four symmetric engines (two inbound, and two outbound) to build an
encrypted switch, as sketched in Figure 5. We do not need to store the complete records
inside the switch, but instead stream the two records through the switch, crossing the
streams if needed. Thus we reduce the internal memory requirement from O(M) to
O(B) (where B is the block size of the cipher).

5.3 A g-in, g-out Switch

In previous 4758 work, the limiting factor in streaming data from the host, through
the TDES engine, and back out again was the speed of I/O, not the crypto hardware
itself [20]. This observation suggests that, at first approximation, the time complexity
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Figure 5: The sketch shows an example 2-switch T3P. Block by block, we bring in two records,
decrypt them, potentially swap them, then encrypt them again and send them out.

associated with executing a network of encrypted switches follows from the number of
switches, and less so from the size of each switch.

Thus the question naturally arises: can we decompose a network into a smaller number
of larger switches?

Without loss of generality, let us consider the basic reverse butterfly network on N lines,
where N is a power of 2. (Our re-shuffle engine uses a bitonic merging network and a
Beneš network, but both of these are built from butterfly networks and their reversals.)
This network is N -lines wide, and log N lines deep.

Let g be a power of 2. To save rounds with the host, we could bring in g lines into a
larger switch instead of just 2, and do the work of g

2 switches at once without interacting
with the host.

However, we can exploit the structure of these networks to coalesce not just g/2 switches
within one column, but (g/2) log g switches across log g columns, into a g-in, g-out super-
switch, referred to as a g-switch (in the limit, if g = N , we get just one “N -switch”—the
whole network).

Previous work on doing FFTs on parallel machines also uses this property of butterfly
networks to increase locality [9].

We can see this decomposition by looking at the butterfly network. For binary strings x
and y, let x ‖ y denote their concatenation, and let 〈x〉 denote the integer whose binary
representation is x. For N a power of 2, the network can be recursively defined as:

• a stage consisting of N
2 switches on 〈0x〉 and 〈1x〉 (for each of N/2 x’s)

• followed by a reverse butterfly network on the N
2 lines 〈0x〉, and another on the

N
2 lines 〈1x〉.
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Figure 6: This sketch shows an example reverse butterfly network for N = 16 inputs. The vertical
lines denote switches on the two endpoint lines, and we write the input line indices in binary. This
network has 32 2-input switches, arranged in 4 stages.

Figure 6 shows the network for N = 16.

Lemma. In the first s stages of a reverse butterfly network, two lines are compared only
if their indices are of the form 〈x ‖ y〉 and 〈x′ ‖ y〉, where x and x′ are length-s binary
sequences differing in exactly one bit.

Proof. For s = 1, this is clearly true, by the definition of the network.

For s > 1, suppose it’s true for s − 1. The network consists of a stage, followed by two
isomorphic subnetworks.

The leading stage only compares 〈0 ‖ x〉 to 〈1 ‖ x〉, ie. the indices differ in the first bit
only.

By inductive assumption, we know that the first s − 1 stages in the two subnets only
do these types of comparisons:

• 〈0 ‖ x ‖ y〉 to 〈0 ‖ x′ ‖ y〉, and

• 〈1 ‖ x ‖ y〉 to 〈1 ‖ x′ ‖ y〉
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Figure 7: This sketch shows how the the N = 16 reverse butterfly network can instead be imple-
mented as 8 4-switches, each performing the action of 4 2-switches.

(where x and x′ are binary sequences of length s − 1 differing in exactly one bit).

This covers all switches in the first s stages of the overall network.

Let g = 2s, and, for the first s stages of the network, designate a g-switch Gy to cover
all g lines which have their last n − s bits equal to y. By the lemma above, there are
no switches between any Gy’s, so all the Gy’s are disjoint, as needed.

g-switches are recursively assigned in the 2s sub-networks (which are of course disjoint)
after the first s stages.

If s does not divide n, the last stage of super-switches will need to be smaller than g.

Figure 7 shows an example decomposition into 4-switches.

5.4 Circuit Gates

Since our T3P will be used to evaluate arithmetic circuits with array-gates, it will
need an arithmetic logic unit (ALU) to evaluate the arithmetic and logic gates, and a
controller to control PIR into arrays for array gates.
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Most of the logic and arithmetic operations are on integers, so we need to decide what
the native word size will be, and require the compiler or user to deal with larger integers
itself.

The ALU will be pretty similar to the switch—1, 2 or 3 inputs come in and one comes
out. The same crypto and index checks will need to be done as for the switch, thus the
same crypto cores and mostly the same control logic can be used. This ALU will be
used much less than the switch, at least in array-intensive code. Thus, it can probably
be a fairly simple implementation, without pipelining and other optimizations.

