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Abstract. The security of the standard TCG architecture depends on
whether the values in the PCRs match the actual platform configura-
tion. However, this design admits potential for time-of-check time-of-use
vulnerabilities: a PCR reflects the state of code and data when it was
measured, not when the TPM uses a credential or signs an attestation
based on that measurement. We demonstrate how an attacker with suffi-
cient privileges can compromise the integrity of a TPM-protected system
by modifying critical loaded code and static data after measurement has
taken place. To solve this problem, we explore using the MMU and the
TPM in concert to provide a memory event trapping framework, in which
trap handlers perform TPM operations to enforce a security policy. Our
framework proposal includes modifying the MMU to support selective
memory immutability and generate higher granularity memory access
traps. To substantiate our ideas, we designed and implemented a soft-
ware prototype system employing the monitoring capabilities of the Xen
virtual machine monitor.

1 Introduction

The Trusted Computing Group (TCG) [1] works toward developing and advanc-
ing open standards for trusted computing across platforms of multiple types.
Their main goals are to increase the trust level of a system by allowing it to
be remotely verifiable and to aid users in protecting their sensitive informa-
tion, such as passwords and keys, from compromise. The core component of
the proposal is the Trusted Platform Module (TPM), commonly a chip mounted
on the motherboard of a computer. A TPM provides internal storage space for
storing cryptographic keys and other security critical information. It provides
cryptographic functions for encryption/decryption, signing/verifying as well as
hardware-based random number generation. TPM functionalities can be used to
attest to the configuration of the underlying computing platform, as well as to
seal and bind data to a specific platform configuration. In the last few years, ma-
jor vendors of computer systems have been shipping machines that have included
TPMs, with associated BIOS support.
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The key to TCG-based security is: A TPM is used to provide a range of
hardware-based security features to programs that know how to use them. TPMs
provide a hardware-based root of trust that can be extended to include associated
software in a chain of trust. Each link in this chain of trust extends its trust to
the subsequent one. It should be noted that the semantics of this extension for
each link of the chain are determined by the programmers (including the BIOS
programmer). More specifically, the programmer defines the conditions applying
to the system’s state Si+1 that are checkable in the state Si under which the
transition Si → Si+1 is deemed to preserve trust. These conditions strongly rely
on our understanding of the relationship between the software active in Si and
Si+1. For example, a developer may trust a process in Si+1 that is created from
an ELF file after verifying in Si that either the entire file or some of its sections
such as code and data hash to a known good value. Implicit in this decision is the
assumption that the hash measurement is enough to guarantee the trustworthy
behavior of the process.

In this work, we explore an additional set of TPM-based security architecture
features that programmers can take advantage of to secure data that they per-
ceive as sensitive and enforce a new class of policies to ensure their software’s
trustworthiness.

In particular, we note that the current TCG architecture only provides load-
time guarantees. Integrity measurements are taken just before the software is
loaded into memory, and it is assumed that the loaded in-memory software re-
mains unchanged. However, this is not necessarily true—an adversary can exploit
the difference between when software is measured and when it is actually used,
to induce run-time vulnerabilities. This is an instance of the time-of-check time-
of-use (TOCTOU) class of attacks. In its current implementation, the TPM
holds only static measurements and so these malicious changes will not be re-
flected in its state. Code or data that is correct at the time of hashing may be
modified by the time of its use in a number of ways, e.g., by malicious input.
Change-after-hashing is a considerable threat to securing elements in the TCG
architecture.

This paper explores this TOCTOU problem. Section 2 places it in the con-
text of the TCG architecture, Section 3 demonstrates this vulnerability. Section 4
explores a solution space: making the TPM aware when memory that has been
measured at load-time is being changed in malicious ways at run-time. Section 4
then speculates on a hardware-based solution, but also presents a software proof-
of-concept demonstration using Xen’s memory access trapping capabilities. Sec-
tion 5 evaluates the security and performance of our solution. Section 6 explores
related work. Section 7 concludes with some avenues for future work.

2 TOCTOU Issues in the TCG Architecture Perspective

Generally, the focus of current trusted platform development efforts has been
on mechanisms for establishing the chain of trust, platform state measurement,
protection of secrets and data, and remote attestation of platform state. Clearly,
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without cheap and ubiquitous implementations of these basic mechanisms, com-
modity trusted platforms would not happen.

However, as Proudler remarks in [2], “Next-generation trusted platforms
should be able to enforce policies”. With the introduction of policies, the trusted
system engineer’s focus must necessarily extend from the above mechanisms to
events that are classified and controlled by the policy.

Accordingly, it becomes natural to formulate the concept of what constitutes
the measured state at the upper levels of the trust chain in terms of events sub-
ject to the policy: a sequence of policy-allowed events starting from a measured
“good” state should only lead to another “good” state.

In fact, the concept of the underlying system of controlled events is central
to the policy: whereas policy goals are defined in terms of the system’s states,
events determine the design of the underlying OS mechanisms and the policy
language. For instance, in case of SELinux MAC policies, events are privileged
operations realized as system calls hooked by the Linux Security Modules (LSM)
framework.

