
Pastures: Towards Usable Security Policy Engineering

Sergey Bratus, Alex Ferguson, Doug McIlroy, Sean Smith
Dartmouth College

Abstract

Whether a particular computing installation meets its
security goals depends on whether the administrators can
create a policy that expresses these goals—security in prac-
tice requires effective policy engineering. We have found
that the reigning SELinux model fares poorly in this regard,
partly because typical isolation goals are not directly stated
but instead are properties derivable from the type definitions
by complicated analysis tools. Instead, we are experiment-
ing with a security-policy approach based on copy-on-write
“pastures”, in which the sharing of resources between pas-
tures is the fundamental security policy primitive. We argue
that it has a number of properties that are better from the
usability point of view. We implemented this approach as a
patch for the 2.6 Linux kernel.

1 Introduction

Computing systems typically depend on their operating
systems to enforce trustworthy behavior. Architects and ad-
ministrators describe this behavior in terms of various se-
curity goals, such as protecting the integrity and confiden-
tiality of data. To achieve these goals, architects and ad-
ministrators should be able to configure them with security
policies that actually express these goals. Thus we reach a
point when policy engineering becomes a critical issue.

The problem of engineering usable OS security policies
has been worked on for decades. However, we claim that
age does not imply maturity. The continuing trouble with
securely configuring real systems for real applications in
the real world demonstrates the absence of the accepted and
effective best practice that would come with a solved prob-
lem. Approaches based on formal models do not appear
to have gained much traction with system administrators
and defenders, outside of a few small specialized commu-
nities. Satisfactory approaches to securing systems in man-
ageable ways are still being pursued and discussed1, and we

1In particular, practitioner conferences, including the so-called hacker
conventions like Defcon and Blackhat, often feature talks on exploratory
methods for protecting common server software known to be vulnerable.

will later review several such approaches that enjoy de facto
practitioner acceptance (most notably vserver and the use of
BSD jails for building virtual systems). We offer our own
work as a contribution to this effort.

In recent years, older ideas have re-emerged, with NSA’s
Security-Enhanced Linux (SELinux) (e.g., [11]) considered
by many to be the de-facto best-of-breed for those want-
ing a high-assurance but contemporary OS. Unfortunately,
SELinux has a high cost from the point of view of usability:
its monolithic and awkward policy structure makes it diffi-
cult for programmers to configure and maintain it for real-
world applications – and difficult for stakeholders to trust
that the resulting policy actually confines system behavior
to “secure” operation only.

Previous studies (e.g., [4]) led us to the conclusion that
the principal usability obstacles for the SELinux policy ap-
proach are:

• any reasonable degree of integrity protection requires
a large and complex policy, essentially profiling all the
allowed accesses for protected applications;

• by following the application execution profile, such a
policy becomes as complex as the original software –
without any corresponding software engineering tools
to keep it manageable;

• no protection can be afforded before such profiles are
compiled, a labor-intensive procedure.

All of these obstacles are ultimately due to SELinux’s
reliance on the fundamental and time-honored design prin-
ciple of denying access if it is not explicitly permitted by the
policy.

In addition to these obstacles, checking if a SELinux pol-
icy satisfies information flow goals is a non-trivial task, be-
cause flow properties of the SELinux model cannot be ex-
pressed explicitly in its policy language, but are instead de-
rived from the type specifications, i.e. access profiles. Thus
even though flow goals are often of primary interest, they
are not first-order policy objects that can only be derived
from a rather large number of access statements.

We explore an alternative approach, based on two prin-
ciples:

1

• All accesses not explicitly allowed or denied by a pol-
icy statement result in a copy-on-write (COW) duplica-
tion of the accessed object, rather than a denial.

• Flow properties are directly specified by the policy
rather than derived from other kinds of statements.
Specifically, sharing of resources between environ-
ments isolated by default becomes a basic policy prim-
itive.

