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Abstract

We investigate the use of trustworthy devices, which function as trusted third parties
(TTPs), to solve general two-party Secure Function Evaluation (SFE) problems. We assume
that a really trustworthy TTP device will have very limited protected memory and computa-
tion environment—atiny TTP. This precludes trivial solutions like "just run the function in
the TTP".

Traditional scrambled circuit evaluation approaches to SFE have a very high overhead in
using indirectly-addressed arrays—every array access’s cost is linear in the array size. The
main gain in our approach is that array access can be provided with much smaller overhead—
O(
√

N log N). This expands the horizon of problems which can be efficiently solved using
SFE. Additionally, our technique provides a simple way to deploy arbitrary programs on tiny
TTPs.

In our prototype, we use a larger (and expensive) device, the IBM 4758 secure copro-
cessor, but we also speculate on the design of future tiny devices that could greatly improve
the current prototype’s efficiency by being optimized for the operations prevalent in our
algorithms.

We have prototyped a compiler for the secure function definition language (SFDL) de-
veloped in the Fairplay project. Our compiler produces an arithmetic circuit, augmented
with array access gateswhich provide more efficient secure access to arrays. We then have
a circuit interpreter in the 4758 to evaluate such a circuit on given inputs. It does this gate by
gate, requiring very little protected space. We report on the performance of this prototype,
which confirms our approach’s strength in handling indirectly-addressed arrays.

1 Introduction

The Secure Function Evaluation (SFE) problem asks how two (orN ) parties can jointly compute
anN -input andN -output functionf(x1, x2, . . . , xN ) on theirN respective inputs without any
party learning more than what they can learn from their own partial result of the function.

The security and privacy conditions for SFE are usually stated in terms of an ideal Trusted
Third Party (TTP): any correct protocol for SFE should behave as if Agnes and Boris had sent
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their inputs to the TTP, the TTP had then computed the results, and distributed them to their
respective recipients.

Motivated by the assumption that no sufficiently trustworthy TTPs exist, the actual solutions
developed for the problem work without a TTP—they are protocols involving only the original
players. These solutions are mostly based on evaluation of ablinded circuitcomputing the func-
tion f . An actual prototype of a circuit-based SFE system has recently been built–Fairplay [21].
Fairplay provides a compiler from a C-like high-level imperative language to a circuit format,
and a runtime engine for two players to evaluate such a circuit securely on their inputs. Such
circuit-based solutions for SFE incur a communication and computation cost linear in the circuit
size, and thus the circuit size is the primary performance metric.

Hardware-based TTPs On the other hand, devices intended to function as actually trustwor-
thy third parties have been introduced [27]. Secure coprocessors[34], realized commercially as
products like the IBM 4758 [9, 28, 29], offer programmable general-purpose computing envi-
ronments and memory, protected against malicious attack, even by an adversary with physical
access to the device.

A possible solution to the SFE problem is for Agnes and Boris to submit their inputs to
such a secure coprocessor(SCop), which they can verify is running a program that correctly and
securely implementsf . The SCop does the computation and distributes the answers, and the
relying parties have assurance (such as the IBM 4758’s FIPS 140-1 Level 4 validation) that even
the operator of the SCop cannot subvert the desired security and privacy properties1.

In practice, however, using a hardware-based TTP for SFE requires overcoming two main
obstacles:

• The need for physical security forces limits on the memory size and computational power
of the device. How can we use a hardware-based TTP for secure function evaluation if
the function doesn’t fit inside the device? Having the TTP use external resources reveals
information to the adversary lurking there!

• Currently available hardware-based TTPs are prohibitively expensive.

In prior work, we have succeeded in using a limited-power hardware-based TTP for securing a
particular two-party functionality on large data sets—Private Information Retrieval [15, 16]—by
using careful algorithm design. This work led us to make two observations:

• Can we generalize this result, to make it easy to compute arbitrary multi-party functions in
tiny TTPs?

• What if one designed a hardware TTP expressly optimized for these algorithmic techniques
(thus improving efficiency) and discarded the notion of a rich general-purpose environment
(thus reducing cost)?

1As is frequently the case, Denial of Service attacks are not prevented by the SCop security architecture.
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This paper In this paper we report on our investigation of a hybrid approach to SFE, which
uses a limited-power TTP to accelerate computations which fundamentally have a high overhead
in the circuit model.