One can argue (see, e.g., [3]) that LSM’s implicit definition of the class of
controlled events has substantially influenced both the scope and language of
SELinux policies, making certain useful security goals such as, e.g., “trusted
path,” hard to express, and leading to a variety of alternative more manageable
methods being adopted by practitioners. SELinux’s example shows that defining
a manageable set of controlled events is crucial to engineering the policy.

Another necessity faced by a policy designer is a workable definition of mea-
sured state. Quoting Proudler [2] again, “We know of no practical way for a
machine to distinguish arbitrary software other than to measure it (create a di-
gest of the software using a hash algorithm) and hence we associate secrets and
private data with software measurements.”

However, the semantics of what constitutes measured, trusted and private
data in each case is inevitably left to the program’s developers. Thus the partic-
ulars of what [2] refers to as soft policy are left to the developer and ultimately
relies on his classification and annotation of different kinds of code constituting
the program and data handled by the program with respect to their importance
for policy goals. We refer to such annotation that allows the programmer to
distinguish different kinds of data (such as public vs. private vs. secret, in the
above-mentioned paper’s classification) as “secure programming primitives” and
note that introduction of new kinds of such primitives (e.g., read-only vs. read-
write data, daemon privilege separation, trusted execution path patches, etc.)
usually lead to improving the overall state of application security. In each case,
it was up to the programmer to design the software to take advantage of the
new security features; as we remarked above, TPMs are no different.

Recent alternative attestation schemes (e.g., [4]) move from measurement of
a binary to an attestation that the measured binary is trustworthy, but still are
based on static measurement. However, trustworthiness does not depend merely
on what the binary looks like when it is loaded, but also on what it does (and
what happens to it) when it executes.
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It is from these angles that we approach the current TCG specification and
propose to leverage it to control a set of memory-related events in which an
application programmer can express a meaningful security policy.

We note that our proposal does not change the “passive” character of the
TCG architecture: its scope is still restricted to providing security features to
programs that are written to take advantage of them. Our contribution lies in
introducing a framework of events and their respective handlers that invoke the
TPM functionality. To base a policy of this framework, the programmer, as
before, needs to separate program code and data into a number of classes based
on their implications for the trustworthiness of the program as a whole, and
specify the trust semantics for each class.

In this paper, we report our initial exploration, focusing on policies that en-
force selective immutability of code and selected data in a program. The policy
can be specified as immutability requirements for specific sections of the pro-
gram’s executable file and bundled with it, e.g., included as a special section in
the ELF format.

Why extend security policy to memory events? Many architectures include OS
support for trapping certain kinds of memory events. For instance, the ELF format
supports annotation of program segments to be loaded into memory as writable
or read-only, as well as executable or not intended for execution. Most of these
annotations are produced automatically by the compiler–linker–loader chain that
also takes care of aligning the differently annotated segments on page boundaries
(since the x86 hardware supports these annotations by translating them to the
appropriate PDE and PTE protection bits, which apply at page level).

We note that programmer’s choice in this annotation has been traditionally
kept to a minimum and not always exactly matched the programmer’s intentions:
e.g., constant data would be placed in the .rodata section, which would then be
mapped, together with the .text section and other code sections to the loadable
segment designated as non-writable and executable.

We further note that these automatic mappings of code and data objects1 to
different loadable segments are typically meant to apply at load time and persist
throughout the lifetime of the process. More precisely, once an object has been
assigned to one of these sections based on the programmer’s guessed intentions,
the programmer can no longer easily change its memory protections without
reallocating it entirely.

We also note that “service” sections of process image such as .got, .dtors,
etc., involved in such extremely security-sensitive operations as dynamic linking
(and thus specifically targeted by many exploitation techniques2) do not, as a rule,
change their protections even after all the relevant operations are completed, and
1 We speak of “code objects” to distinguish between, e.g., the .text, .init/.fini,

and .plt sections that all contain code dedicated to different purposes, similar to the
more obvious distinction between the .data, .ctors/.dtors, and .got data objects
sections.

2 E.g., http://www.phrack.com/issues.html?issue=59&id=9,
http://www.security-express.com/archives/bugtraq/2000-12/0146.html, etc.

http://www.phrack.com/issues.html?issue=59&id=9
http://www.security-express.com/archives/bugtraq/2000-12/0146.html
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write access to them is no longer necessary (but can still be exploited by both
unauthorized code and authorized code called in an unanticipated manner).

Yet programmers may well conceive of changing roles of public, private or se-
cret data throughout the different phases or changing circumstances of their pro-
grams’ execution, and may want, as a matter of security policy goals, to change
the respective protections on these objects in memory. Indeed, who else other
than programmer would better understand these transitions in data semantics?

We contrast this situation with that in UNIX daemon programming before
the wide adoption of privilege drop and privilege separation techniques. Giving
the programmers tools to modify access privileges of a process according to
the different phases of its execution resulted in a significant improvement of
daemons’ trustworthiness, eliminating whole classes of attacks. We argue that a
similar approach applied to the sensitive code and data objects would likewise
benefit the programmers who take advantage of it, and formulate their security
goals in terms of memory events.