In order to implement these principles, we assign pro-
tected applications to COW pastures or, for short, pastures,
where a pasture is a security context similar to a vserver
context or a BSD jail, which contains private copies of files
modified by processes assigned to it. The term, of course, is
a pun on COW, the copy-on-write operation that adds new
objects to a pasture. The term also suggests the permis-
sive nature of a pasture as compared to a “jail”: the point
of pastures is to allow programs to proceed by creating pri-
vate copies of objects modified by their writes not explicitly
listed in an access profile, rather than terminating them for
a violation of the profile.

2 Our approach

2.1 Revisiting types

We consider the set of SELinux types as a set of inter-
secting “access jails”, defining their allowed interactions.
Indeed, the purpose of SELinux policy analysis tools is
mostly to derive a description of such interactions (e.g.,
the information flow between types). It seems that a di-
rect specification of allowed flows combined with the de-
fault integrity protection given by the copy-on-write names-
pace isolation approach, could be much more concise and
intelligible, being closer to the actual security goals of
many administrators. The principal reduction in complex-
ity will come from the conceptual simplicity of namespace
isolation-by-default.

2.2 Motivating Examples

Let us consider two motivating examples.

Server protection

An administrator runs a number of trusted and possibly
interacting servers on a system wishes to introduce a
new piece of third party software, say a license server.
Not being sure of the security properties of this soft-
ware, the admin would like to take steps to protect the
integrity of his other servers from its possible interfer-
ence, whether unintentional or due to hostile transac-
tions.

Client protection A rich client such as a web browser
needs to access and interact with many OS resources,
and read and create multiple files, including files in
the user’s home directory (cache, javascript, cascading
stylesheets, media files etc.). A vulnerability in one of
its modules could damage the user’s private files. Due
to its significant footprint, it typically needs a complex
security profile with many special cases.

Users nowadays urgently need to maintain separate
roles (and effective namespaces) for “browsing” and
“working”, or face dangers to more valuable private
files from the much less valuable “web” files.

Internet Explorer’s reasonable idea of “zones” proba-
bly owed something to such considerations, but was
ruined by the “integration” with the OS and other de-
sign decisions that the current “phishing” epidemic has
taken such broad advantage of.

Hence client software is best run in an isolated com-
partment. However, for most user activities, full iso-
lation is not an option (e.g., a web browser is needed
to interpret the very working files that we would like
to protect from being damaged by it, should it misbe-
have). However, we note that the number of files that
actually need to be imported back to the user’s work-
ing set is typically much smaller than the total number
of files read or written within a session.

Adjusting the policy to fit the quickly changing working
environment is hardly a usable solution when the policy is
to deny by default all operations that are not explicitly al-
lowed. A denial could well lead to an error and loss of work
in the current session.

Thus using a “deny by default” policy means too many
administrative interruptions, when the user has to switch
roles to perform an administrative action, and then spend
some time restoring his working context. To avoid such in-
terruptions users often work with elevated privileges all the
time. An extreme example was older MS Windows where
administrative actions could not be easily taken without log-
ging out and back in as the Administrator.

2.3 The proposed solution

The essence of our approach is to allow groups of related
programs to run in “pastures” with the same namespaces as
the original system, by default creating private copies of re-
sources when they are modified and describing the cases
when this should not happen in the policy that enumerates
allowed sharing and communication between pastures. In
each pasture, the bindings in the namespace thus point ei-
ther to the original object (if the policy specifies this), or
to the private object (created by default if written to by the
pasture).

2

Pastures sacrifice some of SELinux’s power for detect-
ing misbehavior but avoid the burden of detailing “good”
behavior before protection becomes effective. The effects
of bad behavior are managed by keeping them private to the
program’s pasture.

Advantages of pastures are

• new progams can be introduced in protected manner,
eliminating the need for the risky audit2allow profiling
step;

• architects and administrators can directly specify infor-
mation flow properties;

• the overall complexity of the policy is thereby reduced;
and

• access error conditions fatal under SELinux enforce-
ment but not critical to security goals are no longer
fatal.