We started with the observation that in the traditional blinded circuit approach to general
SFE,indirectly-addressedarrays are a major source of inefficiency. An array access likeA[i] ,
where i is determined at runtime, has to be translated toO(|A|) gates in the circuit (which
essentially examine every element ofA, and returnA[i] ). Thus a program with many indirect
array accesses maps to a very large circuit.

However, our prior work with secure coprocessors adapted Goldreich and Ostrovsky’s Obliv-
ious RAM algorithm [13] to do secure array lookup efficiently (see Section2.3). So, we intro-
duced anarray gateconcept to capture these array lookups, and built a new compiler that turns
programs expressed in Fairplay’s Secure Function Definition Language (SFDL) into an arith-
metic circuit augmented with array-access gates. We wrote a circuit evaluation program which
runs inside a 4758 SCop, and evaluates a circuit (stored as a sequence of gates in topological or-
der) generated by our compiler: it receives inputs from the two players (including array inputs),
runs the circuit on them, and then sends the results to their respective recipients.

The SCop implements the array gates by using the private lookup algorithm from our pre-
vious work. In our design and prototype, we limit the SCop to only read a small fixed amount
of data at a time (one gate and its inputs), in order to satisfy the security model presented in
Section3 and ensure our results will be applicable to smaller TTPs than the 4758.

To give an idea of how indirect array indexing works in the two models of blinded circuit
evaluation and TTP-assisted circuit evaluation, we ran a simple SFDL program which sums an
array of N 16-bit numbers. We report the performance of the two SFE implementations in
Section6.

We outline some future work in Section8: speculation on the design of tiny TTPs optimized
to support these operations, but which are otherwise minimal; and spreading our implementation
over several TTPs so that none of them get a full view of the computation. As usual we close
with a conclusion.

2 Background

In this section we describe the background techniques and tools which are important for the rest
of the paper.

2.1 SFE via blinded circuits

Most current solutions for SFE center on scrambled orblinded evaluation of a combinatorial
circuit representation of the function2. If Agnes and Boris wish to compute a functionf on their
separate inputs:

• They obtain a circuitC which computesf ,

2Other representations have been explored too, eg. algebraic circuits and branching programs. See [22] for a
summary.
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• They assign one of them to blindC. Call the blinded circuit (which is not syntactically a
circuit, it is quite different)BLIND (C). The other player will evaluateBLIND (C), without
being able to learn anything about the actual values propagating through the circuit. Say
that Agnes will blind the circuit and Boris will execute it.

• Agnes blindsC. In essence this involves replacing bit-values with random keys (called
blinded bits), and replacing gates with tables which evaluate their corresponding gate but
using blinded bits.

• Agnes sendsBLIND (C) to Boris, together with the blinded bits corresponding to her inputs.

• Boris obtains from Agnes the blinded bits corresponding tohis inputs using 1 out of 2
oblivious transfer (OT) [24, 6]. OT is necessary in order to hide from Agnes the value of
Boris’s input bits, while giving Boris (only) the blinded bit values corresponding to those
bits.

• Boris evaluatesBLIND (C), starting with the input blinded bits (he only possesses the cor-
rect ones) and using the blinded truth tables to obtain, in the end, the output blinded bits.
During the evaluation he does not learn anything about the actual values he is propagating
through the circuit.

• He sends Agnes’s output blinded bits to her. She knows the correspondence of blinded bits
to actual bits and can so interpret her result.

• Agnes sends Boris the blinding map for each of his output wires, so he can interpret his
blinded results.3

Note that this protocol is not secure against a cheating Agnes. She could produce a blinded
circuit which does not correspond toC, and in this way cause Boris to compute an incorrect
result. Boris would not be able to detect such an attack. The Fairplay system currently addresses
this weakness by having Agnes produce and send to Borism versions ofBLIND (C), using dif-
ferent secrets. Boris picks one to evaluate, and Agnes reveals the blinded wire values for all
the others, so Boris can examine them. This allows Agnes a1/m cheating probability, while
increasing complexity by a factor ofm. Many more sophisticated solutions to actively cheating
players exist, eg. see [12].

