
Flexible and Scalable Public Key Security for SSH?

Yasir Ali and Sean Smith

Department of Computer Science/PKI Lab
Dartmouth College, Hanover NH 03755 USA

yasir.ali@alum.dartmouth.org
sws@cs.dartmouth.edu

Abstract. A standard tool for secure remote access, the SSH protocol uses public-
key cryptography to establish an encrypted and integrity-protected channel with
a remote server. However, widely-deployed implementations of the protocol are
vulnerable to man-in-the-middle attacks, where an adversary substitutesher pub-
lic key for the server’s. This danger particularly threatens a traveling user Bob
borrowing a client machine.
Imposing a traditional X.509 PKI on all SSH servers and clients is neither flexible
nor scalable nor (in the foreseeable future) practical. Requiring extensive work or
an SSL server at Bob’s site is also not practical for many users.
This paper presents our experiences designing and implementing an alternative
scheme that solves the public-key security problem in SSH without requiring such
an a priori universal trust structure or extensive sysadmin work—although it does
require a modified SSH client. (The code is available for public download.)

Keywords: SSH, man-in-the-middle.

1 Introduction

In the UNIX world, users traditionally usedtelnet and ftp to access remote ma-
chines (to establish login sessions and transfer files, respectively). However, these com-
mands transmitted userids and passwords in the clear, and the increasing insecurity of
the networks over which these commands operated have made this risk unacceptable.

Consequently, thesecure shell (SSH)(e.g., [2, 10–13]) has emerged as the de facto
replacement for these commands. Rather than typingtelnet andftp to reach a re-
mote machineS, the user invokesssh , which uses public-key cryptography estab-
lish authentication and encrypted communications over unsecured channels. The server
presents a public key, and the client machine uses standard cryptography to establish a
protected channel with the party knowing the private key—presumably, the server. SSH
can even permit the user to authenticate via a key pair instead of a password; however,
we conjecture that most users stay with the simpler authentication.

? This work was supported in part by the Mellon Foundation, by Internet2/AT&T, and by the Of-
fice for Domestic Preparedness, U.S. Department of Homeland Security (2000-DT-CX-K001).
The views and conclusions do not necessarily represent those of the sponsors. A preliminary
version of this paper appeared as Technical Report TR2003-441, Department of Computer
Science, Dartmouth College.

Appeared in Public Key Infrastructure: EuroPKI 2004. 1



However, common SSH implementations overlook an importantproperty: the bind-
ing of the server’s public key to the identity of the server towhich the user intended
to connect. This oversight makes the user susceptible to man-in-the-middle attacks, in
which the adversary substitutes her public key for the server’s; if the user then authen-
ticates via passwords, the adversary can gain complete control of the user’s account.

This risk is particularly pronounced in settings where a traveling user is borrowing
a client machine that does nota priori have a trusted copy of the intended server’s
public key. We stress that in this model, the user may trust the client machine he or she
is borrowing—but not the client machine’s network environment. (Indeed, the second
author encountered this: a trusted colleague’s machine, inan institute suffering DNS
attacks.)

Solving these problems in SSH requires introducing a way forSSH clients to se-
curely bind public keys to servers. Solving these problems in the real world requires
that any particular SSH client that any particular user wishes to use be able to perform
this binding for any particular server the user might want toconnect to.

In the long-term, the DNSSEC vision—using PKI to secure all DNS information—
would enable a nice solution (e.g., [7]); however, we don’t see this happening in the
near-term. Perhaps the next natural approach would be to establish a traditional hierar-
chical PKI for SSH servers; all SSH clients would know the trust root; all SSH servers
would have access to a CA/RA system that would sensibly bind the public keys to us-
able names; trust paths for any given server would somehow arrive at any given client.
(Indeed, this is the approach we first considered; and similar commercial offerings have
since emerged.)

However, this natural approach does not meet our real world constraints (Sec. 3.2).
This universal trust structure needs to be in place before the traveling user can securely
connect from a remote machine. Furthermore, many system environments do not pro-
vide a natural hierarchy of certifiers or machine names. (Forexample., one colleague at
a corporation “bar.com ” cited104 machines with names of the formfoo.bar.com ,
and whose names were changed apparently at whim by remote sysadmins.)

