
Beyond SELinux: the Case for Behavior-Based Policy
and Trust Languages

Sergey Bratusd, Michael E. Locastoc, Boris Ottod

Rebecca Shapirod, Sean W. Smithd, Gabriel Weaverd

d: Dartmouth College
c: University of Calgary

Computer Science Technical Report TR2011-701
Dartmouth College

August 2011

Abstract

Despite the availability of powerful mechanisms for security policy and access
control, real-world information security practitioners—both developers and security
officers—still find themselves in need of something more. We believe that this is the
case because available policy languages do not provide clear and intelligible ways to
allow developers to communicate their knowledge and expectations of trustworthy be-
haviors and actual application requirements to IT administrators. We work to address
this policy engineering gap by shifting the focus of policy language design to this com-
munication via behavior-based policies and their motivating scenarios.

1 Introduction

Increasing evidence suggests that system administrators of large enterprise IT systems find
themselves in an untenable position when it comes to security. For example, the National
Security Agency publicly stated that it considers any large system as already compromised.
Furthermore, the National Cyber Leap Year summit of 2009 recognized the inadequacy of
current methods used to secure cyberspace.

Despite the availability of powerful policy mechanisms such as SELinux, AppArmor, and
various hypervisor and other virtualization technologies, enterprise administrators appear to
be unable to make effective use of these policy mechanisms. This indicates that there is still
a significant policy engineering gap between the existing policy languages and the needs of
enterprise administrators to express, modify, and reason about trustworthy system behavior.

The community needs a new approach to secure large, enterprise-level applications. As
part of this work, we are systematically collecting data from security developers and en-
terprise security officers about how current state-of-the-art security policy languages fail to
meet their needs. In this paper, we present some preliminary findings, based primarily on
some initial discussions with developers.

1. We hypothesize that policy languages remain ineffective because they fail to enable
communication of developers’ knowledge of trustworthy behavior and of infosec offi-
cers’s requirements.

2. We propose behavior-based policy language primitives for developers and administra-
tors to communicate trustworthy application.

3. We discuss their potential realization as SELinux mechanism extensions.

Again, we stress these findings are preliminary; we plan to issue a more complete report
when discussions and subsequent analysis are complete.

Policy Languages as a Medium for Communication We hypothesize that enterprise
application security remains untenable because currently-available policy languages do not
permit policy creation to easily capture developers’ knowledge of trustworthy behavior.

Programs are written by developers but, in enterprise IT, must be run by administra-
tors. The knowledge of what constitutes the intended, trustworthy behavior of a program
originates with developers but must be communicated to administrators. Meaningful ad-
ministration – including formulation and enforcement of security policies – is hard without
such communication. For example, if the administrator has no clear idea of what resources
or services the program legitimately needs or when it needs them, she cannot examine a
program’s resource requests and distinguish between intended and compromise-indicating
behaviors.

2

Developers already distinguish between proper and improper behavior when they write
test suites or use secure programming primitives such as privilege drop – this knowledge
needs to be expressed in a useful form to administrators. However, this knowledge gets
lost when an application moves from the developer to the administrator. Policy language
primitives can and should be the vehicle of communication between the developer and the
administrator (as well as the enforcement mechanism).

We also hypothesize that enterprise application security remains untenable because currently-
available policy languages do not permit infosec officers to express and analyze what they
regard as trustworthy-relevant behavior and properties of the systems they care about.

Behavior-Based Policy Language Primitives As a preliminary result, we propose
behavior-based policy extensions that will enable developers to communicate trustworthy
application behavior to administrators. Currently, administrators express mandatory access
control (MAC) policies in languages such as SELinux. However, we believe describing all
allowed accesses of an application via MAC may be the wrong target, and lead to policy
frameworks that fail to capture the dimensions of flow and context. Indeed, we believe that
context itself is particularly unappreciated. Not all access profile violations are equal; not
all are equally detrimental to a policy’s stated or actual security goals. The implications for
security may change depending upon the sequence of accesses, intended shifts of identity in
the application, or execution history of a process. Therefore, we propose shifting the focus
of policy language from controlling access to communicating behavior.

Our collaboration with real-world enterprise administrators has led us to call for policy
languages with the following high-level properties:

• Clarity. The language should enable policies that are concise, easily readable, and
understandable by (human) administrators.