2.2 Secure Coprocessors

A secure coprocessor is a small general purpose computer armored to be secure against phys-
ical attack, such that code running on it has some assurance of running unmolested and unob-
served [34]. It also includes mechanisms, calledoutbound authentication(OA)4 to prove that
some given output came from a genuine instance of some given code running in an untampered
coprocessor [26]. The coprocessor is attached to ahostcomputer. The SCOP is assumed to be
trusted by clients (by virtue of all the above provisions), but the host is not trusted (not even its

3The last two steps can be done in reverse order too, so Boris learns his results first. Guaranteeing fairness is not
easy [23].

4OA is more recently referred to asattestationin the context of the Trusted Computing Group.
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root user). The strongest adversary against the schemes presented here is the superuser on the
host, who may also be equipped with a drill.

IBM 4758 Secure Coprocessor

The 4758 is a commercially available device, validated to the highest level of software and phys-
ical security scrutiny then offered—FIPS 140-1 level 4 [30]5. It has an Intel 486 processor at 99
MHz, 4MB of RAM and 4MB of FLASH memory. It also has cryptographic acceleration hard-
ware, and notably a “fast path” DES and TDES mode of operation, where data can be streamed
from the host through the device’s DES engine without touching the internal RAM. The 4758
connects to its host via PCI.

In production, the 4758 runs IBM’s CP/Q++ embedded OS; however, experimental research
devices can run a version of Linux (as does the follow-on product from IBM, the PCIXCC [3]).
Linux has considerable advantages over CP/Q++ in terms of code portability and ease of devel-
opment.

The 4758 Outbound Authentication mechanism is based on a chain of keypairs and certifi-
cates, starting with the device keypair which is generated and signed at the factory. The mecha-
nism allows software on the 4758 to prove its identity (program hash), the identity of all system
software and the device attributes to remote parties. The direct software identity authentication
could in theory be expanded along the lines developed recently for consumer-level trusted hard-
ware like the Trusted Platform Module (TPM) [33]—eg. property-based attestation [25], and
direct anonymous attestation [7], but this is orthogonal to our work here.

2.3 Hiding the array access pattern

An important security goal that the TTP must satisfy is to hide the access pattern of the pro-
gram/circuit it is evaluating to the arrays that the program manages. We have experience with
this problem, having worked on TTP-assisted solutions to the Private Information Retrieval (PIR)
problem [15, 16]. PIR allows a client to retrieve itemi from a database ofN items without re-
vealing i to the database operator—quite similar to the array access problem in this case. We
make use of the classic Oblivious RAMsquare-root algorithm, introduced by Goldreich and Os-
trovsky [13], to allow the TTP to access datasets on its host without revealing any information
about the access pattern.

The basic idea of this algorithm is that the TTP randomly permutes the datasetD, such that
it knows the permutationπ but the host does not learnπ, thus producing a permuted datasetDπ.
Then the TTP can access elements inDπ directly, without thereby revealing the actual indices it
is accessing.

The need to hide the relation between different accesses6 requires the TTP to re-do every past
access in addition to the current one, keeping just the needed value internally. Observing this,
the host cannot learn which is the actual current access, and how it relates to actual past accesses.

5FIPS 140-1 has been superseded by 140-2 since 2002, but the new standard does not provide any higher assurance
levels [31].

6In the absence of countermeasures, the host can learn whether two accesses refer to the same index or different
indices, even if the actual indices are hidden by the permutation.
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Clearly the complexity of this procedure grows with every access, so after some numberr of
accesses, the TTP produces a new permuted dataset to work with.

We permute arrays using Batcher’s sorting network [5], which takesO(N log2 N) time. This
determines the optimum value ofr (which minimizes the amortized overhead of the oblivious
retrieval algorithm) to beO(

√
N log N). Thus, we re-permute arrays after

√
N log N accesses

to them, and every access costsO(
√

N log N).

3 Security Model

We assume that the TTP itself is fully trusted by the players, but is alsotiny, as we elaborate on
in this section. (We use the 4758 for our prototype, since it is an existing SCop, but we limit our
assumptions so the work will apply to future-generation smaller devices.) The TTP is associated
with a hostmachine which provides all the larger storage and network communication for the
TTP. The host is untrusted, the implications of which follow in Section3.2. In this setting, we
have to ensure that the security requirements of SFE are met: each player learns no more than
what he can (feasibly) infer from his own output, and external parties learn nothing.

