Appeared in Public Key Infrastructure: EuroPKI 2004.

Flexible and Scalable Public Key Security for SSH

Yasir Ali and Sean Smith

Department of Computer Science/PKI Lab
Dartmouth College, Hanover NH 03755 USA
yasir.ali@alum.dartmouth.org
sws@cs.dartmouth.edu

Abstract. A standard tool for secure remote access, the SSH protocol udés pub
key cryptography to establish an encrypted and integrity-protectecheheith
a remote server. However, widely-deployed implementations of the quicéoe
vulnerable to man-in-the-middle attacks, where an adversary substigerpsb-
lic key for the server’s. This danger particularly threatens a travelieg Bsb
borrowing a client machine.

Imposing a traditional X.509 PKI on all SSH servers and clients is neitibfe
nor scalable nor (in the foreseeable future) practical. Requiring exéansrk or
an SSL server at Bob's site is also not practical for many users.

This paper presents our experiences designing and implementing arater
scheme that solves the public-key security problem in SSH without requsitich
an a priori universal trust structure or extensive sysadmin wolttheagh it does
require a modified SSH client. (The code is available for public download.)

Keywords: SSH, man-in-the-middle.

1 Introduction

In the UNIX world, users traditionally use@lnet andftp to access remote ma-
chines (to establish login sessions and transfer fileseotispely). However, these com-
mands transmitted userids and passwords in the clear, ariddieasing insecurity of
the networks over which these commands operated have madeskunacceptable.

Consequently, theecure shell (SSHE.g., [2, 10-13]) has emerged as the de facto
replacement for these commands. Rather than tyjgimgt andftp to reach a re-
mote machineS, the user invokessh , which uses public-key cryptography estab-
lish authentication and encrypted communications oveecunr®d channels. The server
presents a public key, and the client machine uses standgtbgraphy to establish a
protected channel with the party knowing the private key-spneably, the server. SSH
can even permit the user to authenticate via a key pair idsita password; however,
we conjecture that most users stay with the simpler auttetidn.

* This work was supported in part by the Mellon Foundation, by Interne@mA&and by the Of-
fice for Domestic Preparedness, U.S. Department of Homelandi§g@000-DT-CX-K001).
The views and conclusions do not necessarily represent those gidhsas. A preliminary
version of this paper appeared as Technical Report TR2003-4¢darbnent of Computer
Science, Dartmouth College.

Appeared in Public Key Infrastructure: EuroPKI 2004.

However, common SSH implementations overlook an impogesyerty: the bind-
ing of the server’s public key to the identity of the servemitbich the user intended
to connect. This oversight makes the user susceptible teimtre-middle attacks, in
which the adversary substitutes her public key for the s&niéthe user then authen-
ticates via passwords, the adversary can gain completeotofhthe user’s account.

This risk is particularly pronounced in settings where adliag user is borrowing
a client machine that does natpriori have a trusted copy of the intended server’s
public key. We stress that in this model, the user may triestlient machine he or she
is borrowing—nbut not the client machine’s network enviromméindeed, the second
author encountered this: a trusted colleague’s machinan imstitute suffering DNS
attacks.)

Solving these problems in SSH requires introducing a waysH clients to se-
curely bind public keys to servers. Solving these problemthé real world requires
that any particular SSH client that any particular user essto use be able to perform
this binding for any particular server the user might warddonect to.

In the long-term, the DNSSEC vision—using PKI to secure alliNformation—
would enable a nice solution (e.g., [7]); however, we doeg shis happening in the
near-term. Perhaps the next natural approach would bedblisét a traditional hierar-
chical PKI for SSH servers; all SSH clients would know thestnoot; all SSH servers
would have access to a CA/RA system that would sensibly thiagtiblic keys to us-
able names; trust paths for any given server would somehiave at any given client.
(Indeed, this is the approach we first considered; and gicdlammercial offerings have
since emerged.)

However, this natural approach does not meet our real worldtcaints (Sec. 3.2).
This universal trust structure needs to be in place befaérétveling user can securely
connect from a remote machine. Furthermore, many systeiroenvents do not pro-
vide a natural hierarchy of certifiers or machine names. ékample., one colleague at
a corporation bar.com ” cited 10* machines with names of the forfimo.bar.com
and whose names were changed apparently at whim by rematgnsiyss.)