• Intelligibility. A human should be able to understand the encoded behavioral prop-
erties – and how they relate to that human’s workflow – from policy itself, rather than
from analysis of the rest of the system as context.

• Machine Actionability. The policies should be directly actionable by the policy
enforcement mechanisms

This Paper In Section 2 we present a few motivating examples for behavior-based policy
based upon preliminary interviews. In Section 3 we discuss the currently deployed state
of the art and emergent policies. In Section 4 we describe high-level requirements for our
security policy language and why we propose to use SELinux as a base language for our policy
extensions and use our policy extensions in two sample policies to communicate expected
process behavior and events that alter process identity. On Section 5 we discuss our ongoing
work in collecting requirements from enterprise infosec officers. Section 6 orients our research

3

within other security policy languages and provides several historical arguments for our
approach. Finally Section 7 concludes and discusses our ongoing work to evaluate these
mechanisms.

2 Real-World Scenarios

Our interviews and discussions with security developers and security officers confirmed that
the state-of-the art security policy mechanisms do not address the real-world security needs
of enterprises. In this section, we present a few motivating usage scenarios for behavior-based
policy.

Compositional Reasoning Real-world systems are often composed of several systems
glued together. Interviews with information security officers revealed their need to be able
to reason about a system along the dimension of this composition. Two areas in which such
reasoning is important are context dependency and cascading trustworthiness.

Enterprises need to express context dependent security goals. A mobile sales worker
may need to access the same asset with different devices via different networks. If one of
these devices is a personal machine, then the company may restrict information flows that
would otherwise be available had that worker connected from an enterprise device. In this
scenario, there is a communication gap between the end user who needs access, the enterprise
administrator, and the CISO who needs to approve the accesses granted. The trustworthy
behaviors—which device can access which enterprise resources—depend upon the properties
of that device and may change as new devices are introduced.

Enterprises also the need to reason about cascading trustworthiness. For example, when
one application that is considered trustworthy invokes another application, the invoked ap-
plication may need to inherit some of the authority of the invoker—and the invoker incurs
trust dependence on the invokee. The communication gap between trusted application and
child process means that resource privileges need to be passed from the parent process to
its children. The developer needs to communicate the expected child processes of a trusted
application to the IT administrator so that the administrator understands the anticipated
behavior. (One approach to modeling these efforts is proposed in [9].)

Counting Primitives Interviews with information security officers also revealed their
need to be able to express policy in terms of counts. In this way, enterprise administrators
would be free to express thresholds, and in general, limit computation.

On a system level, one set of scenarios emerge when we consider the need to constrain the
shape of a process subtree. The process may need to fork()—but not too much. In contrast,
traditional formal models of security typically focus on information flow and consequently

4

assume monotonicity: if subject S reads object O once, it can read it arbitrarily many
times. Similar problems emerge in PKI and privilege management scenarios, when trying to
evaluate the semantics of varying levels of delegation and assertion, and in rootkit defense,
when trying to limit the number of times some kernel table entry gets written.

Another scenario in which counting primitives are important is temporary business part-
ner access. Enterprises need to grant temporary workers access to company resources. When
an organization hires a temporary worker (end user), the enterprise admin needs to give the
temp worker access to resources or services for a short period of time. This is prevalent
among large pharmaceutical companies that work with high-end professionals such as physi-
cians. However, the same doctor may be an employee or contractor with a competitor. In
this scenario there is a communication gap between the temporary employee, the system
administrator, and the CISO. Although some administrators may want to enumerate the
behaviors to which the temporary end user should be entitled; even full-time workers cannot
accurately report what they need to access to do their jobs. Rather than taking the more
difficult route of tracking accesses, infosec officer might instead wish to use counting prim-
itives to provide provide temporary workers with a computational budget (in the spirit of
HCISEC work on “compliance budgets”).

Isolation Primitives Our work with the power grid reveals the need for isolation primi-
tives in large-scale organizations. Regional Transmission Organizations (RTOs) regulate the
power operations of a variety of independent companies. Many scenarios arise here in which
one party, such as an RTO, may need to establish data and control connections with another
party with different standards of “trusted computer behavior”; one party might also want
assurance that such connections will be limited to the relevant domain of cooperation – since
these parties are also competitors [2].

3 State-of-the-art Policy Languages

Today’s state-of-the-art security policy languages largely fall into two categories:

1. languages in which developers express policies, and

2. languages in which administrators express policies.