Secure programming primitives controlling memory events would provide as-
surance that the program could be trusted to trap on those events that the pro-
grammer knows to be unacceptable in any given phase, resulting in more secure
programs. For example, programmers using a custom linking mechanism (such
as that used by Firefox extensions) will be able to ensure that their program
be relinked only under well-defined circumstances, defeating shellcode/rootkit
attempts to insert hooks using the same interfaces.

Thus we envision a programming framework that provides a higher granular-
ity of MMU traps caused by memory access events, and explicit access policies
expressed in terms of such events. A modified MMU accommodating such a pol-
icy would provide additional settable bits that could be set and cleared to cause a
trap on writes, providing a way to “seal” memory objects after they have been fully
constructed, and to trap into an appropriate handler on events that could violate
the “seal”. The handler would then analyze the event and enforce the program-
mer’s intentions for the data objects, now explicitly expressed as a policy (just as
privilege drops expressed an implicitly assumed correct daemon behavior).

We discuss an interesting practical approach to achieving higher memory trap-
ping granularity in Section 6—an example from a different research domain
where the same need to understand and profile programs’ memory access behav-
iors posed the same granularity problem as we and other security researches face.

In the following discussion we assume feasibility of higher granularity memory
event trapping framework as described above, and explore the opportunities
that such MMU modifications and respective trap handlers would provide for
TOCTOU-preventing security policies when used in combination with the TCG
architecture.

3 Vulnerability Demonstration

We’ll begin by considering attestation of a platform’s software. The TPM’s PCRs
measure the software; the TPM signs this configuration (using a protected key).
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Then the user passes this configuration on to a third party which presumably uses
this configuration information to decide whether or not to allow the measured
platform to run a piece of software or join a network session.

Notice that a key component of this system is that if measures a binary at
load time. If a binary changes after it has been loaded, the configuration of the
system will not match the attested configuration. If a program can change this
segment of RAM after it has been loaded, than its behavior can be modified,
even though the measurement in the TPM shows that the program is in its
original state. Such a change in the program’s behavior can be accomplished in
different ways, such as by an exploit supplied by an adversary in crafted input
to the process itself, or though manipulation of the process’s address space from
another process through a lapse of kernel security. We note that in this paper
we do not consider TOCTOU on hardware elements or carried out via hardware
elements.

We must consider the potential of an attacker achieving malicious changes
to the code or data of the running trusted process created from a measured
executable at the end of the TPM-based chain of trust. We note that these
scenarios are no less relevant for TCG compliant trusted systems, since “trusted”
does not mean “trustworthy.” Commodity operating systems have a long history
of not being trustworthy, even if users choose to trust them. (Indeed, the term
trusted computing base arose not because one should trust it, but rather because
one had no choice but to trust it.)

We take the worst case: a kernel vulnerability that allows the attacker limited
manipulation of x86 Page Tables (PT).3 In Linux (as in other operating systems),
these structures also contain information on the permissions needed by a process
to read or modify the particular memory segment, interpreted by the MMU on
every memory access while converting virtual addresses to physical ones.

To demonstrate4 TOCTOU, we wrote a kernel module that replaced data at
a given virtual address in a process image with the given process ID. In order
to show that simply monitoring a process’s page tables was not a sufficient
defense against this attack, our module did not modify the target process’s data
structures at all, but rather changed other process’ pages containing one .text
segment or PTs. Section 5 provides the details of several such attacks.

We have constructed a small example login program to demonstrate this at-
tack. After we have loaded and measured it, we used our module to overwrite
the opcode 0x74 of the critical je instruction in the password check routine of
the running process with 0x75 (jne), remapping PT entry to point to the tar-
get page, and resulting in login with any wrong password. When the module is
unloaded, process image is restored to its original state, so that looks pristine to
future TPM-based or other measurements.
3 Several Linux kernel vulnerabilities allowed attackers to bypass memory mapping

and IPC restrictions are summarized, e.g., in [5].
4 For our initial demonstration, we considered an IBM NetVista PC equipped with a

Atmel TPM v1.1b running the Trusted GRUB boot-loader and the 2.6.15.6 Linux
kernel that included the statically compiled TPM driver. We later repeated the
attack on PCs equipped with STMicro v1.2 TPMs.
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Thus applications that use the TPM’s ability to seal a credential against
specific PCR values can be subverted in what was measured in the PCRs changes;
applications that measure data and configuration files, as well as software, can
also be subverted. Consider, for example, the open source LiveCD Certification
Authority package [6] that uses a TPM to hold the CA’s private key and to
add assurance that the key would only be used when the system was correctly
configured as the CA—by wrapping the private key to specified values in a
specified subset of the PCRs. The TPM decrypts and uses that key only when
the PCRs have those values. If a user has means to modify arbitrary regions
of memory, they can render the measurements of the TPM useless, unless the
TPM somehow keeps continuous measurements of the loaded program’s memory.
Because of TOCTOU, any hole in the OS breaks the trust.

4 Solution and Prototype

To address this problem, we need the TPM to “notice” when measured mem-
ory changes. As our proof-of-concept showed, the TPM needs to worry not just
about writes to the virtual address and address space in question, but also about
writes to any address that might end up changing the memory mapped to the
measured region. Thus, we need to connect the TPM with memory manage-
ment, so that the MMU would trap on memory operations that can affect TPM-
measured memory regions, and inform the TPM of them via the corresponding
trap handler.