Alternatively, one might consider a many-rooted trusttnte, consisting of many
domains linked by bridges and cross-certification. Howevés not reasonable to as-
sume that this solution, attractive in theory, will be wdslain wide-scale practice any
time soon. (For example, efforts to use bridging to achieaalpss interoperability be-
tween academic domains academic-to-government domaihe oS create ongoing
research and engineering challenges.)

Yet another solution might be to build on the “universal PKiat already exists on
desktops: the trust roots built into browsers, and the laniyg support for browser per-
sonal keystores for users. To that end, we considered (aadbafjan prototyping) some
additional approaches that used the browser-based SSloRkithenticate servers, and
possibly clients too. However, this approach would reqthi all users be affiliated
with a site that that sets up and maintains an SSL Web semdrays for annual re-
newal of a certificate from a standard browser trust root)ledssuming a home Web
server was reasonable (and common in many academic andratgmvironments),
we felt that assuming an SSL server was not. This approabbeddses flexibility.

Appeared in Public Key Infrastructure: EuroPKI 2004.

This consideration left us with the challenge: how do wedppnblic-key security to
SSH, in a way that provides the flexibility and scalabilitattiban permit easy adoption
in the real world, without requiring an a priori trust struit or an SSL server?

Sect. 2 provides the background knowledge to understangrtidem. Sect. 3 de-
scribes the particular risk and usage scenarios we eneidj@md the design constraints
that resulted. Sect. 4 presents the solution we developeds@nse, a decentralized PKI
that requires neither certificates nor CAs). Sect. 5 presachitectural and implemen-
tation® details. Sect. 6 considers some alternate approaches tame fork.

2 Background

2.1 The SSH Protocol

First, we consider the SSH protocol (e.g., [2, 10-13]).

When a user on a client machine tries to establish a secureehaith a remote
machine, what really happens is the SSH client (on the chiest) carries out this
protocol with theSSH daemonon the server host.

Put simply, SSH allows these two hosts to construct a setiznenel for data com-
munication using Diffie-Hellman key exchange, which pr@#é shared secret key that
cannot be determined by either party alone. The sharedtdegrestablished is used
as a session key. Once an encrypted tunnel is created ussngeth the context for
negotiated compression algorithm, and encryption algariare initialized. These al-
gorithms may use independent keys in each direction. Thes@ssion key established
is randomly unique for every session.

SSH allows for both the server and the client to authentiaateg DSA, as part of
this exchange. Typically, the client will authenticate #esver by comparing a finger-
print of the server’s public key with one stored in a file on tient machine; if they
do not match, the user on the client machine would eithelive@warning with the
option of accepting the new fingerprint as it is, or the cliwntild drop the connection.
(We conjecture that the typical user would click “OK” and gegoing.)

There are three main parts of the SSH protocol: algorithnotigipn, authentica-
tion, and data encryption.

Algorithm negotiation is mainly responsible for determigithe encryption algo-
rithms, compression algorithms and the authenticatiorhaus supported and to be
used between the client and the server. Authenticationifl®]rther broken down in
two pieces: key exchange (transport layer) and user authénh (user authentication
layer).

The purpose of the key exchange is dual. Firstly, it atterptauthenticate the
server to the client. Secondly, it establishes a shared keghnis used as a session
key to encrypt all the data being transferred between thendaohines. The session
key encrypts the payload and a hash generated for intedpgtyking of the payload us-
ing the private key of the server. The client verifies the séswpublic key, verifies the

! Prototype source and binaries are availablehtp://www.cs.dartmouth.edu/
“swslyasir_thesis

Appeared in Public Key Infrastructure: EuroPKI 2004.

server signature received and then continues with useeatithtion. User authentica-
tion methods that are supported and are a part of the SSHcptatelude passwords,
public key, PAM, and Kerberos.

Once authentication is successful, one of the negotiatedygtion algorithms is
used to encrypt the data transferred between the two mactiker features that are a
part of SSH clients include port forwarding, however su@tdees will not be discussed
in this paper.

2.2 Tools

Popular open source tools are the OpenSSH client and sdiseibuted freely with
Red Hat Linux distributions; and the TeraTerm SSH clienMéndows. Popular com-
mercial versions include the SSH client and server develbyeSSH Inc.