There are several different mechanisms developers can build into their software to limit
potential damage caused by that software if compromised. One of the most common mecha-
nisms comes in the form of the setuid() system call used by applications to drop privileges.
Experimental capability-inspired systems like Capsicum [16] and UserFS [7] provide devel-
opers with a more flexible way restricting privileges of their application. These mechanisms
are able to enforce behavior-based policies we have proposed; however they embed security

5

policy into the application’s code and binary. An administrator would need to analyze the
application’s code to gain an understanding of the security guarantees of the software and
cannot easily use the same mechanisms to enforce additional constraints.

MAC mechanisms used in practice such as SELinux and AppArmor as well as virtualization-
based solutions like chroot jails, Solaris Zones, and Linux Vservers, give the administrator
the ability and responsibility of correctly configuring the policies. An administrator must
have knowledge of a program’s resource requirements and behaviors in order to correctly
configure MAC and virtualization policies. Knowledge of the specific configuration of the
system is needed to properly configure these mechanisms and so these languages are only
spoken by administrators – not developers.

SELinux We consider SELinux as our baseline example of the security policy languages
available to enterprise administrators and describe how it is insufficient to encode the security
constraints desired by real-world administrators.

We chose SELinux as our baseline for several reasons. First, SELinux is widely con-
sidered a best-of-breed policy language. Unlike many experimental policy mechanisms and
systems, SELinux has found its way into the mainline OS kernel. Architecturally, it provides
considerable policy strength (at least C2, with full syscall mediation [18, 5]), and is based
on a solid underlying design [17] respected by both kernel developers and hackers.

We note that AppArmor (Section 6.1) is another strong baseline candidate, developed to
improve on SELinux, and successfully addressing several SELinux’s policy language draw-
backs that emerged from user and administrator experience. However, we chose SELinux as
a purer example of the architectural aspects shared by both systems.

Given a complex SELinux policy it can be extremely difficult to know what type of effect a
change has on the rest of the system. This behavior runs counter to the “divide and conquer”
intuition instilled in computer scientists. By that intuition, we learn to problem solve by
breaking up problems into smaller pieces/modules and design APIs for these modules such
that they modules can be combined to build a cohesive whole. Unfortunately, SELinux
doesn’t cleanly lend itself to this methodology. SELinux policies can be thought of as a big
jigsaw puzzle; every pixel of the puzzle’s picture must be drawn on one of the puzzle pieces.
We can can think of a puzzle piece as a single domain and all the rights and privileges that
come with that domain, every file and process is required to be part of some domain. If we
change any puzzle piece we well end up inevitably affecting another puzzle piece.

Because of the tight interdependencies of SELinux domains, it is very difficult for humans
to analyze and adapt SELinux policies as they would standard computer programs. SELinux
policies often fail to translate to different systems because of differences in how the systems
are laid out. Often, vendors will say that SELinux is outside the scope of their installation
instructions and admins need to write a bare bones policy from scratch that may or may not
reflect the actual security needs of the software. An admin needs to receive from a developer a
clear, concise, understandable security policy that can be compared with a system’s existing

6

policy in order to determine whether they are compatible and can be merged.

4 Our Approach: Behavior-Based Policy

Our scenarios motivate requirements for a behavior-based policy language.

1. Policy language should be the vehicle of communication between the developer and
administrator.

2. Policy language must be able to clearly and intelligibly describe behaviors that devel-
opers consider important indicators of trustworthiness or lack thereof.

3. Policy languages should be directly actionable by the policy enforcement mechanisms.

We present several sample policies that capture common and easy to understand trustworthiness-
related behaviors. For each policy we discuss why expressing it with the SELinux alone may
be hard and/or produce voluminous and hard-to-understand policies.

We intend the following sample policies to be themselves usable as elements of more
comprehensive real policies. For that reason, each sample policy concentrates on a single
aspect of behavior. However, the point of using such an element in a larger policy is to
indicate (and communicate to the policy’s human readers) that behaviors that violate it are
deemed untrustworthy.

4.1 Descendant Tree Pruning

Primitives: compositional reasoning, counting.