3.1 Tiny TTP

Since the TTP should be trustworthy in an environment where it is exposed to physical attack, it
needs heavy armoring against such attacks. This makes it difficult to provide lots of RAM, never
mind secondary storage, in the armored perimeter. The 4758 for example has 4MB of RAM, and
even with just that, it costs about US$2500.

Our hypothesis is that the way to make trustworthy TTPs more accessible is to make their
protected area as small as possible, and hence as cheap as possible. Accordingly we base our
designs on the assumption that the protected space in the TTP is tiny. More concretely, we require
the following amount of protected storage:

• O(log N), whereN is the size of the largest sequence in the current program. This is to
allow the TTP to manipulate a constant number of pointers into any of the datasets it is
working on.

• O(B), whereB is the block size of the symmetric cipher used to encrypt sensitive data
stored on the host. Larger data items are processed in pieces; for example if the tiny TTP
needs to re-encrypt a data item which is larger thanB under a new key, it does this block
by block

We have described our concrete vision and design for a tiny TTP device more specialized
and optimized than the 4758 [17], and plan to collaborate with computer architecture colleagues
to prototype the designs. We also sketch this design in Section8.

3.2 Untrusted host

The TTP’s host provides storage for all the data which the TTP uses, and also the network
link between the TTP and the outside world. Since the host is untrusted (ie. accessible to the
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adversary), it should not be able to learn anything sensitive about the TTP’s computations by
observing the network traffic or bulk storage I/O from the TTP. A simple consequence of this is
that the TTP has to encrypt sensitive it writes out to the host or sends to the network. It also has
to attach a keyed MAC or other authentication to data it stores on the host, to prevent tampering
and replay attacks.

More involved than confidentiality and authenticity is hiding the TTP’s access pattern to host-
stored datasets. In our application of TTPs to secure evaluation of circuits, the TTP must hide
from the adversary the access pattern to any arrays it is managing. Thus, if the TTP encounters
an array read gate forA[i] , it cannot just read theith element of the dataset representingA on
the host—it is obliged by the requirements of SFE to hideall information not computable from
the results of the SFE7. In this case the TTP has to hidei from the host, and alsoi’s relation to
other array indices in the program, if such relations are not known from the SFE program code.

3.3 Our system’s compliance

Informally, our system running in the security model outlined here meets the requirements of
SFE as it:

• Always encrypts intermediate data in the computation of a circuit if the data leaves trusted
areas (Agnes’s machine for Agnes, Boris’s machine for Boris, and the TTP for both).

• Completely hides the access pattern to all arrays in the computation, by using the algorithm
outlined in Section2.3.

It does not need to hide anything about the circuit, as that is known by both players (if they mind
external parties learning the circuit, they should host the TTP on one of their machines), and it
does not need to hide the access pattern to the gate values, as these are generated and read in an
order determined by the circuit and not its inputs, and thus known to both players in advance.

4 A Case Study: Dijkstra’s Algorithm with Heaps

Optimization problems in general use indirect addressing extensively, and thus would benefit
from our approach if they are to be computed using SFE. Here we analyze a particular optimiza-
tion problem—finding a shortest path between two verticesv1 andv2 in a graph:

• Boris has a directed graphG = (V,E, A) with edge and vertex attributesA,

• Agnes has two verticesv1, v2 ∈ V , as well as a weighting functionw : A → Z

Agnes should learn a shortest path fromv1 to v2, using her weight function, or perhaps just the
cost of such a path; Boris learns nothing.

It seems quite plausible that Boris wishes to keep his graph private (if it is a commercial
asset for example), and Agnes wishes to keep her weighting function secret, as a trade secret for
example.

7see also [35] for concrete examples of how the RAM access pattern of a program can reveal significant informa-
tion, even if the RAM contents are all hidden
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As elaborated in appendix SectionA, Table1 lists the different running times of shortest path
algorithms with the two SFE models.

Bellman-Ford Non-private SFE circuit SFE cct/TTP
O(EV ) O(E log V ) O(EV log V ) O(E

√
V log2 V )

Table 1: Running times for the Bellman-Ford algorithm, non-private or private, and Dijkstra’s
algorithm with heaps using various strategies: without privacy provisions; using only a blinded
circuit; and using a circuit and TTP for faster indirect addressing.