The commercial SSH provides support for a traditional Plsiwne discuss later.
However, the OpenSSH client current at the time of our expenis (openssh3.4) did
not provide any code that verifies certificates or certifichtains. Rather, certificates
were merely treated as public keys. If a kidgb (the technical name for a data structure
that loads the public key) contains a certificate instead piitaic key, OpenSSH had
routines that can extract the public key out of the certifiGatd after that it only uses
that public key for authentication and integrity checkingpgmoses.

3 Usage Scenarios and Constraints

3.1 Basic Vulnerability

In many public-key applications, the relying party can dilg verify that the other
entity knows a private key matching a particular public kegwever, to draw a more
useful conclusion from this, the relying party needs toldisth a binding between this
public key and some relevant property of this entity.

In the case of SSH, the user needs to establish that the sdthiewhom his client
has just established a session is the server to whom he ed¢aadonnect.

If the client machine has aapriori relationship with the server to which the user
wants to connect, under the same server name the user wasts #nd the server’s key
has not changed, then the user possesses such a bindingvelguindeed, many in-
stallations suggest that a user traveling with a laptopdsit to his desired home hosts
while safely within a trusted home LAN, in order to pre-lodu taptop’s fingerprint
store.)

However, if these things do not hold, then the user is at sl (see [9]). When the
server sends its public key, the user has no way to verifysfikby matches the intended
server. It is trivial for an attacker to sit in the middle andeircept the connection,
and send her own public key and signature instead. The usethea send his own
password to the attacker thinking that she is the intendeise

If the client already has the server’s public key, the usdkr ganerally receive a
warning such that “server’s key has changed. Continue?'t Mges's typically hit “Yes”
and do not realize the risk. However, if it is the first time tiser is connecting to this

Appeared in Public Key Infrastructure: EuroPKI 2004.

server from this client, the client will not have the sersgatiblic key stored locally, and
the user will be none the wiser.

(Researchers have also identified how SSH encryption caegtbe plaintext con-
tent on a channel but still leak other information [8], butdeenot consider those issues
here.)

3.2 Real-World Constraints

In the trust model we consider, the user trusts the clientinaand his intended remote
server to work correctly. However, the user does not triessérver machine he actually
connects to until he verifies the server’s identity; he alsesdnot trust the client’s
network environment, including its DNS. If the client doed have a trusted fingerprint
of the server already loaded, how does the user establidhirttimg?

We enumerate some desired goals of an effective solution:

— The solution should enable users from borrowed (but trjstiéehts, in untrusted
network environments, to establish trusted connectiotiseio home machines.

— The solution should be adoptable in the near-term by smalifgg of users with
only a small delta from the current infrastructure.

— The solution should accommodate users in domains whereienti®us sysadmins
can set up trustable and usable CA services.

— The solution should also accommodate users in domains wigeseich services
exist.

— The solution shoulahot require that a new universal PKI structure (neither single-
rooted nor multi-rooted) be established before any of thigka.

— The solution shouldiot require that a user memorize the fingerprints of all servers
he wishes to interact with.

3.3 Existing Solutions

As mentioned earlier, a natural approach is to assume teteaxe of a traditional PKI
via which any SSH client can authenticate the binding of #ex’s public key to
its identity. Both SSH Communications Security and F-Sedwave had commercial
offerings in this area, and new commercial offerings cargito emerge.

However, such approaches did not meet our scalability aritiliey constraints. A
universal trust structure must exist before the systemeafulisbefore Bob can use an
SSH client at Carla’s college, Bob’s servers must be cedtifimd Carla’s clients must
know a certification path from a trust root to that servertfemmore, not all domains
will have the appropriate personnel and organizationatgire to establish reliable and
usable bindings in the first place.

We could also require that users carry with them some haeldavice (such as
a smart card or key fob) that remembers the public keys of ¢ineess they wish to
interact with. However, we feel this would be overly awkwardi expensive, violating
the goals; also, sufficiently robust software and hardwappart for such tokens has
not permeated the current infrastructure, violating thedl delta” constraint.

Appeared in Public Key Infrastructure: EuroPKI 2004.