As noted earlier, one of the most natural characteristics of a UNIX process’ behavior is the
expected subtree of descendant processes. Developers should have no difficulty describing this
tree. For most daemons, this tree is expected to be either empty or shallow. Many daemons
are not expected to drop child processes at all (e.g. syslogd); others are only expected to
fork off worker subprocesses or threads. Only those daemons that are expected to provide
remote login shells, e.g. sshd, are expected to have arbitrarily complex descendant subtrees
rooted at them; expectations of their behavior are not easy to capture in terms of their
progeny. However, these are the exception, not the norm!

It should be noted that the typical remote exploitation scenario has long been associated
with shellcodes, crafted inputs that cause the input-handling daemon to “drop shell”. We
note that the majority of typical shellcode attacks would violate an explicitly expressed
expectation of the process’ descendant subtree and therefore would be easily thwarted by a
policy mechanism enforcing such expectations.

7

We note that the developer expectations can be conveniently expressed in a graphical
form imitating the output of familiar UNIX utilities such as pstree or ps -eH. Such graphical
representation can help enumerate the allowed configurations more simply than any other
form such as productions, XML assertions, etc.

Furthermore, such a graphical representation can be naturally annotated with security
labels attached to the input and can assist designers or administrators of distributed systems
in expressing cross-system data tagging relationships.

SELinux Obstacles At first glance it appears that SELinux is well-suited for expressing
the above expectations because its domain transitions are triggered by the exec family
of system calls—so one might expect to be able to add constraints at process creation.
However, clearly and intelligibly expressing expected descendant subtrees is hindered by
several obstacles:

• Expressing unallowed exec-based transitions takes not 1 but up to 5–10 SELinux pol-
icy language statements. Moreover, at least 3 SELinux operations must be involved
in the specification including the SELinux entrypoint, which, in our experience, has
been something of a stumbling block to policy writers. While SELinux sample policies
attempt to address this with providing the policy writer with a set of the M4 macro-
processor macros that generate groups of related lines in concert, this trick makes
adjusting or analyzing macro-expanded policies quite hard, since the origin and there-
fore intention of their individual lines becomes obfuscated.

• SELinux does not provide an easy way to control the use of the fork operation once
forking has been allowed in the program’s profile. Whereas it is trivial to use an
SELinux policy to prohibit a process from ever forking, it is much harder to restrict
the depth of forking once allowed. SELinux types do not provide a natural way of
counting the number of uses of a permitted operation. Once an instance of an operation
is permitted all future repetitions of this operation are permitted. Only switching to a
different domain via an exec transition provides a way of limiting these repetitions in
the process’ progeny. As the most obvious consequence, SELinux types have no easy
way of describing and thus thwarting a fork bomb (except for the extreme technique
of forcing a process to abstain from all forking).

• An awkward kind of finite counting can be achieved with source code changes. For
example, if it is desired to limit the depth of the daemon’s subprocess tree to two
(master process and worker subprocesses), then one can create copies of the daemon
executable to be forked and provide a different SELinux label for these copies.

Thus we see that describing the shape of descendant subtrees – arguably, the most natural
developer-intended behavior – is both verbose and error-prone, and is also convoluted. A
better language is required.

8

4.2 Process Identity Change Cue Via Flag Action

Primitives: compositional reasoning, isolation

Some actions by the process signal an intended change in its requirements and expected
behavior. An instance of this is the UNIX setuid call made to signal intended change of
the process identity1 [15]. For a long time, setuid has served “least privilege” security
goals [14, 12].

During their runtime, many programs pass several distinct stages, each associated with
a specific set of behaviors not meant to occur in other stages. For an example both classic
and simple, consider a daemon that needs to start with a higher privilege to access needed
system resources but can then drop privilege: namely, the process instance that attempts
a privileged operation after the point of privilege drop should be deemed untrustworthy or
compromised.

As another example, a common practical case of user intention that differentiates a
“secure” workflow from a less “secure” one or a recreational activity is signaled by a particular
easily identifiable action. Such an action is known to both the users and the policy authors
as an event that demarcates security contexts: e.g., after this action, no confidential data
is expected to be exchanged in a particular workflow. For example, accessing a YouTube
video in a browser context suggests recreational browsing, during which ’net banking is highly
unlikely and definitely not advisable; still, YouTube may well be a part of a normal workflow.
Provided that in the context of an organization such semantic indications of security context
switches can be easily identified, policy language should be able to express the respective
changes in the expected program behavior. For example, a Flash-running browser is no
longer expected to have arbitrary access to the local file system.