Alternatively, one might consider a many-rooted trust structure, consisting of many
domains linked by bridges and cross-certification. However, it is not reasonable to as-
sume that this solution, attractive in theory, will be workable in wide-scale practice any
time soon. (For example, efforts to use bridging to achieve painless interoperability be-
tween academic domains academic-to-government domains inthe US create ongoing
research and engineering challenges.)

Yet another solution might be to build on the “universal PKI”that already exists on
desktops: the trust roots built into browsers, and the burgeoning support for browser per-
sonal keystores for users. To that end, we considered (and also began prototyping) some
additional approaches that used the browser-based SSL PKI to authenticate servers, and
possibly clients too. However, this approach would requirethat all users be affiliated
with a site that that sets up and maintains an SSL Web server (and pays for annual re-
newal of a certificate from a standard browser trust root); while assuming a home Web
server was reasonable (and common in many academic and corporate environments),
we felt that assuming an SSL server was not. This approaches thus loses flexibility.

Appeared in Public Key Infrastructure: EuroPKI 2004. 2



This consideration left us with the challenge: how do we bring public-key security to
SSH, in a way that provides the flexibility and scalability that can permit easy adoption
in the real world, without requiring an a priori trust structure or an SSL server?

Sect. 2 provides the background knowledge to understand theproblem. Sect. 3 de-
scribes the particular risk and usage scenarios we envisioned, and the design constraints
that resulted. Sect. 4 presents the solution we developed (in a sense, a decentralized PKI
that requires neither certificates nor CAs). Sect. 5 presents architectural and implemen-
tation1 details. Sect. 6 considers some alternate approaches and future work.

2 Background

2.1 The SSH Protocol

First, we consider the SSH protocol (e.g., [2, 10–13]).
When a user on a client machine tries to establish a secure channel with a remote

machine, what really happens is the SSH client (on the clienthost) carries out this
protocol with theSSH daemonon the server host.

Put simply, SSH allows these two hosts to construct a secure channel for data com-
munication using Diffie-Hellman key exchange, which provides a shared secret key that
cannot be determined by either party alone. The shared secret key established is used
as a session key. Once an encrypted tunnel is created using this key, the context for
negotiated compression algorithm, and encryption algorithm are initialized. These al-
gorithms may use independent keys in each direction. The first session key established
is randomly unique for every session.

SSH allows for both the server and the client to authenticateusing DSA, as part of
this exchange. Typically, the client will authenticate theserver by comparing a finger-
print of the server’s public key with one stored in a file on theclient machine; if they
do not match, the user on the client machine would either receive a warning with the
option of accepting the new fingerprint as it is, or the clientwould drop the connection.
(We conjecture that the typical user would click “OK” and keep going.)

There are three main parts of the SSH protocol: algorithm negotiation, authentica-
tion, and data encryption.

Algorithm negotiation is mainly responsible for determining the encryption algo-
rithms, compression algorithms and the authentication methods supported and to be
used between the client and the server. Authentication [13]is further broken down in
two pieces: key exchange (transport layer) and user authentication (user authentication
layer).

The purpose of the key exchange is dual. Firstly, it attemptsto authenticate the
server to the client. Secondly, it establishes a shared key which is used as a session
key to encrypt all the data being transferred between the twomachines. The session
key encrypts the payload and a hash generated for integrity checking of the payload us-
ing the private key of the server. The client verifies the server’s public key, verifies the

1 Prototype source and binaries are available athttp://www.cs.dartmouth.edu/
˜sws/yasir_thesis .

Appeared in Public Key Infrastructure: EuroPKI 2004. 3



server signature received and then continues with user authentication. User authentica-
tion methods that are supported and are a part of the SSH protocol include passwords,
public key, PAM, and Kerberos.

Once authentication is successful, one of the negotiated encryption algorithms is
used to encrypt the data transferred between the two machines. Other features that are a
part of SSH clients include port forwarding, however such features will not be discussed
in this paper.