To evaluate the feasibility and effectiveness of this idea, we need to actually
try it—but experimental modifications to modern CPUs can be a large task. So
instead, we build a software proof-of-concept demonstration.

4.1 Components

Since we needed a lightweight way to experiment with virtual changes to ma-
chines, we decided to start with the Xen virtual machine monitor [7], which
allows for the simultaneous execution of multiple guest operating systems on the
same physical hardware.

Xen. Xen is being used in this project not for its virtualization features, but as
a layer that runs directly below the operating system—similar to the placement
of the hardware layer in a non-virtualized environment. Its placement helps us
study possible hardware features. In a Xen based system, all memory updates
trap into the thin hypervisor layer—making it easy to monitor and keep tabs
on changing memory. Redesigning the MMU hardware is tricky, so we do not
want to attempt that until we were certain that the end goal was useful. A
potentially better alternative to using Xen would have been to use an open-
source x86 emulator (such as Bochs [8] or QEMU [9]). However, as of their
current implementation, none of these emulators have support for emulating a
TPM. Also, the only currently existing software-based TPM emulator [10] does
not integrate with any of these. Integrating them would be a major task in itself.
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Virtual TPMs. For our prototype we will be using the unprivileged Domain-1 as
our test system. Unprivileged VMs cannot access the system’s hardware TPM,
and so, to provide Domain-1 with TPM access, we need to make use of virtual
TPMs (vTPM) [11].

4.2 Design Choices

We considered two ways to use XEN in our implementation.

– First, the strategic placement of the thin Xen hypervisor layer between the
machine’s hardware and the operating system could be seen as a way to
prototype changes that could be made in hardware (i.e. in the MMU). With
this approach, the purpose of Xen would be to solely demonstrate a proposed
hardware change, and would not be intended to be integrated into the TCG
Software Stack 5 (TSS). Xen’s role would be that of a “transparent” layer,
manifesting features that would ideally be present in hardware. Effectively,
we use Xen to emulate a hardware trap framework for intercepting memory
events of interest to our policy.

– Alternatively, Xen could be used with the purpose of incorporating it into
the TSS. The trusted boot sequence would now include the measurement
of the Xen hypervisor executable, the Domain-0 Kernel and applications
running in Domain-0, subsequent to the system being booted by a trusted
boot-loader. In this model, our Trusted Computing Base (TCB) will be ex-
tended all the way up to the hosting virtual machine environment. The TCG
trust management architecture is currently defined only up to the bootstrap
loader; in this alternative approach, we would need to extend the chain of
trust up to applications running in Domain-0.

Several recent projects (see Section 6) are exploring using hypervisors for
integrity protection. However, as the hypervisor layer is not currently part of
the TCG trust management architecture, incorporating it into the TSS will
necessitate a revision of the TCG specification. Consequently, we went with the
first approach.

We also considered two ways to hook memory updates to the TPM. In the
dynamic TPM approach, we would update the TPM’s state every time the
measured memory of an application is changed. At all times then, the TPM’s
state will reflect the current memory configuration of a particular application,
and of the system as a whole. This would allow a remote verifier to be aware
of the current state of the application in memory, and to make trust judgments
based on these presently stored PCR values.

When the hypervisor detects a write to the monitored area of an application’s
memory, it would invoke a re-measurement of the application in memory. The
re-measurement would involve calculating a SHA1 hash of the critical area of
the binary in memory (as opposed to the initial measurement stored in the
PCR, which was of the binary image on disk). This re-measured value would

5 The TCG Software Stack is the software supporting the platform’s TPM.
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be extended to the TPM. In this case, monitoring of memory writes would be
enabled for the entire lifetime of an application, as the TPM state would need
to be updated each time the application’s measured memory changed.

In the tamper-indicating TPM approach, we would update the TPM’s
state only the first time that the measured memory of an application is changed.
This would allow a remote verifier to easily recognize that the state of the applica-
tion in memory has changed, and hence detect tampering. When the hypervisor
detects the first write to a critical area of an application’s memory, it would
not invoke a re-measurement of the application; instead, would merely extend
the TPM with a random value. In this case, monitoring of memory writes could
be turned off after the first update to the TPM, as that update would be suffi-
cient to indicate tampering. Monitoring subsequent writes (tampering) will not
provide any further benefit. This strategy will not have as much of a negative
impact on performance as the first approach.

For performance reasons, we chose the second approach.

4.3 Implementation

Our prototype implementation consists of three primary components: the instru-
mented Linux Kernel for reporting, the modified Xen hypervisor for monitoring,
and the invalidation in the TPM.

Reporting. We instrumented the paravirtualized Kernel of the Domain under test
(in our prototype – Domain-1) to allow it to report to the hypervisor the PTEs,
and physical frames that these PTEs map to, of the memory to be monitored,
as shown in Figure 1 (a).