SELinux Obstacles Although SELinux is capable of (and indeed requires) describing
programs’ allowed (and/or denied) access profiles in minute detail, tying an access change
to an event other than the program itself calling an exec* is a problem. One way of doing
so includes the application itself making the discouraged setcon() call. Another method
involves execing a specially labeled copy of the executable to effect a domain transition. Both
methods are contrived and require source code modifications—we need something better.

1Metaphorically speaking, the caterpillar, the pupa, and the butterfly may be the same organism working
under the same program, but caterpillars are not expected to fly, butterflies are not expected to eat through
leaves, and pupae are not expected to move; if they do, something has probably gone very wrong with the
program.

9

5 Business Community Interviews

The paper addresses the research question whether state-of-the-art security policy languages
meet the needs of the business community. As noted earlier, in ongoing work, we are explor-
ing this question, using a qualitative, empirical research design [3, 10]. We are conducting
expert interviews with Chief Information Security Officers (six so far) based on a structured
interview guideline. Expert interviews are considered an appropriate method in particular
in early exploratory phases of a research effort because they allow for shortening time con-
suming data gathering when the experts function as “crystallization” points for practitioner
knowledge [11, 13].

The interview guideline2 covered five topical clusters:

• Strategic and environmental context

• Organizing information security management

• Information systems perspective

• Information technology and sources of trust evidence

• Trust evidence scenarios

The clusters were further divided into topics. In total the interview guideline comprises
14 topics.

Table 1 shows the expert interviews used for data collection.

All interviews were documented by the interviewer (with the exception of the representa-
tive of BT who filled in the guideline on his own) and sent to the interviewee for clarification
of open questions.

Data analysis followed the principles of qualitative text analysis and was inspired by
the constant comparison method introduced by Glaser [6]. From the data analysis emerged
policy engineering scenarios and overall requirements for trust languages.

The sample size, of course, does not support statistical significance—which is not the goal
of the study. In contrast, the paper aims at exploring fundamental concepts in the business
community which should then be elaborated and tested in subsequent research efforts.

2http://www.tuck.dartmouth.edu/digital/research/project-detail/intel-trust-project/

10

Par$cipant	

organiza$on

Date	
 and	
 $me Loca$on Industry Country Revenue	

2010

Expert	
 role

1 03/08/11:	
 	
 	
 2-­‐3	
 pm on-­‐site Higher	
 Educa$on US n/a CISO
2 03/30/11:	
 	
 8-­‐9	
 am telephone Pharmaceu$cal US 68	
 bn.	
 USD Manager	
 Risk	

Management	

and	
 Quality	

Assurance

3 03/21/11:	
 	
 2-­‐3	
 pm
(filled	
 in	
 ques$onnaire	

sent	
 on	
 04/20/11)

telephone,	

email

Telecommunica$ons UK 21	
 bn.	
 GBP	

(2009)

Program	

Security	
 &	

Compliance	

Director

4 04/21/11:	
 	
 	
 9-­‐10	
 am
04/28/11:	
 	
 10-­‐11	
 am
05/06/11:	
 	
 10-­‐11	
 am

telephone Electronics	
 and	

electrical	

engineering

DE 76	
 bn.	
 EUR Corporate	

Informa$on	

Security	

Manager

5 06/16/11:	
 	
 10-­‐11.30	
 am telephone Medical	
 technology CH 9	
 bn.	
 CHF CISO
6 07/20/11:	
 	
 10.30-­‐12	
 am telephone Insurance CH 29	
 bn.	
 USD Head	

Informa$on	

Security	

Awareness	
 and	

Repor$ng

Table 1: Expert interview details.

6 Related Work

In this section we discuss some related security policy languages and mechanisms. We then
provide historical arguments for our behavior-based policy approach.

6.1 Related Security Policy Languages

The policy languages of state-of-the-art kinds of security policy mechanisms—most notably
SELinux and AppArmor, but also experimental capability-based systems, virtualization-
based solutions like Solaris Zones or Linux Vservers, and even the latest hybrid sandbox-like
systems like Capsicum—do not make it easy to express simple enough statements regarding
the program’s behavior.