2.2 Tools

Popular open source tools are the OpenSSH client and server,distributed freely with
Red Hat Linux distributions; and the TeraTerm SSH client forWindows. Popular com-
mercial versions include the SSH client and server developed by SSH Inc.

The commercial SSH provides support for a traditional PKI, as we discuss later.
However, the OpenSSH client current at the time of our experiments (openssh3.4) did
not provide any code that verifies certificates or certificatechains. Rather, certificates
were merely treated as public keys. If a keyblob (the technical name for a data structure
that loads the public key) contains a certificate instead of apublic key, OpenSSH had
routines that can extract the public key out of the certificate and after that it only uses
that public key for authentication and integrity checking purposes.

3 Usage Scenarios and Constraints

3.1 Basic Vulnerability

In many public-key applications, the relying party can directly verify that the other
entity knows a private key matching a particular public key.However, to draw a more
useful conclusion from this, the relying party needs to establish a binding between this
public key and some relevant property of this entity.

In the case of SSH, the user needs to establish that the serverwith whom his client
has just established a session is the server to whom he intended to connect.

If the client machine has ana priori relationship with the server to which the user
wants to connect, under the same server name the user wants touse, and the server’s key
has not changed, then the user possesses such a binding inductively. (Indeed, many in-
stallations suggest that a user traveling with a laptop firstssh to his desired home hosts
while safely within a trusted home LAN, in order to pre-load the laptop’s fingerprint
store.)

However, if these things do not hold, then the user is at risk (e.g., see [9]). When the
server sends its public key, the user has no way to verify if this key matches the intended
server. It is trivial for an attacker to sit in the middle and intercept the connection,
and send her own public key and signature instead. The user may then send his own
password to the attacker thinking that she is the intended server.

If the client already has the server’s public key, the user will generally receive a
warning such that “server’s key has changed. Continue?” Most users typically hit “Yes”
and do not realize the risk. However, if it is the first time theuser is connecting to this

Appeared in Public Key Infrastructure: EuroPKI 2004. 4



server from this client, the client will not have the server’s public key stored locally, and
the user will be none the wiser.

(Researchers have also identified how SSH encryption can protect the plaintext con-
tent on a channel but still leak other information [8], but wedo not consider those issues
here.)

3.2 Real-World Constraints

In the trust model we consider, the user trusts the client machine and his intended remote
server to work correctly. However, the user does not trust the server machine he actually
connects to until he verifies the server’s identity; he also does not trust the client’s
network environment, including its DNS. If the client does not have a trusted fingerprint
of the server already loaded, how does the user establish thebinding?

We enumerate some desired goals of an effective solution:

– The solution should enable users from borrowed (but trusted) clients, in untrusted
network environments, to establish trusted connections totheir home machines.

– The solution should be adoptable in the near-term by small groups of users with
only a small delta from the current infrastructure.

– The solution should accommodate users in domains where conscientious sysadmins
can set up trustable and usable CA services.

– The solution should also accommodate users in domains whereno such services
exist.

– The solution shouldnot require that a new universal PKI structure (neither single-
rooted nor multi-rooted) be established before any of this works.

– The solution shouldnot require that a user memorize the fingerprints of all servers
he wishes to interact with.

3.3 Existing Solutions

As mentioned earlier, a natural approach is to assume the existence of a traditional PKI
via which any SSH client can authenticate the binding of the server’s public key to
its identity. Both SSH Communications Security and F-Secure have had commercial
offerings in this area, and new commercial offerings continue to emerge.

However, such approaches did not meet our scalability and flexibility constraints. A
universal trust structure must exist before the system is useful; before Bob can use an
SSH client at Carla’s college, Bob’s servers must be certified, and Carla’s clients must
know a certification path from a trust root to that server. Furthermore, not all domains
will have the appropriate personnel and organizational structure to establish reliable and
usable bindings in the first place.

We could also require that users carry with them some hardware device (such as
a smart card or key fob) that remembers the public keys of the servers they wish to
interact with. However, we feel this would be overly awkwardand expensive, violating
the goals; also, sufficiently robust software and hardware support for such tokens has
not permeated the current infrastructure, violating the “small delta” constraint.