4 Our Solution

4.1 Overview

To solve the problem, the client needs to have some trustugan which to build the
conclusion that the binding of the server’s public key toniity is meaningful. The
“small delta” and “no new universal PKI” constraints meaatttve can neither hard-
code one trust root into all clients, nor assume that eaemiclill have a local trust
root with a path to Bob’s server. The “no memorization” coaisit means that the user
cannot bring it with them.

This analysis thus forces us to have the client download seg'sutrust root over
the network. Since changing how the SSH protocol itself warkuld also violate the
“small delta” constraint, we need to download this data ébbmd. However, this raises
a conundrum: if the user cannot trust the network againstimdme-middle attacks on
the public key the server sends in SSH, how can the user trashétwork against
man-in-the-middle attacks against this out of band data?

To answer this, we usekeyed MAG—a “poor man'’s digital signature.” Also known
as a keyed hash, a keyed MAC algorithm takes a meskhged a secret key, and
produces a MAC valuMac(M, k) with the property that it is believed infeasible to find
anotherM’, k' pair that generate the same keyed MAC. Thus, if Bob knowss&ey
k, and retrieves a messag@é accompanied by a MAC valuke which he confirms as
Mac(M, k), then Bob can conclude thatf was produced by a party that knéwmand
that M has not been altered in transit. (In a sense, this like aaligignature, except
we have a symmetric key instead of a key pair, and thus we loseepudiation.)

Our constraints dictate that we cannot force the user to meea public key—
but users easily memorize URLs and passphrases. Our geadudbn thus has two
parts. First, we built anodified SSH clierthat accepts a location (such as URL) and
passphrase from the user; the client then fetches the tsiertrot from that URL, and
verifies its integrity by deriving a symmetric key from thespphrase and using that to
check a keyed MAC on the root data. We then badhfiguratortools to create these
MAC'd trust roots in the first place.

4.2 Approaches

We now discuss a range of solutions this basic strategy pgrmi

Decentralized At one extreme, we imagine a user who wants to securely atigss
standard machines, but does not have a support organizsitlomg or able to take on
the job of certifying each SSH daemon.

Our approach permits a fully decentralized SSH PKI that etgpsuch users, by
permitting each one to be their own CA.

When the user is at his home site and has trusted access tovaemablic keys, he
runs a configurator program that collects from the user gopaase, the name(s) of the
desired target servers, and a path to a trusted store ofiligic keys. The configurator
then produceshashstore file containing a list of server names, and (for each server)
the keyed MAC, generated under a symmetric key derived frapassphrase, of the

Appeared in Public Key Infrastructure: EuroPKI 2004.

tuple of server name and public keys. The user then placedilihiin some publicly
accessible place, such as in their home directory on the Web.

When the user then wishes to use SSH from a remote client, tiegesithe connec-
tion to his home machine (e.@b.cs.foo.edu). Then,ab.cs.foo.edu sends
its public key to the client machine. The modified SSH clieranppts the user for
the URL of the hashstore. The modified client fetches the dtash and extracts the
keyed MAC forab.cs.foo.edu . The modified SSH client prompts the user for his
passphrase. The client then derives a symmetric key framptssphrase, and uses it to
generate the keyed MAC for the alleged public key. The geedrslAC is compared
with the MAC received from the web page. If the two values hatiee client proceeds
with SSH.

Variations are possible. For example, we could take therdesdezation even fur-
ther and, rather than having the user remember the currepdighame for each target
host, the modified client could use the hashstore to obtalP anldress or other exter-
nal name for the personal hostname the user typed (thusimgdhttfoo.bar.com
problem our colleague encountered).

Semi-Centralized In some scenarios, it might be reasonable for an enterprisettup
a CA that reliably signs certificates for SSH daemons at sgerve

Our approach also permits such semi-centralized appreadie SSH protocol
will already have the server send this certificate to thentli&/hat we need to do is
provide the client with a certification path to verify thiSénmation; a minimal one
might be a certificate for the user’s home enterprise’s rdat C

In this case, the enterprise admin set up an LDAP databadeyas a configurator
tool that populates the database with a record, for eachemataining a this certifica-
tion path and a keyed MAC for it, generated via the user’splasse.