We note that the designers of AppArmor saw significantly simplifying the language of
application profile definitions in comparison to that of SELinux policies as a major step
towards improving both the usability and the practical security of the overall system (e.g.,
see [8] for a discussion). AppArmor also identified several common scenarios that could not
be naturally expressed with SELinux policies, and added features to describe them (e.g.,
confinement at sub-process granularity). Still, we believe that there are conceptually simple
but trustworhiness-relevant behaviors that are hard to express even after with AppArmor’s

11

simplifications and added features.

Setuid as a policy tool. The problem of process identity change is old, and the setuid

mechanism of signaling the change from inside the process, in the program’s code is perhaps
the most historically effective means or preventing Internet daemon compromises.

The initiation of this signal event from inside the modern UNIX’s rich process contexts
turns out to be non-trivial to both implement correctly and use correctly; subtle pitfalls
abound (e.g., Chen et al. “Setuid demystified” [4], and the follow-up [15]).

6.2 Historical Arguments for Behavior-Based Policy

Firewall Policies and HIPS We notice a common trend in firewall policies and systems
policies, which we attribute to pressure to accommodate descriptions of behavior into policies:
modern firewalls dynamically modify their sets of rules, adding and removing them based
on certain network events they observe. This trend persists across vendors and technologies,
and can be demonstrated on such diverse systems and mechanisms as Cisco IOS reactive
ACLs, Linux Netfilter connection tracking modules, and others.

Firewall policies, we believe, lead in this trend, due to starting with much less descriptive
power and available context information for their decisions, which necessitated the introduc-
tion of dynamic elements earlier than in HIPS, which enjoyed richer OS-informed contexts
and higher available computational power.

OS policies such as SELinux remain largely static and “compiled” into low-level struc-
tures such as SELinux’s access vectors, designed for minimal interpretation at the point of
application (e.g., reduced to LSM syscall hook callback access vector checks).

From “compiled” to “interpreted” policies. We believe that the future, however, be-
longs to “interpreted” policy logic that is run concurrently with the process in a trusted
process (which acts as a reference monitor), and relies on much richer data structures con-
tained in a “policy computational environment”. This approach should provide much better
sensitivity to needed updates, necessary policy changes, etc., without a recompilation (and
a costly reboot).

Indeed, the need for modifying policies “on the fly” to accommodate the changes in
process identity and mutability is getting realized by practitioners, and necessitates moving
policy decision logic into trusted processes, hypervisors, etc., where the policy is “interpreted”
and dynamically changed (e.g., [1, 2]), with SELinux or LSM hooks used simply to trap
syscalls of interest and to protect the trusted dynamic policy interpreter processes.

12

6.3 Trust Distribution Diagrams

One promising approach to easing the job of a policy engineer is to give her the ability to
cleanly express trust relationships. One obstacle to doing so is the lack of design tools that
can help developers visualize and structure trust relationships between different components
and different software artifacts. Graphical policy design tools can help overcome this ob-
stacle; graphical approaches to software design (i.e., UML, data flow diagrams) are already
popular. One of the central useful concepts of such a graphical approach to trust design is
to show how trust relationships might change in response to input or under new conditions.

Trust Distribution Diagrams (TDDs) [9] seek to address these types of problems by mak-
ing the trustworthiness properties of a system more explicit (and thus amenable to structured
analysis). The relationship of trusted components, their communications paths, and data
dependencies moderates design–level risk. The goal of TDDs is to define a graphical language
for expressing the distribution, amount, and migration of trust in designlevel components
and understand its application to the craft of security architecture.

TDDs help express a developer’s assumptions about trustworthiness properties and trust
relationships between system components, including how they evolve over time in response
to input or other events.

In particular, TDDs can generalize both the process identity-related policies discussed
in 4.2 and extend the process tree-related primitives of 4.1 from parent-child process rela-
tionships to richer communication and trust relationships. They can enable developers to
state the consequences for violating expected behavior by selected components, and thus
control the system’s failure modes.

7 Conclusion

Our ongoing fieldwork with security developers and enterprises has made us aware of the
need for a behavior-based policy language that is clear, intelligible, and machine-actionable.
Our preliminary results suggest three policy primitives: compositional reasoning, counting
primitives, and isolation primitives. We then proposed to realize these isolation primitives
as SELinux extensions and provided two simple policies to communicate expected process
behavior and trust-altering process events. We believe that the future security policies, as
evidenced by firewall policies and the increased popularity of interpreted languages, will
facilitate communication among developers and administrators via a stateful, interpreted
language.