Appeared in Public Key Infrastructure: EuroPKI 2004. 5



4 Our Solution

4.1 Overview

To solve the problem, the client needs to have some trust rootupon which to build the
conclusion that the binding of the server’s public key to identity is meaningful. The
“small delta” and “no new universal PKI” constraints mean that we can neither hard-
code one trust root into all clients, nor assume that each client will have a local trust
root with a path to Bob’s server. The “no memorization” constraint means that the user
cannot bring it with them.

This analysis thus forces us to have the client download the user’s trust root over
the network. Since changing how the SSH protocol itself works would also violate the
“small delta” constraint, we need to download this data out of band. However, this raises
a conundrum: if the user cannot trust the network against man-in-the-middle attacks on
the public key the server sends in SSH, how can the user trust the network against
man-in-the-middle attacks against this out of band data?

To answer this, we use akeyed MAC—a “poor man’s digital signature.” Also known
as a keyed hash, a keyed MAC algorithm takes a messageM and a secret keyk, and
produces a MAC valueMac(M,k) with the property that it is believed infeasible to find
anotherM ′, k′ pair that generate the same keyed MAC. Thus, if Bob knows secret key
k, and retrieves a messageM accompanied by a MAC valueh which he confirms as
Mac(M,k), then Bob can conclude thatM was produced by a party that knewk and
thatM has not been altered in transit. (In a sense, this like a digital signature, except
we have a symmetric key instead of a key pair, and thus we lose non-repudiation.)

Our constraints dictate that we cannot force the user to memorize a public key—
but users easily memorize URLs and passphrases. Our generalsolution thus has two
parts. First, we built amodified SSH clientthat accepts a location (such as URL) and
passphrase from the user; the client then fetches the the trust root from that URL, and
verifies its integrity by deriving a symmetric key from the passphrase and using that to
check a keyed MAC on the root data. We then builtconfiguratortools to create these
MAC’d trust roots in the first place.

4.2 Approaches

We now discuss a range of solutions this basic strategy permits.

Decentralized At one extreme, we imagine a user who wants to securely accesshis
standard machines, but does not have a support organizationwilling or able to take on
the job of certifying each SSH daemon.

Our approach permits a fully decentralized SSH PKI that supports such users, by
permitting each one to be their own CA.

When the user is at his home site and has trusted access to the server public keys, he
runs a configurator program that collects from the user a passphrase, the name(s) of the
desired target servers, and a path to a trusted store of theirpublic keys. The configurator
then produces ahashstore file containing a list of server names, and (for each server)
the keyed MAC, generated under a symmetric key derived from the passphrase, of the

Appeared in Public Key Infrastructure: EuroPKI 2004. 6



tuple of server name and public keys. The user then places this file in some publicly
accessible place, such as in their home directory on the Web.

When the user then wishes to use SSH from a remote client, he initiates the connec-
tion to his home machine (e.g.,ab.cs.foo.edu ). Then,ab.cs.foo.edu sends
its public key to the client machine. The modified SSH client prompts the user for
the URL of the hashstore. The modified client fetches the hashstore and extracts the
keyed MAC forab.cs.foo.edu . The modified SSH client prompts the user for his
passphrase. The client then derives a symmetric key from this passphrase, and uses it to
generate the keyed MAC for the alleged public key. The generated MAC is compared
with the MAC received from the web page. If the two values match, the client proceeds
with SSH.

Variations are possible. For example, we could take the decentralization even fur-
ther and, rather than having the user remember the current global name for each target
host, the modified client could use the hashstore to obtain anIP address or other exter-
nal name for the personal hostname the user typed (thus avoiding thefoo.bar.com
problem our colleague encountered).

Semi-Centralized In some scenarios, it might be reasonable for an enterprise to set up
a CA that reliably signs certificates for SSH daemons at servers.

Our approach also permits such semi-centralized approaches. The SSH protocol
will already have the server send this certificate to the client. What we need to do is
provide the client with a certification path to verify this information; a minimal one
might be a certificate for the user’s home enterprise’s root CA.