3 The implementation

3.1 Overview

Processes start in pasture environments specified by a
policy mapping of the pair (command, user) → pasture ID.
The command is either an absolute path to an executable or
a sudoers(5)-style alias to a command with options2. Our
code resolves the mapping of a process to its appropriate
pasture at the point of the exec system calls.

The system creates new pastures as needed. Each new
pasture starts out with the namespace identical to that of
the base system, perhaps with some part of the namespace
explicitly excluded by the policy.

The implementation affects name-resolution mecha-
nisms, such as namei for the filesystem. Name-resolution
routines now take one extra argument, the ID of the pasture,
and return the most specific binding that exists for this pas-
ture. If a file or directory has been modified within a pasture
privately, the namespace mappings of the particular pasture
and the other pastures diverge at the corresponding direc-
tory level, and namei henceforth produces the private copy
of that file, as the most specific for that pasture.

Besides the filesystem, we need consider other names-
paces as well, such as those of network ports and various
system and network stack constants. Our current imple-
mentation is limited to filesystems, but the same approach
should be generalized to these other namespaces. To con-
front the practical challenges connected with virtualizing
network stacks, we plan to draw on the wisdom of the Vim-
age project3 for FreeBSD [15].

2The sudoer-style matching and aliasing are not yet implemented
3http://www.tel.fer.hr/zec/BSD/vimage/

3.2 Pastures policy primitives

3.2.1 The one-directional arrow

Suppose G and A are two pastures. The policy statement
G → A means that changes made to the namespace of pas-
ture G by processes running in G are visible to processes in
the pasture A, but such changes by A are not visible in G.
(If the policy also specifies the converse A → G, we write
G ↔ A; we consider this simpler case later.)

Let us return to our previous example of a sysadmin in-
troducing a third-party application A to a system that runs
a number of trusted servers, which he wants to protect from
possible interference by A. In other words, he wants his
trusted processes to affect A as they normally would, but he
does not want A to affect them back in any ways other than
the few prescribed. Eventually, as the admin convinces him-
self that A is well-behaved, he will bring A into the trusted
fold, but before that time he would like to be able to roll
back most changes that A may make to the system, except
those specifically allowed by his policy.

To achieve this goal, the admin may regard his set of
trusted servers as running in a global system pasture G, cre-
ate a pasture A for the new application, and specify G → A.

The arrow relation between two pastures can be limited
to certain files, as described below.

3.2.2 The bidirectional arrow

The bidirectional arrow between pastures means that ref-
erences to a resource, such as a file, by name from either
pasture would return the same object. The applications run-
ning in these pastures can create the same races as in classi-
cal UNIX, and these would be resolved or allowed to exist
as in classical UNIX.

With a bidirectional arrow relation qualified by a file
name, applications running in two separate pastures can
thus share a regular file, or communicate through a socket
file by that name. An unqualified bidirectional arrow be-
tween pastures would mean that they are functionally iden-
tical in their access privileges.

3.3 Information flow implications

The information flow meaning of the unidirectional ar-
row A → B is as follows: the writes of processes in A are
visible to those in B, but not vice versa. Changes to files
made by processes in B and new files created by processes
in B are not visible to those in A; B can freely read infor-
mation from A, but its writes will not affect resources in A,
since they result in copy-on-write of the resource written to.

The bidirectional arrow A ↔ B (or, equivalently, a pair
B → A and A → B) means that information flow via

3

writes can occur in both directions, since both A and B es-
sentially share the same object.

We note that, in this prototype, we are mainly worried
about integrity (keeping untrusted software from interfer-
ing from trusted software) rather than confidentiality. We
left read access controls out of our policy language so as
not to distract from the core idea of using copy-on-write
as an integrity policy primitive. We plan to consider these
challenges in future work.