6 Building a Privacy Engine

The next step is considering how to put together one or more g-switches into a private
execution engine.

We put one or more g-switches on a module along with some control and I/O (PCI
etc.), and attach this package to a host computer. However, this raises some design
questions:

• Where is the physical security boundary—around one switch, some set of switches
if is are more than one, or the entire module?

• What size switch (g) should we use?

• How many should we use?

• How do we execute a network (such as a run of a Beneš or bitonic merge network)
using these switches, while preserving privacy?

As our subsequent analysis shows, if we have spare gates and I/O speed, it may be
better to grow g rather than add more switches.

6.1 Using the Encrypted Switch to Execute a Network

Coordination of the switches within a run of a network requires considering how to set
up the encryption keys, IVs, and record headers to ensure that the switches can detect
if the host is feeding them the wrong ciphertexts, but the host cannot determine which
ciphertext output of a switch matches which ciphertext input. Since key scheduling for
a block cipher incurs a non-trivial cost, we’ll sketch an example approach that uses the
same key within each network run.

The cryptographic assumption we use here is that using a strong block cipher in CBC
mode with (pseudo)random IVs is IND-CPA secure, meaning that an adversary cannot
distinguish the ciphertexts of two plaintexts picked by him. This is proven in [5].

We’ll start with some parameters:

15

Dartmouth Computer Science Technical Report TR2005-547.



record data
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A
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IV

MAC

encrypt (CBC mode)

i jr

Figure 8: Structure of an encrypted record during an oblivious network execution. The record’s
number is r, its next destination switch is i, and its input line of that switch is j. Note that i and
j change every time the record passes through a switch, but the rest of the plaintext stays fixed, so
we do not need to re-compute most of the MAC after every switch.

• Let k be the key for this run.

• Let 0, ..., G − 1 be a topological ordering of the switches.

• Let Succ be a successor function that takes (i0, j0) to (i1, j1) when output line j0

from switch i0 goes to input line j1 at switch i1.

Each g-switch i needs to be able to compute Succ and a PRNG (or have access to a
module that can). Special hardware will probably be needed to seed the PRNG with
sufficient randomness when needed. Switch i also needs to know i and k. If we’re doing
a permutation instead of a merger of sorted lists, then switch i also needs to know its
program P (i): the local permutation it is to carry out.

Ordinary switch execution Switch i reads in the IV for the record on each input
line, If we’re sorting, the switch needs to read in the record number from each header
and then set up its local permutation; if we’re permuting, the switch needs to read in
its programming and set up its local permutation. The switches uses its PRNG to set
up IVs at each output line; for each line j, the switch sets up a header consisting of
Succ(i, j) and the record number mapping to that line. The switch then, in lockstep,
brings the rest of the two input ciphertexts through the input symmetric engines, and
pumps the output plaintexts out through the output symmetric engines. At the end,
the switch checks whether the integrity checks on any of the input lines have failed, and
and whether the footer for each line j is indeed marked with (i, j).

In Figure 8 we show a diagram of an encrypted record during execution of a network.

Failure Handling To avoid revealing information to an adversarial host, the switch
should ensure that all failure cases are detected as soon as they are introduced by
the adversary. This is ensured by the integrity protection and record labelling described
above. Within a single switch execution, a detected error could be reported immediately
or at the end of that switch operation (presumably by aborting the network execution).
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Input and Output Processing The above simple sketch applies to input records
which were already encrypted with the key k and marked with the appropriate switch
lines, and left output records in a similar state. The preparation of the encrypted records
is part of the overall SFE procedure outlined in Section 6.4.

6.2 Physical Security for the Switches

One physical design for a complete TTP is to have a single physically shielded compart-
ment containing one or more switches and their controller. This is the easiest option to
work with in designing how the controller and switches communicate.

Alternatively, the switches and controller could be protected separately, with untrusted
interconnects. In this case, the components will need to set up secure channels be-
tween each other, as well as with the outside. This suggests the need for public-key
cryptography (PKC) capability for all the components.

Clever use of longer-lived symmetric keys can reduce the need for PKC, if that becomes
too onerous. For example, in the basic model of the 4758 TTP, each device leaves the
factory with a private key only it knows, and a certificate testifying that the device
knowing that private key is a genuine untampered 4758. An alternative model is to
have a master device and several slave devices leaving the factory as a family; each
slave has a device-specific secret known only by itself and its master; the master has
PKC ability and a private key. In our TTP design, the master component would of
course be the controller, and it would maintain shared secrets with the switches.

Besides the trusted controller (which, for now, we also place in a physically secure
module), we also need a request engine with O(k log N) storage, to do the fetching
of the k records. (In previous work, we considered but dismissed as impractical the
recursive approach, where request engine does PIR on the “touched” records instead of
bringing them all in each time. However, this new hardware setting may change things.
We plan to revisit this issue.)