In this case, the enterprise admin set up an LDAP database, and runs a configurator
tool that populates the database with a record, for each user, containing a this certifica-
tion path and a keyed MAC for it, generated via the user’s passphrase.

When the user then wishes to use SSH from a remote client, he initiates the connec-
tion to his home machine (e.g.,ab.cs.foo.edu ). Then,ab.cs.foo.edu sends
its certificate to the client machine. The client prompts theuser for the location of the
LDAP. The client contacts the LDAP, and sends the user’s name. The LDAP server
looks up the username and sends back the certification path and the hashed CA certifi-
cate corresponding to that. The modified SSH client prompts the user for his passphrase.
The client then derives a symmetric key from this passphrase, and uses that key to gen-
erate a keyed MAC of the certification path received. If the MACs match, the client then
validates the server certificate using this certification path. The client then proceeds with
SSH.

Again, many variations are possible here. For example, the CA need not coincide
with the party setting up the LDAP; alternatively, an individual user could set up his
Web-based hashstore (as in the decentralized approach above) to include the public
keys of CAs he chooses to trust.

In this semi-centralized approach, the only role of the CA isto certify SSH dae-
mons for its user population—which is probably not a high-volume task. Since the CA
does not certify users, we anticipate that revoking and re-issuing certificates will be
infrequent. Avoiding the need for a CA certificate issued by astandard trust root also

Appeared in Public Key Infrastructure: EuroPKI 2004. 7



reduces expense and hassle. Thus, we eliminate many potential performance and expo-
sure issues—this machine will just not be used that often.

Furthermore, by easily allowing a user to go right to a root, this approach permits
a trust hierarchy that consists of a forest of small trees. The user specifies the tree
root. This eliminates the hassle of intermediate certificates (cross-certificates or bridge
certificates) that would be generated if we wanted interoperability between multiple
Certificate Authorities within one realm. This also provides increased resilience; com-
promising the security of one CA will not compromise the whole PKI.

Certificates and ExpirationSince our solution’s “small-delta” constraint dictated sim-
plicity, we opted for long lifespans on server certificates and hope for minimal certificate
revocation. We considered delegated path discovery and validation [6], which would en-
able the client to offload checking CRLs and other such dutiesto a remote server, but
decided against it for simplicity.

In the worst case, supporting revocation of the trust root (and preventing replay
attacks) would require a way to “revoke” old keyed hashes. One approach would be to
have users change passphrases; another would be to have the LDAP know the users’
passphrases (a risk).

We opted for X509v3 certificates. The reasons for that are multifold. First of all,
the X.509 standard [1] constitutes a widely accepted basis for such an infrastructure.
Secondly, Microsoft Certificate Store and OpenSSL libraries are both interoperable with
x509v3 certificates. Thirdly, x509v3 certificates support extensions that can be added
into a certificate, which can then uniquely identify a certificate on the basis of its IP
address extension.

4.3 Security

The security of the above approaches stems from the basic fact that the user can use a
passphrase as a shared secret key to create a hash.

Semi-Centralized The semi-centralized approach starts by having the serverab.cs.
foo.edu send the server certificate to the client machine. An attacker who has a dif-
ferent server certificate issued by the same certificate authority can intercept the server
certificate. Suppose she wants to pose asab.cs.foo.edu . She replaces the server
certificate with her own certificate. Certificate verification would fail in such a scenario
because when the SSH client looks at the uniquely identifying server name of the cer-
tificate, it would not be the one it expected. The server name would not match. If the
attacker forges it to be the same, she would not be able to modify her signature to match
the forged extension, as the CA generated the signature, therefore the certificate veri-
fication would fail again. The client would verify the signature of the attacker using
the CA’s public key and match it with the credentials provided which would not be the
same. This establishes the fact that the attacker cannot forge a suitable certificate, even
if she has a certificate issued by the same certificate authority.