5 Implementation

Our system architecture is outlined in Figure1. We refer to a numbered sequence of items stored
on the host as acontainer. When Agnes and Boris wish to compute a functionf on their two
respective inputs:

• One of them compiles a circuit version off , which they both examine to ensure it is
correct.

• They authenticate the TTP, using outbound authentication in the case of the 4758 (see
Section2.2). Thus they establish that they are using an untampered device with the correct
software. Also they get an authenticated and confidential session to the TTP for the rest of
the protocol.

• They send the circuit to the TTP, which could be at one of their sites, or at a separate
location8.

• The TTP stores the gates in containerGATES on its host, with an HMAC for each gate.

• The TTP prepares a containerVALUES to hold the values produced by the gates.

• The TTP also prepares a containerARRAY-A for each array A mentioned in the circuit.

• Agnes and Boris each send their inputs to the TTP, who writes them (encrypted) into
VALUES in the case of scalars, and into the appropriate array container in the case of
arrays.

• The TTP evaluates the gates one by one, by:

– reading in the gateg, with numbergi, and as always checking its HMAC,

– reading in its inputs from theVALUES container. The inputs are either scalars or array
names,

– Performing the gate operation, as described next, and

8If they want to keep their function secret from others, and the TTP is at an external location, the TTP would need
to hide the circuit and the access pattern to it, similarly to how it hides accesses to the array container
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– Writing the output value into slotgi in VALUES.

• At the end of the circuit, the TTP sends the values of the output gates to their respective
recipients, via the secure channel they established at the start of the protocol.

Gate operation

Host
Agnes

Boris

f

Input

ARRAY-A

Tiny TTP

Output

Input

Output

GATES VALUES

Arithmetic

Scalar input

Array read

Array input

Figure 1: Our system architecture for TTP-assisted SFE. Agnes and Bob agree on a circuit
representation of their function f (using a compiler). They send the circuit to the TTP. They also
send their respective inputs to the TTP, who stores them (encrypted) as values of the input gates,
or as values of an array container. Then the TTP computes the circuit gates in sequence, reading
and writing gate values in the values container. The TTP executes array read and write gates
using the square-root ORAM algorithm on the container representing the array (see Section 2.3).

5.1 Evaluating a gate

The TTP evaluates a gate according to its operation, and then writes the result, encrypted, into
that gate’sVALUES slot:
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if (x != 0) {
y = z/x;

}
else {

y = z;
}

else-branch
if-branch

test

!=

Literal 0

select

/

select if
false

select if
true

cond

xz

y

Figure 2: The generated circuit for the conditional code piece. Variables and other values are
associated with wires, or equivalently gate outputs. The division is performed even if the divisor
is zero, but in that case the value is discarded by the select gate.

Input The TTP has already entered the input value into theVALUES container before circuit
evaluation,

Arithmetic Collect the one or two inputs from this gate’s input locations, and evaluate the op-
eration.

Array read Collect the inputs: array name and index, perform an ORAM retrieval (see Sec-
tion 2.3) on the array container, and return the retrieved value.

Array write Collect the inputs: array name, index and new value; perform an ORAM update on
the array container.

Select This gate selects one of two inputs based on a boolean value. It is used to implement
conditionals in the SFDL source. The three inputs are: test value, value if test is true, and
value if test is false. The TTP checks the test value and returns the selected value.

5.2 Implementing conditionals in the circuit

Evaluating a circuit involves evaluating every gate, whether its value is used in the end or not. In
particular this means that both branches of a conditional expression are always evaluated. This
means that the evaluator must expect illegal expressions, which need to be evaluated (and perhaps
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yield a⊥ value). If the code is correct,⊥ values will be un-selected by a subsequentselect
gate. An example of a conditional division if the divisor is non-zero is shown in Figure2.

Array writes inside a conditional also cause complications as they cannot be done on the
original array container, in case the conditional selects the original and not the updated array. In
this case we utilize a copy-on-write scheme to update a copy of the original array.

5.3 Compiler

We implemented the compiler from scratch in Haskell. We decided against using one of the
two existing Fairplay compilers because they target a strictly boolean circuit (as required for
the blinded circuit evaluation protocol), while we are additionally targeting arithmetic gates, and
more importantly array access gates. In addition it seemed more sensible to start over seeing that
this project should have several more stages, requiring further extensions to the compiler.