3.4 Additions to the /proc filesystem

We exchange and expose the additional data needed
for managing the pastures to the kernel through the /proc
filesystem. In particular, the policy is loaded by writing
null-separated records to /proc/pastures and is visible by
reading it once loaded. Each process that runs in a pas-
ture has its ID in /proc/PID/pasture and its list of private
copy-on-write files in /proc/PID/cows. By reading this in-
formation, the administrator can examine the state of the
system.

3.5 Policy specifications

The policy consists of

1. statements specifying instantiation of pastures and
placement of programs into a particular pasture, ex-
isting or newly created, on startup, and

2. statements describing allowed resource sharing and in-
formation flow.

Example Consider the policy (=> reads “place in”):

/usr/sbin/httpd => servers
/usr/sbin/ftpd => servers

These statements specify that httpd and ftpd will get placed
into the same pasture and share access to all resources.
When one of them starts up, it will cause the pasture to be
created. If the other program is started after that, it will
be placed into the existing instance of the servers pasture.
The identity of the user (UNIX or SELinux) who started the
program is irrelevant in this example.

Example We can write policies that take identity into ac-
count:

/opt/matlab:{usr1,usr2} => shared_math
/opt/license_server => shared_math

When users usr1, usr2 start matlab, they will be placed in a
shared environment where they could influence each other’s
work. Although the same data access arrangement can be

described with other access control mechanisms, the choice
of Matlab is not arbitrary. In order to run, matlab, a propri-
etary program, requires a separate third-party proprietary
program (a “license manager”) to be running on the com-
puter (or somewhere on the same network). The user may
not fully trust either of these programs and, accordingly,
may want to isolate them from the rest of the system.

Example We can arrange per-user pastures:

/usr/local/bin/mozilla
=> \$user/untrusted_browser

This statement specifies that each user starting mozilla will
automatically have it placed into a private pasture separate
from his normal user environment.

Example We can use policy statements to restrict infor-
mation flow via writes.

A -> B:
/path/to/fileA

Here A and B are specifications of individual pastures or
groups of pastures.

This statement (with the unidirectional arrow) allows in-
formation to flow from pasture A to pasture B. When B is-
sues a read access request for fileA, it will receive the object
bound to fileA in A’s space. When a process in B writes to
fileA, a private copy of fileA will be created in pasture B’s
namespace. Thus after writing to fileA pasture B will receive
its own private copy of the object, in its last state.

Example We can also express bidirectional flow:

A <-> B:
/path/to/fileA

Both A and B will be work on the same object fileA. (This
will also occur if the policy contains both A → B and B →

A for some resource.)
More precisely, if fileA is not shared with the global sys-

tem pasture (in which case the system’s only copy will sim-
ply be used in any pasture which which it is shared), then
whichever process from A or B first writes to fileA will cause
a new object to be created and bound to fileA in the respec-
tive namespace. For the other pasture, all references (read
or write) to fileA will henceforth resolve to that new object.

3.6 Implementation Details

We modeled our implementation on the vserver ap-
proach [2] and mandate that namespace lookup routines
receive the pasture ID on each system call relevant to the
copy-on-write mechanism. These routines either return a

4

shared resource (when explicitly specified by the policy) or
create a new resource via copy-on-write for the respective
resource class. Both SELinux and vserver introduce ex-
tra “security” members into the fundamental data structures
such as task struct, inode, file, superblock and IPC descrip-
tors. In vserver terms, these data structures marked with the
same context id form a security context. Communication is
allowed only between processes in the same context. How-
ever, vserver uses a different mechanism for handling file
namespace isolation and copy-on-write functionality.

Our “COW pastures” occupy middle ground between
SELinux types and BSD jails. They are more permissive
than SELinux types and allow creation of new resources and
write accesses to them as long as explicitly specified flow
goals and ordinary UNIX DAC permissions are not vio-
lated. Also, they allow several isolated instantiations to take
place simultaneously, which is not a feature of SELinux.
Unlike the typical applications of BSD jails, they encourage
the sharing of the underlying common system namespace
between namespaces, when this sharing does not contradict
the flow goals.