The user types in the URL/LDAP address, which is connected toan LDAP server;
the client sends the user name to the LDAP. A malicious user can intercept the user-
name and send back a different hash of a modified certificationpath, and a modified

Appeared in Public Key Infrastructure: EuroPKI 2004. 8



certification path itself. However when the client uses the user passphrase to generate
the hash for the modified certification path, it would not match the hash received. The
attacker would not know the password used by the user. Essentially, the only way to
crack this protocol is by cracking the password used. That can be done by dictionary
attacks or by other techniques, such as social engineering.Therefore it is important that
the user selects a long passphrase and fulfills the requirements of a good passphrase to
ensure that this protocol is secure.

RevocationSuppose the server certificate changes. In such a scenario, an attacker could
use the old invalid server certificate from a previous session and successfully pose as
the server. The user would receive the old certificate, and hewould retrieve the hashed
CA certification path, and the CA certification path from the LDAP server. As the CA’s
public key has not been modified, the user would validate the invalid server certificate,
and send his username and plaintext password to the attacker.

There are two ways to avoid this problem. Firstly, the usage of Certificate Revoca-
tion Lists or OCSP (e.g. [4]) can inform clients that a certificate has been revoked. In
that case, the client would check whether the certificate hasbeen revoked or not. This
approach requires addition of components to the existing protocol, which would query
the status of the certificate, retrieved at the client end andmanage or store certificate
revocation [1] information at the server end. A simpler solution to the problem is that
server certificates issued are irrevocable. What that means is that once a server is as-
signed a certificate, it cannot be changed until it expires. Once the server certificate is
expired it would be recertified. This option does not complicate the protocol. This pro-
tocol is secure as long as the private key corresponding to the certificate is protected
and safe.

4.4 Decentralized Approach

The decentralized approach starts out by having the serverab.cs.foo.edu sends its
public key to the client machine. Suppose an attacker intercepts and replaces it with her
own public key. Once the client receives the public key, it retrieves the keyed-hash of
the public key. It hashes the public key and compares it with the hash received. The two
hashes would not match.

Suppose the attacker now attempts to send her own keyed hash instead of the one
stored at the place the user specified. To be able to generate avalid hash, the attacker
needs to know the user’s passphrase. Therefore if she replaces a valid hash with one of
her own, that hash would not match to the one that the client would produce using the
user’s passphrase on the spoofed public key received.

Attacks due to DNS Spoofing are also defied by the verification of the host key.
Suppose that the user logs in on a client machine for the first time and types inab.cs.
foo.edu that maps to 129.172.111.4. However, an attacker spoofs it so that the user
attempts to connect to 129.172.111.5 instead of 129.172.111.4. The fact that the attacker
can only possess the public key of the server—and not the private key—implies that she
cannot generate the signatures that validate the payload during the key exchange, there-
fore he can not successfully establish a shared secret key which follows a successful
server authentication at the transport layer.

Appeared in Public Key Infrastructure: EuroPKI 2004. 9



RevocationSuppose the server public key changes. In such a scenario, the client would
be vulnerable to a replay attack. In a simpler model, the usercan be informed via email,
as soon as possible, of the change in the server key so that he can update his web page
repository of hashes. This methodology introduces a windowof risk; however, in the
interest of simplicity (and in the hope that server certificates do not change often), we
believe that it should suffice.

4.5 Drawbacks

Our solution does have some disadvantages.
First, our use of a hash keyed from a user-memorized passphrase introduces a risk

of offline dictionary attack on the passphrase. For now, our defense here is to encourage
users to use sufficiently long passphrases to minimize this risk. (Potentially, we could
also augment the hash-fetch protocol to include temporary symmetric keys known only
by the client and the SSH server keyholder—requiring an attacker to actively imperson-
ate a server in order to gather material for a dictionary attack.)

Secondly, our solutions may require user participation in dealing with revocation of
SSH server key pairs. Here, we believe that the relative infrequency of this activity—
combined with the fact that the default scenario requires the users to actively participate
in SSH key pairs anyway—will reduce the significance of this requirement.

Both of these issues remain areas for future work.
Of course, our principal disadvantage that we require that borrowed client machines

have an alternate SSH client.

5 Implementation

5.1 Overview

We prototyped the fully decentralized solution above. We also have hooks in place for
the semi-centralized solution (and some other techniques we discuss in Sect. 6).