Like the current Fairplay compilers, it unrolls all loops in the SFDL code, and macro-expands
all function calls. It does not do a single-assignment transformation but generates the circuit
directly from the sequence of unrolled program statements. It trims the circuit to the gates which
are reverse-reachable from the output gates, and outputs the remaining gates in topological order
and numbered sequentially from zero. The gate format is intended to be as simple as possible for
the C++ evaluator in the 4758 to read.
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6 Results

In order to evaluate our hypothesis that the TTP-assisted circuit evaluation system is more effi-
cient than a Yao-style blinded circuit evaluation, we ran an SFDL program which sumsN 16-bit
numbers in an indirectly-addressed array:
// ’ins’ is an N-element array of pairs whose values are user inputs
for (i = 0 to N-1) {

// sum the .y fields in order decided by the .x fields
res = res + ins[ ins[i].y ].x;

}

One run of the program used the Fairplay version 2 compiler and evaluation engine, and the other
used our compiler and evaluator in a 4758. The example is of course artificial, as one would nor-
mally sum the array in a fixed order, which Fairplay does efficiently, treating each array member
as a separate variable. We show this example as a pure illustration of the difference in indirect
array access speed, which can then be used to predict relative performance in other more realistic
programs, like the Dijkstra shortest paths algorithm we discussed in Section4.

The hardware setup for the Fairplay runs was: Alice and Bob9 each on a separate machine,
connected by gigabit ethernet, and each with a 2.7 GHz Xeon CPU, 4 GB memory, and SCSI
drive. The results are shown in Table2. They indicate that the TTP-based approach is indeed
considerably more efficient than the blinded circuit approach, even with the latter on very fast
machines.

N (array length) FP gates TTP gates FP time TTP time
64 193K 448 64 12
128 772K 896 255 26
256 3,085K 1792 1095 57
512 - 3584 - 142
1024 - 7168 - 372

Table 2: Circuit size and program execution time in seconds for different array lengths. The
program simply summed the array of 16-bit integers, forcing the array addressing to be indirect,
ie. it did N indirect accesses into an N -element array. The Fairplay implementation failed to
evaluate its circuit for N > 256, due to insufficient memory (the JVM could use a maximum of
2.7 GB)10. Theoretically, we would expect the Fairplay running times to be O(N2), and the TTP
running times to be O(N

√
N log N), which appears to be confirmed by these results.

To give an idea of how the two models of execution compare when there is no indirect-
addressing involved, we ran a program which performs N 32-bit additions. The results are in
Table3, and indicate that the two execution models are quite similar. The blinded circuit eval-
uation system has an edge through much faster hardware, whereas the TTP-based evaluation
benefits from larger (and hence fewer) gates and wires.

9Fairplay uses the more traditional character names
10It would be conceptually simple, though tedious, to make Fairplay evaluate its circuit without having the whole

circuit in memory. Then the memory bound would go away, but that would be accompanied by an increase in running
time due to all the extra disc activity.
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7 Related Work

7.1 Trusted hardware

Current research (e.g., [19, 20, 32]) and product efforts (e.g., [14]) explore the notion of a secure
computing environment built around the CPU alone. In contrast, the TCPA/TCG approach [33]
attempts to secure an entire desktop, but not against physically present adversaries.

The XOM project [19, 20] investigated how to design a desktop-oriented processor architec-
ture and operating system such that only the processor needs to be trusted, and not the OS and the
RAM. The adversary’s goal is to copy software which is run on the machine. They leave open
the implications of the adversary observing a program’s memory access pattern. In comparison,
we are considering a very different use scenario—a specialized module, the tiny TTP, which does
not have to provide for a full-blown multi-tasking OS, but which needs to hideall information
about the software it is executing, and presumably be able to withstand a higher level of physical
attack than a client-oriented system like XOM.

The AEGIS project [32] investigates the use of an innovative way for a processor to wield
a secret key, by using aPhysical Random Functionbased on random delays in silicon gates. It
also assumes an untrusted RAM, but leaves open the consequences of exposing the RAM access
pattern.

7.2 Other general approaches to SFE

The blinded-circuit solution to SFE is not the only one proposed. Other approaches make use
of different representations of the functionf to achieve different properties like limiting the
communication burden on protocols with large inputs but sublinear communication in the non-
private setting [22].