When the user then wishes to use SSH from a remote client, tiegésithe connec-
tion to his home machine (e.@ab.cs.foo.edu). Then,ab.cs.foo.edu sends
its certificate to the client machine. The client promptsuker for the location of the
LDAP. The client contacts the LDAP, and sends the user’'s ndthe LDAP server
looks up the username and sends back the certification pdttharashed CA certifi-
cate corresponding to that. The modified SSH client pronmgtsiser for his passphrase.
The client then derives a symmetric key from this passpheastuses that key to gen-
erate a keyed MAC of the certification path received. If theG4Anatch, the client then
validates the server certificate using this certificatiothpghe client then proceeds with
SSH.

Again, many variations are possible here. For example, theézd not coincide
with the party setting up the LDAP; alternatively, an indiwal user could set up his
Web-based hashstore (as in the decentralized approacke)aiooinclude the public
keys of CAs he chooses to trust.

In this semi-centralized approach, the only role of the CAoigertify SSH dae-
mons for its user population—which is probably not a highanot task. Since the CA
does not certify users, we anticipate that revoking andssaing certificates will be
infrequent. Avoiding the need for a CA certificate issued tstandard trust root also

Appeared in Public Key Infrastructure: EuroPKI 2004.

reduces expense and hassle. Thus, we eliminate many pbperiormance and expo-
sure issues—this machine will just not be used that often.

Furthermore, by easily allowing a user to go right to a rdut tipproach permits
a trust hierarchy that consists of a forest of small treeg Uiber specifies the tree
root. This eliminates the hassle of intermediate certifisgtross-certificates or bridge
certificates) that would be generated if we wanted interigbty between multiple
Certificate Authorities within one realm. This also provddacreased resilience; com-
promising the security of one CA will not compromise the vwehBKI.

Certificates and ExpiratiorSince our solution’s “small-delta” constraint dictatethsi
plicity, we opted for long lifespans on server certificated hope for minimal certificate
revocation. We considered delegated path discovery aidhtiain [6], which would en-
able the client to offload checking CRLs and other such ditiesremote server, but
decided against it for simplicity.

In the worst case, supporting revocation of the trust rontl (areventing replay
attacks) would require a way to “revoke” old keyed hashe® &wproach would be to
have users change passphrases; another would be to havBAlreHnow the users’
passphrases (a risk).

We opted for X509v3 certificates. The reasons for that ardifolal. First of all,
the X.509 standard [1] constitutes a widely accepted basisdch an infrastructure.
Secondly, Microsoft Certificate Store and OpenSSL libsagies both interoperable with
x509v3 certificates. Thirdly, xX509v3 certificates suppotteasions that can be added
into a certificate, which can then uniquely identify a ceréife on the basis of its IP
address extension.

4.3 Security

The security of the above approaches stems from the basithttdhe user can use a
passphrase as a shared secret key to create a hash.

Semi-Centralized The semi-centralized approach starts by having the satves.
foo.edu send the server certificate to the client machine. An attaske has a dif-
ferent server certificate issued by the same certificatedtitican intercept the server
certificate. Suppose she wants to posalass.foo.edu . She replaces the server
certificate with her own certificate. Certificate verificatiwould fail in such a scenario
because when the SSH client looks at the uniquely identfgerver name of the cer-
tificate, it would not be the one it expected. The server nameldvnot match. If the
attacker forges it to be the same, she would not be able tofyriogli signature to match
the forged extension, as the CA generated the signaturefdne the certificate veri-
fication would fail again. The client would verify the signet¢ of the attacker using
the CA's public key and match it with the credentials proddaehich would not be the
same. This establishes the fact that the attacker canrg#t fosuitable certificate, even
if she has a certificate issued by the same certificate atithori

The user types in the URL/LDAP address, which is connectethtbDAP server;
the client sends the user name to the LDAP. A malicious useiirdarcept the user-
name and send back a different hash of a modified certificgi@d, and a modified

Appeared in Public Key Infrastructure: EuroPKI 2004.

certification path itself. However when the client uses therpassphrase to generate
the hash for the modified certification path, it would not rhatee hash received. The
attacker would not know the password used by the user. Ealigrthe only way to
crack this protocol is by cracking the password used. Thatbeadone by dictionary
attacks or by other techniques, such as social enginediiggefore it is important that
the user selects a long passphrase and fulfills the requitsroéa good passphrase to
ensure that this protocol is secure.