To enable this feature, we added two new hypercalls. HYPERVISOR report ptes
reports to the hypervisor a list of PTEs that map the memory that needs to be
monitored. The PTEs are essentially the entries that map the .text section of
the binary into memory. HYPERVISOR report frames reports to the hypervisor a

Xen Hypervisor

Domain 0

PCR

Domain 1

Load user 
application

TPM_Extend

report_ptes
report frames

Xen

Domain 1

User
Application

PTE update request

trapped PTE
update request

Domain-1
Kernel

compare against
monitored list Xen

Domain 0

PCR

Domain-0
Kernel

if tampering
detected

VIRQ_TAMPER

Extend with random

vTPM managervTPM manager

(a) (b) (c)

backend driver frontend driver

Fig. 1. (a) reporting to the hypervisor the PTEs and frames to be monitored; (b)
monitoring the reported PTEs and frames for update; (c) updating PCR in vTPM of
Domain-1 on tamper detection
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list of physical memory addresses that need to be monitored. The addresses are
the physical base addresses of each frame that contain memory that needs to be
monitored.

These hypercalls make use of a new function that we have added to the kernel,
virt to phys(), which walks a process’s page tables in software to translate
virtual addresses to physical addresses. We pass to this function the start and
end virtual addresses of the .text section of the binary to be monitored. Using
the fact that there are 4096 bytes of data on each page6, it calculates the number
of virtual pages spanned by the address range passed to it. It then accesses an
address on each page of the range, so as to have it mapped into memory. This
step is required to overcome potential problems due to demand loading.7 At this
point, the whole of the .text section of the binary is mapped into memory. This
step however, has performance implications in that it slows down application
start-up; unfortunately, dealing with this requires modification of the existing
dynamic linker-loader to support deferred loading of trusted libraries. Although
complex, it appears to be a promising direction of future research.

The function then walks the page tables of the process to translate the virtual
addresses to physical addresses (physical base address) of each frame in the
range. A data structure containing a list of these addresses is returned to the
calling function.

Also, on program exit (normal or abnormal), we need to have the monitored
PTES and frame addresses removed from the monitored list. To do this, we
instrumented the Kernel’s do exit function to invoke a new hypercall.

HYPERVISOR report exit reports to the hypervisor when an application that
is being monitored exits. The hypervisor’s monitoring code then deletes the
relevant entries from its monitored lists.

Monitoring. Once the required PTEs and frame addresses are passed down to
Xen, it will monitor them to detect any modifications made to them, as shown
in Figure 1.

Writes to these physical memory addresses, or updates to these PTEs to make
them map to a different subset of memory pages or make them into writable
mappings, will be treated as tampering. The reason for this is that since we are
monitoring the read-only code section of an application, neither of the above
updates are legitimately required.

The most convenient and reliable method of detecting these types of updates
is to ‘hook’ into Xen’s page table updating code. As mentioned earlier, all page
table updates in a Xen system go through the hypervisor. This enables us to put
in code that can track specific addresses and PTEs.

The default mode of page table updates on our experimental setup is the
Writable Page Table mode. In this mode, writes to page table pages are trapped
and emulated by the hypervisor, using the ptwr emulated update() function.
Amongst other parameters, this function receives the address of the PTE that
6 Our experimental system has a 4Kb page size.
7 Demand loading is a lazy loading technique, where only accessed pages are loaded

into memory.
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needs to be updated and the new value to be written into it. After doing a few
sanity checks, it invokes Xen’s update l1e() function to do the actual update.

We instrumented update l1e() to detect tampering. Amongst other param-
eters, this function receives the old PTE value and the new PTE value that it
needs to be updated to. To detect tampering, we perform the following checks:

– For PTEs: we check to see if the old PTE value passed in is part of our
monitored list. If it is, it means that a ‘trusted PTE’ is being updated to
either point to a different set of frames, or to make it writable. The alter-
nate set of frames are considered as potentially malicious frames, and the
updated writable permission leaves the corresponding trusted memory open
for overwriting with malicious code.

– For frames: We first check to see if the new PTE value passed in has its
writable bit set. If it does, we calculate the physical address of the frame it
points to. We then inspect if this physical address is part of our monitored
list. If it is, it means that a ‘trusted frame’ is being mapped writable by this
new PTE. The writable mapping, created by this new PTE is interpreted as
a means to overwrite the ‘trusted frame’ with potentially malicious code.

Once the tampering is detected in the hypervisor layer, we need to be able
to indicate this fact to Domain-0. We do this by creating a new virtual inter-
rupt, VIRQ TAMPER, that a guest OS may receive from Xen. VIRQ TAMPER, is a
global virtual Interrupt Request (IRQ), that can be allocated once per guest, and
is used in our prototype to indicate tampering with trusted memory.

Invalidating. Once tampering of trusted memory is detected in the hypervisor
layer, the Domain under test needs to have its integrity measurements updated.
This is done by way of updating the Domain’s platform configuration in its
virtual TPM, as shown in Figure 1.

Our intention is to have the hardware (MMU) cause this update by generating
an trap, which would invoke an appropriate trap handler. The latter, having
verified that the memory event is indeed relevant to our policy goals, will in
turn perform the TPM operation.