7.3 Specialized SFE protocols

A large body of work exists on designing specialized protocols for solving specific two-party or
multi-party problems privately:

• Database operations, likejoin andintersection , across tables from two owners [2, 18];

• Privacy-preserving protocols for geometric problems [4, 11];

• Privacy-preserving data mining, eg. [10]

N (additions) FP gates TTP gates FP time TTP time
512 33K 513 17 9
1024 66K 1025 33 17

Table 3: Circuit size and program execution time in seconds for N 32-bit additions. Fairplay
circuit adders for b-bit integers are constructed (as usual) with b full-adders each, where each
full adder consists of 2 3-input gates. Thus the difference in gate count is about a factor of 64.
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Although the majority of SFE work is theoretical, some of these works include concrete
running time analysis [2] and even real prototypes [1].

8 Future work

8.1 Building Tiny TTPs

We are planning to work on a real prototype of a specialized device to optimize the kinds of
algorithms we have used in this work and our earlier PIR work. The main differences from the
current 4758 design will be:

• As explained before, the device will have very small memory and main processor,

• It will have a fast data channel to and from the outside,

• It will have a simple and fast processor in that data path, which can perform tasks like
swapping data blocks based on some parameter in the blocks. This is to accelerate the
execution of sorting networks and related oblivious networks.

Like the 4758, the new device will have a specialized symmetric cryptography engine in its fast
path to and from the outside, to deal with the encrypting and re-encrypting needed for almost all
data the device handles.

Our hypothesis is that the new design will increase the speed attainable currently with the
4758, while reducing the cost of the device, through minimizing the components inside the secure
perimeter.

8.2 Reducing exposure to a single TTP

We will explore the potential to distribute the handling of an array among more than one TTP,
such that no single one learns the values in the array, and (more challenging) the access pattern
to the array. Also we are working on having the non-array parts of the computation be evaluated
using circuit blinding, without the TTP, while the TTP handles the array accesses. Judging by the
results in Table3, there appears to be no speed advantage in the blinded circuit approach relative
to the TTP, so the main motivation in keeping as much of the computation away from the TTP
would be to reduce the players’ exposure if the TTP misbehaves.

9 Conclusion

We have demonstrated that the incorporation of a trustworthy device into a two-party Secure
Function Evaluation protocol brings about considerable efficiency gains. This is especially true
for functionalities which are expensive in the circuit model, like indirect addressing of arrays.
This efficiency comes at the cost of the protocol players having to trust a third party. The devices
we considered are designed to warrant exactly this kind of trust, and through that they impose
some challenges to their users, like small memory and slow processors, which we deal with. We
believe that it is important that potential users of secure protocols have a range of choices in the
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trade-off of performance vs. self-reliance, to meet their particular needs. Thus far the choices
have largely erred on the side of self-reliance, and this work has attempted to provide a sample
point in the performance corner. Investigation of this trade-off should continue.
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Appendix

A Details on secure evaluation of Dijkstra’s algorithm

Here we provide more detail on Section4, and in particular the derivation of Table1. In the
discussion we focus on the computation of a shortest path, given existing edge weights. These
weights would be computed (as part of the secure evaluation) using Agnes’sw function before
the shortest paths algorithm is run. The object representingw is likely to be large for any non-
trivial function, meaning that it will also benefit from accelerated indirect addressing.

The Bellman-Ford algorithm solves the shortest path problem inO(V E) time11, and is suitable
for low-overhead circuit implementation as it accesses the adjacency list in a fixed manner, so no
indirect addressing is required. Dijkstra’s algorithm using a heap priority queue is considerably
faster, takingO((E + V ) log V ) time, which isO(E log V ) in the usual case of a connected
graph [8], provided that indirect indexing into the heap is a constant-time operation. In general
the time isO(E h(V ) log V ) if indirect indexing into the heap takesO(h(V )) time.

In the SFE scenario, if a direct circuit implementation is used for the heap,h(V ) = V , so the
running time degenerates toO(EV log V ). This is clearly worse than Bellman-Ford. If a TTP
running a direct square-root ORAM algorithm is used for the heap,h(V ) =

√
V log V , yielding

a total running time ofO(E
√

V log2 V ).
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