RevocationSuppose the server certificate changes. In such a scenaatiaaker could
use the old invalid server certificate from a previous sesaitd successfully pose as
the server. The user would receive the old certificate, antiched retrieve the hashed
CA certification path, and the CA certification path from tH2AP server. As the CA's
public key has not been modified, the user would validaterth&lid server certificate,
and send his username and plaintext password to the attacker

There are two ways to avoid this problem. Firstly, the usdgeeutificate Revoca-
tion Lists or OCSP (e.g. [4]) can inform clients that a ceséife has been revoked. In
that case, the client would check whether the certificatebkas revoked or not. This
approach requires addition of components to the existiotppol, which would query
the status of the certificate, retrieved at the client endraadage or store certificate
revocation [1] information at the server end. A simpler soluto the problem is that
server certificates issued are irrevocable. What that meathsi once a server is as-
signed a certificate, it cannot be changed until it expirexethe server certificate is
expired it would be recertified. This option does not congikcthe protocol. This pro-
tocol is secure as long as the private key correspondinget@éitificate is protected
and safe.

4.4 Decentralized Approach

The decentralized approach starts out by having the sebves.foo.edu sends its
public key to the client machine. Suppose an attacker iepgscand replaces it with her
own public key. Once the client receives the public key, fitieges the keyed-hash of
the public key. It hashes the public key and compares it \aighhtash received. The two
hashes would not match.

Suppose the attacker now attempts to send her own keyed etelad of the one
stored at the place the user specified. To be able to genevataldash, the attacker
needs to know the user’s passphrase. Therefore if she espgagalid hash with one of
her own, that hash would not match to the one that the cliemidvyoroduce using the
user’s passphrase on the spoofed public key received.

Attacks due to DNS Spoofing are also defied by the verificatfothe host key.
Suppose that the user logs in on a client machine for theifinstand types imb.cs.
foo.edu that maps to 129.172.111.4. However, an attacker spoodstitet the user
attempts to connectto 129.172.111.5 instead of 129.1721The fact that the attacker
can only possess the public key of the server—and not thetpley—implies that she
cannot generate the signatures that validate the paylaathdbe key exchange, there-
fore he can not successfully establish a shared secret ke idllows a successful
server authentication at the transport layer.

Appeared in Public Key Infrastructure: EuroPKI 2004. 10

RevocationSuppose the server public key changes. In such a scenaridjeht would
be vulnerable to a replay attack. In a simpler model, the cesebe informed via email,
as soon as possible, of the change in the server key so thahhgydate his web page
repository of hashes. This methodology introduces a windbvisk; however, in the
interest of simplicity (and in the hope that server certtBsado not change often), we
believe that it should suffice.

4.5 Drawbacks

Our solution does have some disadvantages.

First, our use of a hash keyed from a user-memorized passphmroduces a risk
of offline dictionary attack on the passphrase. For now, efemse here is to encourage
users to use sufficiently long passphrases to minimize ilis {Potentially, we could
also augment the hash-fetch protocol to include temposanneetric keys known only
by the client and the SSH server keyholder—requiring anlegteto actively imperson-
ate a server in order to gather material for a dictionarychtja

Secondly, our solutions may require user participatioreialihg with revocation of
SSH server key pairs. Here, we believe that the relativedufency of this activity—
combined with the fact that the default scenario requiresifers to actively participate
in SSH key pairs anyway—will reduce the significance of thguuieement.

Both of these issues remain areas for future work.

Of course, our principal disadvantage that we require tbablwved client machines
have an alternate SSH client.

5 Implementation

5.1 Overview

We prototyped the fully decentralized solution above. Vé® #lave hooks in place for
the semi-centralized solution (and some other techniq@egdiscuss in Sect. 6).

The design and code that was written to develop the protds/ppen source and
modifies the SSH protocol.

At the time of our experiments, the existing SSH protocolpsuped by OpenSSH
had the bare skeletal structure to support certificatesdites not directly support cer-
tificate verification. OpenSSL(0.9.6¢) has created rostared callback functions that
can be used with much ease to verify certificates. We ad@@dta _Time authentica-
tion method to carry out our decentralized approach toyiedfkeys. Figure 1 sketches
an architectural block diagram that explains how we extdride SSH client.