Although our current implementation is orthogonal to
the Linux Security Modules architecture (LSM, the col-
lection of system call hooks that is SELinux’s mechanism
for mediation of access-related systems calls to enforce its
MAC policy), our assessment of LSM suggests that “COW
pastures” could be implemented on top of SELinux as a sec-
ondary security module. Thus the sequence of access con-
trol decisions would be DAC → COW pasture → MAC.
This would significantly simplify the MAC policy, taking
away the need to describe the write flow goals in them. Thus
the SELinux policies that currently combine the functions
of (1) anomalous behavior detection and prevention, (2) in-
tegrity control, and (3) information flow control, would be
limited to the first and partly the second of these goals.

Our existing implementation works in the ext2 filesystem
namespace, and consists of approximately 5000 lines as a
kernel patch against the 2.6.12 Linux kernel.

4 Security and usability impact

The SELinux approach to policies is to define the full
set of allowed resources and operations for each type while
prohibiting all others. A look at other security setups based
on by default mandatory isolation of security contexts sug-
gests that policies aimed at describing the communication
and sharing between contexts as their primary objects will
be more usable and not significantly weaker in the practical
integrity protections they afford.

Pastures are managed on the basis of namespace trans-
lations, creating a copy of an accessed object whenever the
access is not explicitly specified in the policy. The policy
specifies allowed flow relations between pastures; unless

pastures are allowed to share a resource, a write-type access
to an object results in the pasture getting its own private
copy with the change, without affecting the other pastures’
view of the object.

Thus in the most common scenario when a new untrusted
application is introduced to the system and is placed into a
pasture, a minimal policy already protects the integrity of
the rest of the system while allowing the application to run,
giving a significant savings of up-front labor as compared
to SELinux.

Furthermore, the policy author directly specifies flow
goals for the new application by specifying directly which
objects it is allowed to share with other pastures. All other
accesses result in changes limited to the application’s pri-
vate space and do not affect other applications and therefore
the flow goals.

Let us revisit the motivating examples.

Server protection With an “everything not explicitly al-
lowed is denied” profiling approach, the admin does
not have many options. Most importantly, until he has
compiled a full profile of the allowed accesses for the
new software, the system will afford him no protection.
That is, before any integrity protection can be afforded,
all the effort must be invested up front. Given that the
path to compiling such a profile in practice often lies
through running the software with the policy engine
in non-enforcing mode (e.g., audit2allow), we have a
chicken-and-egg situation4.

The solution we propose helps to run the software
while protecting the integrity of the rest of the sys-
tem from it, with the up-front effort limited to speci-
fying the resources that must be shared with the other
servers. This smaller amount of effort will allow to get
the new server up and running.

Client protection With an “everything not explicitly al-
lowed is denied” profiling approach, the user likely
faces the necessity of multiple interruptions for policy
adjustment and loss of work should his client acciden-
tally violate the policy.

Our solution allows the client application to proceed
with actions not explicitly prohibited by the policy
rather than denying them and likely crashing it on the
resulting error, at the same time protecting the integrity
of the system. It thus makes sense to let it create pri-
vate copies of the files it needs to modify or create.

4Given the shrinking average time between going live on the Internet
and the first attack on a system, profiling an open real-world service by
recording its audited accesses and assuming them to be “normal” behav-
ior may be a really bad idea, whereas profiling a program in a limited
“friendly” environment only may not provide enough diversity to cover all
of its full intended functionality.

5

Then the few files that need to cross the private
namespace boundary will be explicitly OK’ed by
user, whereas the rest (cache, javascript, cascading
stylesheets, media files etc.) never leave the private
environment and operations on them cannot affect the
user’s home files or his OS.

To test the manageability of our approach, we are devel-
oping scenarios for a user study involving our lab sysad-
mins. The primary goal of these is to measure modification
ease of Pastures policies to protect new applications.