Considering that, in our prototype, the hypervisor together with Domain-0
are playing the role of the hardware, we need to have either of them perform the
update action. However, as there are no device drivers present in the hypervisor
layer, the hypervisor is unable to interface with the virtual TPM of Domain-1,
and so this task is redirected to the privileged Domain-0.

The hypervisor will indicate tampering to Domain-0 by sending a specific
virtual interrupt (VIRQ TAMPER) to it. A Linux Kernel Module in Domain-0 will
receive this interrupt, and will proceed to extend the concerned PCR in the
virtual TPM of Domain-1 with a random value.

We have to make use of the virtual TPM Manager (vtpm managerd) to talk
to the virtual TPM of Domain-1. In its current implementation, the virtual
TPM manager only delivers TPM commands from unprivileged Domains to the
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software TPM. Domain-0 is not allowed8 to directly interface with the software
TPM. However, for our prototype, we need Domain-0 to have this ability, and
so we have to mislead the virtual TPM Manager into thinking that the TPM
commands from Domain-0 are actually originating from Domain-1.

In Domain-0, we construct the required TPM I/O buffers and command se-
quences required for a TPM Extend to a PCR of Domain-1. As described ear-
lier, there is a unique instance number associated with each vTPM. To enable
Domain-0 to access the vTPM instance of Domain-1, we prepend the above
TPM command packets with the instance number associated with Domain-1.
This effectively help us forge packets from Domain-1.

5 Evaluation

Our prototype on x86, runs on a Xen 3.0.3 virtual machine-based system. Xen’s
privileged and unprivileged domains run Linux Kernel 2.6.16.29. Our evaluation
hardware consists of a 2 GHz Pentium processor with 1.5 GB of RAM. Virtual
machines were allocated 128 MB of RAM in this environment. Our machine has
an Atmel TPM 1.2.

We implemented three attack scenarios subverting measured memory by ex-
ploiting the previously mentioned TOCTOU vulnerability. These attacks, seek
to change the .text section of a loaded binary. The .text section is mapped
read-only into memory, and so, is conventionally considered safe from tampering.

Scenario 1. The attacker overwrites the trusted code of a victim process by
creating writable page mappings to the victim process’s trusted frames from
another process, as shown in Figure 2 (a).

We carried out this attack by modifying9 a PTE in our malicious process
to map to a physical frame in RAM that the victim process’s trusted code
was currently mapped to. We modified the PTE to hold the frame address of
the victim process page that we wanted to overwrite. The PTE that we chose
to update already had its writable bit set, so we did not need to update the
permission bits. Using this illegitimate mapping we were able to overwrite a
part of the trusted frame with arbitrary data.

It is interesting to note that this attack was possible without having to tamper
with any of the victim process’s data structures.

Our prototype detects that a writable mapping is being created to a subset
of the physical frames that it is monitoring, and randomizes the relevant PCR
to indicate tampering.

Scenario 2. The attacker modifies the trusted code of a victim process by up-
dating the mappings of its .text section to point to rogue frames in RAM, as
shown in Figure 2 (b).
8 Domain-0 is only allowed to access the actual hardware TPM or the software TPM,

but not the vTPM instances of other unprivileged domains.
9 The attack could also be carried out by creating a new PTE that maps to the victim

process’s frames.
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Fig. 2. (a) attacker manipulates PTE(s) of his process to map to trusted frames of vic-
tim process, and overwrites memory in RAM; (b) attacker manipulates PTE (address
portion) of victim process to map to rogue frames in RAM; (c) attacker manipulates
PTE (permission bits) of victim process to make frames writable, and overwrites mem-
ory in RAM.

We carried out this attack by using our malicious process to update the ad-
dress portion of a PTE in the victim process that was mapping its code section.
The updated address in the PTE mapped to rogue physical frames in RAM that
were part of our malicious process. Due to these updated mappings, the victim
process’s trusted code was now substituted with the content of our rogue frame.

Our prototype detects that a subset of its monitored PTEs are being updated
to point to different portions of RAM, and randomizes the relevant PCR to
indicate tampering.

Scenario 3. The attacker overwrites the trusted code of a victim process by
updating the permission bits of its .text section to make them writable, as
shown in Figure 2 (c).

We carried out this attack by using our malicious process to update the per-
mission bits of a PTE in the victim process that was mapping its code section.
We updated the permission bits to set the writable bit making the corresponding
mapped frame writable. We used this writable mapping to modify the trusted
code in the victim process with arbitrary data.

Our prototype detects that a subset of its monitored PTEs are being updated
to make them writable, and randomizes the relevant PCR to indicate tampering.

Limitations. It should be noted that the system of events we intend to capture
and, therefore, the properties that we can enforce with it, deals at this point
exclusively with memory accesses to code and data objects that can be distin-
guished by the linker and loader based on annotation in the executable’s binary
file format. As usual, the choice of events that we can trap to interpose our pol-
icy checks, limits our model of the system’s trust-related states and transitions
between those states, in particular, of transitions that bring the system into an
untrusted state. In other words, the choice of a trappable event system essentially
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determines the kinds of exploitation scenarios that the policy based on it can
and cannot stop.

As the analysis above demonstrates, our choice defeats a range of classic
scenarios. It does not, however, prevent other types of attacks that do not depend
on modifying protected code and data objects.