6.3 Multiplexing the Symmetric Core

The straightforward way of building a g-switch is to follow the schema of Figure 5. For
example, if we’re using AES for symmetric cryptography and a CBC-MAC for integrity,
then we use two AES cores for each input line, and two more for each output line.
However, AES cores are rather large, and this approach forces us to have 2g of them.

Alternatively, suppose we restrict a core to doing just block permutations with a fixed
key for a network execution. (That is, we do the CBC chaining manually, outside the
core.) We can then multiplex the core in as needed. For example, the switch can wait
for the host to write a block of data to input line j. Then, while the host is writing the
next line, the switch can do the following:

• save a copy of the block for the next chaining,
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Figure 9: This sketches the symmetric processing for an input line (using CBC-MAC for integrity
checking), with the AES block permutations isolated, so we can multiplex them.

• feed it through the cipher

• XOR in the chaining block

• save a copy for output

• XOR in a saved block, for CBC chaining for the MAC

• feed it through the MAC cipher

• save the output

This might be simpler if we had a separate core for the decryption and for the MAC
(particularly if we decide to do hashing instead). Figure 9 and Figure 10 sketch this
approach. (However, we have many design options here with regard to what portion of
the operation we multiplex.)

If we are clever about record format (e.g., putting the sanity-check (i, j) headers at
the end instead of the beginning), then most of the MAC work can be re-used for the
output.

This analysis suggests that we can we make do with two cores, and replicate them only
if they cannot keep up with the input speed.

Eventually, we may want to look at larger buffers on the input and output lines as well.

6.4 A whole scenario walkthrough

We have so far focused on the most performance-critical component in a tiny TTP, the
encrypted switch, and how it is used to perform an oblivious network. However there
are many things that the TTP needs to do around the switch too. Here we outline a
more holisitc view of a whole SFE session. We assume the TTP is on a third computer,
but it could also be co-located with one of the players.

• One player generates the circuit, and both players sign it after they agree it’s
correct.
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• Both players establish secure sessions with the TTP. During this, the TTP gets
their public keys too.

• Each player sends its input to the TTP, which writes scalars into the appropriate
circuit value slots (see Section 4), and writes arrays encrypted with an initial key
onto the host.

• The TTP permutes the arrays.

• The TTP starts the circuit evaluation. It computes a hash of the circuit gates
during the process, and checks the players’ signatures on the circuit at the end.

• It stores each output value encrypted on the host and distributes outputs at the
end.

Each of those steps can be initiated by the host, or the TTP could run through all of
them, blocking while waiting for input.

6.5 Concurrent PPIR sessions

The TTP will almost certainly have to deal with multiple arrays, or copies of the
same array due to conditionals, which means it has to flush and restore PPIR contexts
(keys, current shuffle number, current access number, etc.). This should not be a large
overhead, as the TTP will at least do one retrieval (O(k)) with a PPIR context, not to
mention re-permutes and multiple adjacent accesses to one array.

7 Preliminary Performance Evaluation

7.1 Time

To evaluate the performance of our proposed T3P, let’s consider using it to obliviously
merge two sorted lists of total length N . For purposes of this back-of-the-envelope
calculation, we will assume that the PCI bus is an original generation PCI version,
transferring 32 bits at 33MHz, for a bandwidth of 132MB/sec. The AES cores in the
device will be sufficient to process the data at that rate. Note that the host will have
to use its RAM to store all or some of the database, as the fastest current hard disks
transfer data at only about 100MB/sec.

7.1.1 Reshuffling

As described before, merging N items takes N log N
g log g g-switches. Executing one g-switch

requires reading and writing gM bytes over the PCI bus. At 132 MB/sec, this corre-
sponds to gM

132,000,000 seconds per switch, which gives us MN log N
log g·132,000,000 seconds for the

whole merge.
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N Minutes on the 4758 Minutes using a T3P

512 1.7 0.000099

1024 3.8 0.00022

2048 8.3 0.00048

4096 19 0.0011

8192 44 0.0023

Table 3: Comparing the measured PIR re-shuffle time on the 4758 to the projected re-shuffle using
our T3P approach, for M = 850 and g = 32.

In our previous work with the 4758, we measured the performance to do a TDES-based
reshuffle when M = 850 bytes, for various N [13]. Reshuffling time is dominated by a
merge of two sorted lists. Table 3 compares these figures to what our new approach
should yield, for g = 32.

7.1.2 Request Engine

Our PPIR algorithm requires the trusted hardware, when handling a request, to read
in all the records touched since the last shuffle. Our previous analysis [13] also showed
that, until N got too large, this cost dominated the request handling time, rather than
the amortized cost of the shuffle. For example, re-reading 256 850-byte records took 5.5
seconds on the 4758. If we did this with a special-purpose switch, this would take 0.002
seconds instead.