For a keyed MAC, we chose HMAC [3], which is built on a cryptaghic hash
function, typically MD5 or SHA-1 (we chose SHA-1). We deritiee symmetric key
from a 20-character passphrase entered by the client.

5.2 Choice of Codebase

At the time of our experiments, open-source OpenSSH cliexitted for Linux, and
the only fully-deployed open source SSH server was provide®penSSH and and

Appeared in Public Key Infrastructure: EuroPKI 2004.

SSH2 Protocol i
rotoco Our Extension

Algorithm Negotiation Authentication types:
+ First _Time
Authentication types:
public key, password, Server Authentication
none Get HMAC from URL

Server Negotiation Verify server key

v

Key Exchange <

v

User Authentication

v

Service Request

Fig. 1. Architectural block diagram of thEirst _Time method.

was distributed freely with Red Hat LinuketworkSimplicity.com provides a
Windows port for the OpenSSH client and server. Howevengiiis codebase would
not give us a graphical user interface.

TeraTerm SSH clients were interoperable with OpenSSH seiased provided a
Graphical User Interface that makes it easy to use on Wingdéatform. The TeraTerm
SSH client is an extension to TeraTerm Telnet client, whichl$o open source.

For our work, we chose the TeraTerm SSH client, primarilydose we felt that a
graphical Windows client would be more useful for travelusgrs.

5.3 Application Interface

Figure 2 shows the main entry. To use the fully decentralgibn, the user selects
the “Enable Secure First Time Authentication” option aridkd “Configure.” Once the
user enters the hostname he is prompted with the User logedisplayed at left in
Figure 3, which prompts the user for the hashstore.

The client receives the public key/server certificate apidasnpted to enter the hash
password (Figure 3, right). If the password authenticdiedhash, SSH authentication
proceeds as normal. (Figure 4).

5.4 Configurator

Our configurator utility is an independent program that aptthe hashstore. The hash-
store contains a list of the machines, that the user accesserely, and their corre-
sponding Hash values.

Appeared in Public Key Infrastructure: EuroPKI 2004.

SSH Authentication x|

Logaing in to tahoe.cs. dartmauth. edu
Authentication required.

User name; I\

Passphrase; l

& Usze plain password ta log in

‘ € UseRBSA keptologin Frvate ey file!

Host private key Iile.l I

‘ & |lze challenaedesponse (TS0 log i

O Lse [5er Eertificate torldaiin Select |

" Enahle Secure First Time Authentication Dption Configure |
ak I Disconnect |

€ gehosts talogin Lozal use rame I ‘

Fig. 2. The main screen

First Time Authentication, | =] Hash Password il
Gt Hashtors from, PazsPhrase to |
generate Hash

URL:

o | [] Cancel |

Fig. 3. At left, the client requests URL entry for hashstore; at right, the cliequests the
passphrase to generate the HMAC.

This program takes the server public key used for SSH sessaamcatenates it
with the server name and then generates the hash and sterasirtha file called
hashstore . The file is then placed on a hosted Web site. Figure 5 showglsam
of the output when this program runs.

5.5 Code Availability

All the code that was used and modified in this project is opmrce and can be
downloaded fromhttp://www.cs.dartmouth.edu/"sws/yasir_thesis

The binaries for the modified TeraTerm SSH clients are alsdaie. The code con-
tains all the needed OpenSSL libraries, crypt32 libramiesifMicrosoft platform SDK
needed for certificate managementréadme.txt file explains how to setup the
client, and the hash generation tool.

Appeared in Public Key Infrastructure: EuroPKI 2004. 13

Yerification Successful j |

y Hashes Matched, Server public key werified,

Fig. 4. If the retrieved HMAC matches the public key the server sent, then therseas been
authenticated.