For example, our event system does not equip us for dealing with exploits that
modify the control flow of an unchanged binary by providing non-executable
crafted input data10, for the essential reason that “bad” transitions in the state
of software associated with these exploits are hard to express in terms of these
events. The same goes for cross-layer and cross-interface input-scrubbing appli-
cation vulnerabilities, such as various forms of SQL or shell command injection,
where malicious commands are passed to a more privileged and trusted (and
therefore less constrained) back-end. Obviously, such vulnerabilities should be
mitigated by a different complementary set of secure programming primitives.

One case where a secure programming primitive based on our event system
may help is that of protecting writable data known to the programmer to persist
unchanged after a certain well-known phase of normal program execution. In
particular, the programmer can choose to place such data in a special ELF
loadable segment11 that can be sealed after the completion of that execution
phase. This, in fact, is a direct analogue to UNIX daemon privilege separation,
which provides the programmer with the means to effectively disallow privileged
operations that he knows to be no longer needed.

As described, our system of events also does not prevent return-to-library12 or
return-to-PLT13 attacks in which no executable code is introduced (but, rather,
existing code is used with crafted function activation frames placed on the stack
to effect a series of standard library calls to do the attacker’s work).

However, in this case our event system is by design more closely aligned with
the actual events and transitions of interest: library calls and PLT stub invo-
cations can be easily distinguished from other programmatic events based on
the information contained in the binary format (such as that in the .dynamic
section tree and symbol table entries). Accordingly, they can be trapped as cross-
segment memory accesses, with minimal additional MMU support. This, in turn,
enables policy enforcement based on intercepting such events and disallowing all
but those permitted by the policy.

Although a detailed description of such an event system and policy mechanism
and its comparison with other proposed return-to-library and return-to-special-

10 E.g., http://phrack.org/issues.html?issue=60&id=10 for exploitation of integer
overflows, http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-iss-

sourceaudit.ppt for a range of other exploitable conditions.
11 In particular, the GNU tool chain offers a compiler extension to map variables to

ELF sections. See, e.g., http://www.ddj.com/cpp/184401956.
12 E.g., http://www.milw0rm.com/papers/31,

http://phrack.org/issues.html?issue=56&id=5
13 E.g., http://phrack.org/show.php?p=58&a=4,

http://www.phrack.org/issues.html?issue=59&id=9 . Note, in particular, the use
of the dynamic linker to defeat load address randomization.

http://phrack.org/issues.html?issue=60&id=10
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-iss-sourceaudit.ppt
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-iss-sourceaudit.ppt
http://www.ddj.com/cpp/184401956
http://www.milw0rm.com/papers/31
http://phrack.org/issues.html?issue=56&id=5
http://phrack.org/show.php?p=58&a=4
http://www.phrack.org/issues.html?issue=59&id=9
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ELF-section countermeasures is beyond the scope of this paper, we intend to
continue the study of the underlying trapping framework in another publication.

Performance. Although the primary goal of our software prototype is to in-
vestigate the future hardware features needed to provide the proposed secure
programming primitives, we also measured varios performance overheads of the
prototype itself, to quantify some of the design choice trade-offs discussed in
Section 4.2. Our results, found in [12], show that the actual overhead of our
prototype system is almost negligible, making it a very usable and deployable.

6 Related Work

Attacks. Kursawe, et. al [13] look at a number of passive attacks against TPMs
by monitoring signals across the bus that the TPM resides on in their test
machine and hint at more active attacks. Sadeghi, et. al [14] also discuss testing
TPMs for specification compliance.

Bernhard Kauer [15] demonstrated how to fool a TPM into thinking the whole
system has been rebooted. Sparks also documents this and provides a YouTube
video [16]. Rumors exist that other attacks are coming [17]. Sparks also presents
evidence [18] that the CRT-based RSA operations in TPM may be susceptible
to Boneh-Brumley timing attacks [19].

Attestation. IBM designed and implemented a TPM-based Integrity Measure-
ment Architecture (IMA) to measure the integrity of a Linux system. Their im-
plementation [20] was able to extend the TCG trust measurement architecture
from the BIOS all the way up into the application layer. Integrity measurements
are taken as soon as executable content is loaded into the system, but before it is
executed. An ordered list of measurements is maintained within the kernel, and
the TPM is used to protect the integrity of this list. Remote parties can verify
what software stack is loaded by viewing the list, and using the TPM state to
ensure that the list has not been tampered with.

The Bear/Enforcer [21,22] project from Dartmouth College developed a Linux
Security Module (LSM) to help improve integrity of a Linux system. This LSM
calculates the hash of each protected file as it is opened, and compares it to
a previously stored value. If a file is found to be modified, Enforcer does some
combination of the following: denies access to the file, writes an entry in the
system log, panics the system or locks the TCG hardware.

Sadeghi et al. (e.g., [4]) developed a property-based attestation extension to the
TCG architecture that allows binary measurements to be mapped to properties
the relying party cares about, and these properties to be reported instead. Haldar
et al. [23] propose an approach based on programming language semantics.