The design and code that was written to develop the prototypeis open source and
modifies the SSH protocol.

At the time of our experiments, the existing SSH protocol supported by OpenSSH
had the bare skeletal structure to support certificates thatdoes not directly support cer-
tificate verification. OpenSSL(0.9.6c) has created routines and callback functions that
can be used with much ease to verify certificates. We added aFirst Time authentica-
tion method to carry out our decentralized approach to verifying keys. Figure 1 sketches
an architectural block diagram that explains how we extended the SSH client.

For a keyed MAC, we chose HMAC [3], which is built on a cryptographic hash
function, typically MD5 or SHA-1 (we chose SHA-1). We derivethe symmetric key
from a 20-character passphrase entered by the client.

5.2 Choice of Codebase

At the time of our experiments, open-source OpenSSH clientsexisted for Linux, and
the only fully-deployed open source SSH server was providedby OpenSSH and and

Appeared in Public Key Infrastructure: EuroPKI 2004. 10



SSH2 Protocol

Algorithm Negotiation

Server Negotiation

Key Exchange

User Authentication

Service Request

Our Extension

Authentication types:
public key, password,

none

Authentication types:
First Time

Server Authentication:
Get HMAC from URL

Verify server key

Fig. 1.Architectural block diagram of theFirst Time method.

was distributed freely with Red Hat Linux.NetworkSimplicity.com provides a
Windows port for the OpenSSH client and server. However, using this codebase would
not give us a graphical user interface.

TeraTerm SSH clients were interoperable with OpenSSH servers and provided a
Graphical User Interface that makes it easy to use on Windowsplatform. The TeraTerm
SSH client is an extension to TeraTerm Telnet client, which is also open source.

For our work, we chose the TeraTerm SSH client, primarily because we felt that a
graphical Windows client would be more useful for travelingusers.

5.3 Application Interface

Figure 2 shows the main entry. To use the fully decentralizedoption, the user selects
the “Enable Secure First Time Authentication” option and clicks “Configure.” Once the
user enters the hostname he is prompted with the User Interface displayed at left in
Figure 3, which prompts the user for the hashstore.

The client receives the public key/server certificate and isprompted to enter the hash
password (Figure 3, right). If the password authenticates the hash, SSH authentication
proceeds as normal. (Figure 4).

5.4 Configurator

Our configurator utility is an independent program that setsup the hashstore. The hash-
store contains a list of the machines, that the user accessesremotely, and their corre-
sponding Hash values.

Appeared in Public Key Infrastructure: EuroPKI 2004. 11



Fig. 2.The main screen

Fig. 3. At left, the client requests URL entry for hashstore; at right, the client requests the
passphrase to generate the HMAC.

This program takes the server public key used for SSH sessions, concatenates it
with the server name and then generates the hash and stores them in a file called
hashstore . The file is then placed on a hosted Web site. Figure 5 shows sample
of the output when this program runs.

5.5 Code Availability

All the code that was used and modified in this project is open source and can be
downloaded fromhttp://www.cs.dartmouth.edu/˜sws/yasir_thesis .
The binaries for the modified TeraTerm SSH clients are also available. The code con-
tains all the needed OpenSSL libraries, crypt32 libraries from Microsoft platform SDK
needed for certificate management. Areadme.txt file explains how to setup the
client, and the hash generation tool.

Appeared in Public Key Infrastructure: EuroPKI 2004. 12



Fig. 4. If the retrieved HMAC matches the public key the server sent, then the server has been
authenticated.

$./linuxConf
This program generates the HMAC Hashes for the public

keys of host machines. This program is to be run on the local
machine whose public key is to be hashed

Enter the host name of the machine: foo.bar.com
----String to be Hashed---
foo.bar.com 1024 35
151052055305049513313873325220639580170308824866279 975903865
170656590852808348836251630147723004221777127618768 94150979694040698019214365467
073819866258137960346650956260995757941067229342743 28194857789445170395185623181
061095020734195764903042795665504187468740443926315 14426610329187514765207346921
326949181
Enter the pass phrase to hash:
MySecretPassPhrase%1

---Hash stored in hashstore.txt---
foo.bar.com 1024 35 MD:_YłS (non ascii characters not displ ayed)
$

Fig. 5. Sample output of the configurator, which generates HMAC values of the public keys, to
server as the user’s trust roots from remote locations. (The use of thekeyed MAC ensures integrity
without a universal PKI.)