Merging costs. Once the administrator has decided to
eliminate a pasture, she will face the problem of merging
the the changed files back into the system. We regard this
as the postponed cost of the ability to start running an un-
trusted program while protecting the rest of the system from
its changes, an exchange for the effort saved on profiling
and recovering from fatal errors due to an overly tight pro-
file.

For text or database files in amenable formats, merg-
ing techniques may help. Protocols and formats that allow
merging have been discussed in a substantial body of pub-
lications; we cannot cover these due to lack of space. We
need to remark, however, that no generic solution exists.
For binary files, the decision comes down to replacing the
system’s copy of a changed with the private copy, or dis-
carding the copy. Another possible solution is to change the
policy to limit the copy-on-write behavior only to those files
already changed, and share the rest of the filesystem.

Effect on intrusion detection. Our approach does have
another downside: the loss of the de facto host intrusion
detection functionality that systems such as SELinux pro-
vide. A close-fitting application profile under a fine-grained
MAC mechanism will cause all accesses outside of an appli-
cation’s normal functionality to be logged. Log records of
denied accesses can play the role of intrusion alerts. Indeed,
the LIDS[1] access control system, which provided a much
less granular partition of root privileges than SELinux, was
originally described as an “intrusion detection system” by
its authors. Still, it is debatable whether a policy sys-
tem should double as a host intrusion detection system
(HIDS), or whether this need is better served by introducing
a HIDS proper (without the above mentioned limitations in
its means of behavior description).

5 Performance impact

Copying incurs a noticeable performance cost. In our
current implementation, this cost is paid for files whenever
an existing file is modified, and for directories whenever
a pasture’s process first creates a new file in a directory.
In current implementation we experienced 20% to 50% in-
crease in the time for operations causing the first copy to

happen, which was then amortized when more files were
created in the same copied directory.

6 Related work

Our work was motivated by the challenges of using
SELinux, and drew inspiration from the BSD jails and
vserver designs. We note that although the idea of us-
ing copy-on-write for integrity protection is an old one –
we traced it to Boebert’s LOCK-[5] – it has not been, to the
best of our knowledge, used as a “first-class” security policy
primitive.

Several approaches to problematic server isolation are
based on namespace separation and virtualization: BSD jail
facility [7] (the so-called “chroot on steroids”5 with a ded-
icated virtual network interface), the Linux vserver kernel
patch[2], and methods based on virtual environments like
the User Mode Linux (UML, [6]). In all these methods the
basic integrity protection mechanism is very simple to de-
scribe – by default, an isolated process does not affect the
OS namespace, and any changes remain local to the virtual
environment. A number of tutorials (e.g., [9, 8]) describe
this approach to setting up a system, stressing the simplic-
ity of the model as a a key usability feature.

Any exceptions to this rule, i.e. the necessary sharing
of resources for the program’s functionality, need to be ex-
plicitly specified (and are discouraged as contrary to the ba-
sic separation model). We note that these exceptions would
form an important part of the de facto policy for resource
sharing. For example, some UML filesystems can be shared
(possibly as read-only) with the host system, some files in
the jail namespace can be managed by the host, and so on.
An interesting example is the vserver setup, in which each
file in the virtual environment starts out as a special type
of hard link to the corresponding host file, with copy-on-
write behavior when it changes. Although not implemented
in vserver, we can imagine a policy that waives this copy-
on-write behavior for specified files, thus describing the al-
lowed communication between programs. Vserver is real-
ized by assigning processes to “security contexts” and pro-
hibiting communication between different contexts by way
of kernel hooks (without an extra virtualization layer) and
by namespace separation for contexts. Both BSD jails and
vservers installations tend to start with separate filesystems
for every virtual server/context6.

While our design is largely informed by vserver and BSD
jails, we take an entirely different view of sharing access
between resources in different compartments. Such sharing

5E.g., http://www.usenix.org/publications/login/2005-
08/openpdfs/musings.pdf

6In vserver the filesystem is composed of special types of hard links
whose stated purpose is to save space. We argue that this trick can be
generalized to be the basic mechanism of a policy.