Copilot [24] is a run-time kernel integrity monitor that uses a separate bus-
mastering PCI add-in card to make checks on system memory. The Copilot
monitor routinely recomputes hashes of the kernel’s text, modules, and other
critical data structures, and compares them against known good values to detect
for any corruption.
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BIND [25] is a service that performs fine-grained attestation for establishing a
trusted environment for distributed systems. Rather than attesting to the entire
contents of memory, BIND attests only to a critical piece of code that is about
to execute. It narrows the gap between time-of-attestation and time-of-use, by
measuring code immediately before it is executed, and protects the execution
of the attested code by using a sand-boxing mechanism. It also binds the code
attestation with the data that it produces. It requires programmer annotations,
and runs within a Secure Kernel that is available in the new LaGrande Technology
(LT)-style CPUs.

Additionally, as discussed back in Section 4.2, several recent projects use a se-
cure hypervisor to extend trust to systems’ runtime. Overshadow [26] and SecVi-
sor [27] use the hypervisor’s extra level of memory indirection/virtualization for
protecting the runtime integrity of code and data. We were also made aware of
the HP Labs effort [28] that extends the software chain of trust wih a trusted
VMM hypervisor for fine-grained immutability protection of both OS kernel and
applications.

7 Conclusions and Future Work

We show that current assumptions about the run-time state of measured mem-
ory do not properly account for possible changes after the initial measurement.
Specifically, previously measured memory can be modified at run-time, in a way
that is undetectable by the TPM. We argue that these assumptions of the OS and
application trustworthiness with respect to memory operations can and should
be backed up by a combination of a memory event trapping framework and
associated TPM operations performed by its trap handlers, to ensure that the
programmer’s expectations of access patterns to the program’s sensitive memory
objects are indeed fulfilled and enforced.

We demonstrated several software-based TOCTOU attacks on measured mem-
ory, considered ways to detect such attacks—by monitoring the relevant PTEs and
physical frames of RAM—and presented a Xen-based proof-of-concept.

One avenue of future work is to explore how to have the TPM reflect other av-
enues of change to measured memory. Currently, we only protect against physical
memory accesses that are resolved by traversing the page tables maintained by
the MMU; one future path is protecting against Direct Memory Access (DMA)
as well. In our initial prototype, we have not implemented any functionality
related to paging to disk, and leave that to future work.

We would also like to explore more carefully monitoring data objects as well as
software, elevating it to a subset of the program’s policy goals. In particular, we
suggest that the programmer should be provided with the secure programming
primitives to reflect the changing access requirements of sensitive data objects.
In particular, besides critical code, it would be beneficial to monitor impor-
tant data structures, such as those involved in linking: various function pointer
tables (Global Offset Table (GOT), Procedure Linkage Table (PLT) and similar
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application-specific structures. We argue that the programmer should be given
tools to express the security semantics of such objects.

In their current specification and implementation, the sealing/wrapping and
signing facilities do not bind secrets and data to their ‘owner’ process. (By
‘owner’ we refer to the application that either encrypted/signed a piece of data
or generated a key.) This lack of binding could have security implications. Any
running application on the system could potentially unseal the data or unwrap
the key, and use it for unauthorized purposes. The TCG specification does have
a provision to guard against this – specifying a password 14 that will be checked
against at the time of unsealing or unwrapping, in conjunction with checking
the value in the PCRs. However, if no password is specified, or if it is easily
guessable, it leaves open the possibility for unauthorized use.

One way of resolving this problem would be to have a dedicated resettable
PCR on the TPM that would be extended with the hash of the binary of the
currently executing process on the system. This PCR would be included in the
set of PCRs that are used for sealing/wrapping against. As a consequence, the
‘owner‘ process would be required to be currently active on the processor for
unsealing/unwrapping to be successful. Every time there is a context-switch (in-
dicated by a change of value in the CR3 register), the above-mentioned PCR
would first be reset, and then be extended with the relevant hash value. This
mechanism would prevent a process that is not the ‘owner’ of a particular sen-
sitive artifact from accessing it.

Implementing the dynamic TPM, as described in Section 4, would be a radical
step forward in the way TPMs currently operate. It would enable the TPM to
hold the run-time memory configuration of a process, and hence allow for more
accurate trust judgments.

Essentially, the TPM itself is a “secure programming primitive”, a new tool
for software developers to secure critical data and enforce policy. Our proposed
TOCTOU countermeasures—and future research built on them—are an exten-
sion of this tool for developers to take advantage of these fundamental new
primitives to secure data and enforce policy. We note that extending the TCG
architecture with additional primitives for ensuring trustworthy memory behav-
iors appears to be a natural direction towards policy-enforcing next generation
trusted systems as per vision outlined in [2].

We also argue that allowing developers to express the intended properties
of their memory and code objects as a matter of policy, and providing a TCG
architecture-based mechanism for enforcing such policies will help developers
to manage previously neglected aspects of their program’s trustworthiness. We
draw historical parallels with other successful secure programming primitives
that provided developers with capabilities to express the intended privilege and
access behaviors in enforceable ways, and that have undoubtedly resulted in
improving programs’ trustworthiness.

14 The password is stored in a wrappedKey data structure associated with the corre-
sponding asymmetric key.
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