We are currently refining our proposed extensions into more formal policy languages and
refining our practitioner interview data into more precise scenarios; we then plan experiments
to quantitatively and qualitatively evaluate the relative effectiveness of these current and
proposed policy languages for communication of desired properties of trustworthy system

13

behavior. We are also exploring the problem of attestation languages, as a dual to policy
languages.

We reiterate that this paper is preliminary; we plan subsequent reports as the work
progresses.

Acknowledgments

We would like to thank our security industry contacts who helped connect us with their
clients’ information officers and provided a unique perspective on the current and emerging
needs and challenges of enterprise IT security. For confidentiality reasons, we do not reveal
their identities in this TR, but express profound gratitude for their significant contributions.

This research was supported in part by Intel Corporation, which does not necessarily
agree with the views and conclusions presented.

References

[1] Berthold Agreiter, Masoom Alam, Michael Hafner, Jean-Pierre Seifert, and Xinwen Zhang.
Model Driven Configuration of Secure Operating Systems for Mobile Applications in Health-
care. In ACM Workshop on Model-Based Trustworthy Health Information Systems, 2007.

[2] Katelin A. Bailey and Sean W. Smith. Trusted Virtual Containers on Demand. In Proceedings
of the Fifth ACM Workshop on Scalable Trusted Computing, pages 63–72, 2010.

[3] R. Y Cavana. Applied Business Research: Qualitative and Quantitative Methods. John Wiley
& Sons Australia, Milton, 2001.

[4] Hao Chen, David Wagner, and Drew Dean. Setuid Demystified. In Proceedings of the 11th
USENIX Security Symposium, pages 171–190, 2002.

[5] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. Runtime Verification of Authorization
Hook Placement for the Linux Security Modules Framework. In Proceedings of the 9th ACM
Conference on Computer and Communications Security, pages 225–234, 2002.

[6] B. G. Glaser. The Constant Comparative Method of Qualitative Analysis. Social Problems,
12(4):436–445, 1965.

[7] Taesoo Kim and Nickolai Zeldovich. Making Linux Protection Mechanisms Egalitarian with
UserFS. In Proceedings of the 19th USENIX Security Symposium, 2010.

[8] Achim Leitner. Novell and Red Hat Security Experts Face Off on AppArmor and SELinux.
Linux Magazine, (69):40–42, 2006.

[9] Michael E. Locasto, Steven J. Greenwald, and Sergey Bratus. Trust Distribution Diagrams:
Theory and Applications. In Proceedings of the 4th Layered Assurance Workshop (LAW 2010),
Austin, TX, December 2010.

14

[10] J. A. Maxwell. Qualitative Research Design: An Interactive Approach. SAGE Publications,
Thousands Oaks, 1996.

[11] M. Meuser and U. Nagel. The Expert Interview and Changes in Knowledge Production. In
A. Bogner, B. Littig, and W. Menz, editors, Interviewing Experts, pages 17–42, Hampshire,
UK, 2009. Palgrave Macmillan.

[12] Robert A. Napier. Secure Automation: Achieving Least Privilege with SSH, Sudo, and Suid.
In LISA ’04: 18th Large Installation System Administration Conference, pages 203–212, 2004.

[13] J. Reitman Olson and K.J. Biolsi. Techniques for Representing Expert Knowledge. In K. A.
Ericsson and J. Smith, editors, Toward a General Theory of Expertise, pages 240–285, Cam-
bridge, UK, 1991. Cambridge University Press.

[14] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing Privilege Escalation. In Pro-
ceedings of the 12th USENIX Security Symposium, 2003.

[15] Dan Tsafrir, Dilma Da Silva, and David Wagner. The Murky Issue of Changing Process
Identity: Revising “Setuid Demystified”. USENIX ;login:, 3:55–66, 2008.

[16] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum:
Practical Capabilities for UNIX. In Proceedings of the 19th USENIX Security Symposium,
2010.

[17] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-Hartman.
Linux Security Modules: General Security Support for the Linux Kernel. In Proceedings of the
11th USENIX Security Symposium, pages 17–31, 2002.

[18] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQUAL for Static Analysis of
Authorization Hook Placement. In Proceedings of the 11th USENIX Security Symposium,
pages 33–48, 2002.

15