$./linuxConf

This program generates the HMAC Hashes for the public
keys of host machines. This program is to be run on the local
machine whose public key is to be hashed

Enter the host name of the machine: foo.bar.com

----String to be Hashed---

foo.bar.com 1024 35

151052055305049513313873325220639580170308824866279 975903865
170656590852808348836251630147723004221777127618768 94150979694040698019214365467
073819866258137960346650956260995757941067229342743 28194857789445170395185623181
061095020734195764903042795665504187468740443926315 14426610329187514765207346921
326949181

Enter the pass phrase to hash:

MySecretPassPhrase%1

---Hash stored in hashstore.txt---
foo.bar.com 1024 35 MD:_YiS (non ascii characters not displ ayed)
$

Fig. 5. Sample output of the configurator, which generates HMAC values ofubéckeys, to
server as the user’s trust roots from remote locations. (The usekdéyed MAC ensures integrity
without a universal PKI.)

6 Conclusions and Future Work

Our solution brings public-key security to SSH in a a flexiahel scalable way—and
(when one considers the decentralized approach) comestitutdatapoint for a useful
“PKI” with neither CA nor certificate.

The ease of use and deployment of the “decentralized non{ipoach” distin-
guishes our solution from one based on a traditional hibreat PKI.

Currently, both academia and industry strive to developdsedized protocols that
would make the deployment of PKI relatively manageable; @, a look at the de-
ployed technology base shows that we're not quite thereM@s$t small enterprises do
not need to invest and develop a hierarchical trust moded 8KI. Our decentralized
approach is ideal for such small-scale corporate enviromsn&he users do not have to
learn the how to use user certificates and the system adratois do not have to set
up a PKI. In contrast, our centralized CA approach is suitgddrger networks with
several users. It develops a PKI with a minimal set of comptme

In future work, we would like to take the prototype to anottexel of completion.
Right now, the user interface is not completely clear; agially, a secure client for
traveling users should be aggressive almmtitetaining validated server keys. We would

Appeared in Public Key Infrastructure: EuroPKI 2004. 14

also like to extend the code to handle more pieces of theignlapace; for example,
the current code does not support the semi-centralizesappr(beyond connecting to
an LDAP server). We also would like to strengthen the way thatHMAC keys are
derived from passphrases. Developing a Linux version waldd be useful. Exploring
visual hashind5] as an alternative way for a human user to authenticateptouata
would also be interesting.

References

1. Carlisle Adams and Stephen Farrell. “Internet X.509 Public Keyabtfucture Certificate
Management Protocols.” IETF RFC 2510, March 1999.

2. Daniel J. Barrett and Richard E. Silverm&@®6H: The Secure Shell, The Definitive Guide.
O'Reilly & Associates. 2001.

3. H. Krawczyk, M. Bellare, R. Canetti. “"HMAC: Keyed Hashing for Mage Authentication.”
RFC 2104, February 1997.

4. Michael Myers, Rich Ankney, Carlisle Adams, Stephen Farrell, aaditCCovey. “Online
Certificate Status Protocol, version 2.” Internet Draft, March 2001.

5. Adrian Perrig and Dawn Sogn. “Hash Visualization: A New Technigumfirove Real-World
Security."International Workshop on Cryptographic Techniques and E-Cormen&®99

6. Denis Pinkas, Russ Housley. “Delegated Path Validation and Delegatiedizcovery Pro-
tocol Requirements.” Internet Draft, February, 2002.

7. J. Schlyter, W. Griffin. “Using DNS to Securely Publish SSH Key Fipgets.” Secure Shell
Working Group, Internet Draft. September 2003.

8. Dawng Song, David Wagner, Xuqging Tian. “Timing Analysis of Keyk&i®and Timing At-
tacks on SSH.10th USENIX Security Symposiu2®01.

9. Siva Sai Yerubandi, Weetit Wanalertlak. “SSH1 Man in the Middle AttaCkegon State

University. http://islab.oregonstate.edu/koc/ece478/project/200 2RP/
YW.pdf . 2002.

10. T.Ylonen, D. Moffat. “SSH Protocol Architecture.” Network \Warg group, Internet Draft,
Octber 2003.

11. T. Ylonen, D. Moffat. “SSH Connection Protocol.” Network Workiggoup, Internet Draft,
October 2003.

12. T. Ylonen, D. Moffat. “SSH Transport Layer Protocol.” NetwdMorking group, Internet
Draft, October 2003.

13. T. Ylonen, D. Moffat. “SSH Authentication Protocol.” Network Worgiigroup, Internet
Draft, September 2002.