7.2 Gates

A quick look at the technical literature reveals a Helion AES engine that takes 6K gates
and can exceed 500Mbs, which corresponds to 62MBs. To saturate the PCI bus speed,
we would need four sets of two cores, for 48K gates. (If we were happy with 31Mhz,
then we could do 24K gates instead.) We would also need latches and switching gates,
but the AES cores would dominate.

It is interesting to note that the number of cores does not increase with g.

In order to accommodate public-key cryptography for establishing secure sessions with
users, and authenticating the device, we plan to embed a modular arithmetic engine in
the secured part of the device. Smart-card scale FPGA implementations of RSA exists
using less than 3K gates.

For comparison, the current AEGIS [30] design uses 300K gates.

The largest components on the IBM 4758 are the 486 CPU (about 1.5 million transistors,
or 400K gates) and the 16KB SRAM (about 260K gates). If we (conservatively) equate
one gate to 4 bits of DRAM, the 4MB DRAM is about 8M gates. The crypto hardware
adds even more.
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8 Related Work

Secure hardware Current research (e.g., [18, 19, 30]) and product efforts (e.g., [12])
explore the notion of a secure computing environment built around the CPU alone. In
contrast, the TCPA/TCG approach [31] attempts to secure an entire desktop, but not
against physically present adversaries.

The XOM project [18, 19] investigated how to design a desktop-oriented processor ar-
chitecture and operating system such that only the processor needs to be trusted, and
not the OS and the RAM. The adversary’s goal is to copy software which is run on the
machine. They leave open the implications of the adversary observing a program’s mem-
ory access pattern. In comparison, we are considering a very different use scenario—a
specialized module, the tiny TTP, which does not have to provide for a full-blown
multi-tasking OS, but which needs to hide all information about the software it is ex-
ecuting, and presumably be able to withstand a higher level of physical attack than a
client-oriented system like XOM.

The AEGIS project [30] investigates the use of an innovative way for a processor to
wield a secret key, by using a Physical Random Function based on random delays in
silicon gates. It also assumes an untrusted RAM, but leaves open the consequences of
exposing the RAM access pattern.

Cryptographically weak devices Remotely keyed encryption schemes seek to en-
able high-bandwidth encryption (on a host machine) using long-term keys held in low-
bandwidth devices like smart cards [6]. This work shares the theme of enabling large
computations using a small trusted space, but is otherwise quite different as it has no
obliviousness requirements, and an adversary controlling the host can decrypt ciphertext
until he is removed.

In a similar space, Modadugu et al. have developed a prototype using an untrusted host
to help a Palm Pilot with the computation of generating RSA keys [23].

Less trusted and less functional TTPs The construct of commodity servers was
introduced by Beaver to provide a trade-off between a heavyweight secure computation
without any third parties, and a computation which fully trusts a third party [4]. Com-
modity servers assist a computation by providing random but potentially structured
input to the players. The servers do not learn the player’s actual inputs.

A similar scheme for PIR protocols appears in [10].

TCG The Trusted Computing Group (formerly known as the Trusted Computing Plat-
form Association) has specified an architecture that takes a different approach: shrink-
ing the physical security boundary to a single chip (the Trusted Platform Module, TPM)
and then integrating this chip into the boot process of a larger, exposed system.
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9 Conclusions and Future Work

We are currently proceeding to implement our T3P design on an FPGA. By this we
will be able to confirm the performance gains we hope the design will achieve, and be
in a position to move further with a small form-factor ASIC implementation suitable
for physical shielding.

We plan to continue with examination both of the software and hardware aspects of this
work. For example, on the software end, we plan to examine the SFE circuits for areas
other than array access where special-purpose hardware may improve efficiency. On
the hardware end, we plan to explore potential performance improvements from adding
additional hardware (such as DRAM) to the T3P PCI card, but outside the trusted
boundary.

We are confident that this project will enable practical solutions to secure multiparty
computation problems which are beyond the scope of current approaches. This will
directly increase the range of tractable SMC problems, for example enabling PIR on
databases of millions of records. Also it should enable more complex problems, which
incur a high cost even without privacy properties, to be solved with strong privacy
guarantees.
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Figure 10: When the AES cores are sufficiently fast, we can reduce gate count while retaining
performance by multiplexing the use of AES cores. In this sketch, we multiplexing two cores for
the decryption step on the input lines. We might use this approach, for example, when the nth
decryption finished by the time the host has finished writing the next block for line n+2. (We might
save additional space by re-using logic across the multiplexers and de-multiplexers, respectively.)
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