6 Conclusions and Future Work

Our solution brings public-key security to SSH in a a flexibleand scalable way—and
(when one considers the decentralized approach) constitutes a datapoint for a useful
“PKI” with neither CA nor certificate.

The ease of use and deployment of the “decentralized non-CA approach” distin-
guishes our solution from one based on a traditional hierarchical PKI.

Currently, both academia and industry strive to develop standardized protocols that
would make the deployment of PKI relatively manageable; however, a look at the de-
ployed technology base shows that we’re not quite there yet.Most small enterprises do
not need to invest and develop a hierarchical trust model fora PKI. Our decentralized
approach is ideal for such small-scale corporate environments. The users do not have to
learn the how to use user certificates and the system administrators do not have to set
up a PKI. In contrast, our centralized CA approach is suited for larger networks with
several users. It develops a PKI with a minimal set of components.

In future work, we would like to take the prototype to anotherlevel of completion.
Right now, the user interface is not completely clear; and arguably, a secure client for
traveling users should be aggressive aboutnotretaining validated server keys. We would

Appeared in Public Key Infrastructure: EuroPKI 2004. 13



also like to extend the code to handle more pieces of the solution space; for example,
the current code does not support the semi-centralized approach (beyond connecting to
an LDAP server). We also would like to strengthen the way thatthe HMAC keys are
derived from passphrases. Developing a Linux version wouldalso be useful. Exploring
visual hashing[5] as an alternative way for a human user to authenticate complex data
would also be interesting.

References

1. Carlisle Adams and Stephen Farrell. “Internet X.509 Public Key Infrastructure Certificate
Management Protocols.” IETF RFC 2510, March 1999.

2. Daniel J. Barrett and Richard E. Silverman.SSH: The Secure Shell, The Definitive Guide.
O’Reilly & Associates. 2001.

3. H. Krawczyk, M. Bellare, R. Canetti. “HMAC: Keyed Hashing for Message Authentication.”
RFC 2104, February 1997.

4. Michael Myers, Rich Ankney, Carlisle Adams, Stephen Farrell, and Carlin Covey. “Online
Certificate Status Protocol, version 2.” Internet Draft, March 2001.

5. Adrian Perrig and Dawn Sogn. “Hash Visualization: A New Technique toImprove Real-World
Security.”International Workshop on Cryptographic Techniques and E-Commerce. 1999

6. Denis Pinkas, Russ Housley. “Delegated Path Validation and Delegated Path Discovery Pro-
tocol Requirements.” Internet Draft, February, 2002.

7. J. Schlyter, W. Griffin. “Using DNS to Securely Publish SSH Key Fingerprints.” Secure Shell
Working Group, Internet Draft. September 2003.

8. Dawng Song, David Wagner, Xuqing Tian. “Timing Analysis of Keystrokes and Timing At-
tacks on SSH.”10th USENIX Security Symposium.2001.

9. Siva Sai Yerubandi, Weetit Wanalertlak. “SSH1 Man in the Middle Attack.” Oregon State
University. http://islab.oregonstate.edu/koc/ece478/project/200 2RP/
YW.pdf . 2002.

10. T. Ylonen, D. Moffat. “SSH Protocol Architecture.” Network Working group, Internet Draft,
Octber 2003.

11. T. Ylonen, D. Moffat. “SSH Connection Protocol.” Network Workinggroup, Internet Draft,
October 2003.

12. T. Ylonen, D. Moffat. “SSH Transport Layer Protocol.” NetworkWorking group, Internet
Draft, October 2003.

13. T. Ylonen, D. Moffat. “SSH Authentication Protocol.” Network Working group, Internet
Draft, September 2002.

Appeared in Public Key Infrastructure: EuroPKI 2004. 14