6

is considered undesirable and warned against; one can say
that the only security policy considered in both setups is
full isolation of contexts. We, on the other hand, see it as
a fundamental primitive of which flexible security policies
can be built.

Solaris zones (e.g., [13, 12]) constitute a similar ap-
proach. Their containers are separated by default, being
complete virtualized environments; information flows be-
tween them are by default absent. Privileges are managed at
much higher levels of granularity and security labels are ap-
plied on zone level rather than on individual resource level
as in SELinux, with no concept of label transitions within
a zone. The designers apparently eschewed the flexibility
of the LSM/SELinux approach [14, 3] in favor of a simpler
conceptual model that is easier to use.

The allowed intersections between “jails” are the pri-
mary object of such setups/policies, whereas profiling of
the access patterns of isolated programs themselves is sec-
ondary. This approach allows to quickly add a new service
to the existing set on a machine while reducing the likeli-
hood that some unexpected feature interaction unexpectedly
breaks existing functionality.

Of a number of other sandboxing and isolation systems
that focus on isolation of untrusted applications and share
some behaviors with our system, the Alcatraz system de-
scribed in [10] comes the closest to our approach. It isolates
untrusted programs, keeping the changes made by them in
a modification cache, and giving the user the option of ei-
ther accepting or discarding them when the program fin-
ishes. The scheme is described by the authors as providing
“play” and “rewind” buttons for untrusted software. The
implementation is based on the Linux ptrace mechanism.
The modification cache is maintained by a user-level pro-
cess using strace to trace the execution of the isolated pro-
cess and its children.

Most importantly from our point of view, Alcatraz rec-
ognizes the value of letting an untrusted (and even poten-
tially compromized) process continue running while pro-
tecting the rest of the system from it. We proceed from the
same premise, but make the default copy-on-write versus
explicitly allowed sharing approach into a fundamental pol-
icy primitive, and place the enforcement mechanism in the
OS kernel.

7 Conclusion

We propose a new approach to engineering security poli-
cies that is based on the principle that can be expressed as
follows: when an operation is not explicitly permitted, it is
allowed to proceed by creating a copy of the affected re-
source in its private namespace. This principle allows in-
troduction of new programs to an already functioning sys-
tem as a much smaller up-front cost than traditional ones

based on full access profiles, while still providing integrity
protection for the rest of the system. Also, it has simpler
information flow properties. We believe that this approach
deserves further investigation.

Thanks

We would like to thank George Bakos for many useful
discussions.

This research program is a part of the Institute for Secu-
rity Technology Studies, supported by Grant number 2005-
DD-BX-1091 awarded by the Bureau of Justice Assistance.
The Bureau of Justice Assistance is a component of the Of-
fice of Justice Programs, which also includes the Bureau of
Justice Statistics, the National Institute of Justice, the Office
of Juvenile Justice and Delinquency Prevention, and the Of-
fice for Victims of Crime. Points of view or opinions in this
document are those of the author(s) and do not represent the
official position or policies of the United States Department
of Justice.

References

[1] LIDS: The linux intrusion detection system,
http://www.lids.org/.

[2] Linux vserver project, http://linux-vserver.org/paper.
[3] L. Badger, D. F. Sterne, D. L. Sherman, and K. M. Walker. A

domain and type enforcement UNIX prototype. Computing
Systems, 9(1):47–83, 1996.

[4] K.-H. Baek and S. W. Smith. Preventing Theft of Quality of
Service on Open Platforms. In IEEE/CREATE-NET SecQoS
2005, September 2005.

[5] W. Boebert. The lock demonstration. In Proceedings of the
11th National Computer Security Conference, 1988.

[6] J. Dike. User-mode linux.
[7] P.-H. Kamp and R. N. M. Watson. Jails: Confining the om-

nipotent root.
[8] P.-H. Kamp and R. N. M. Watson. Building systems to be

shared securely. ACM Queue, 2(5), July/August 2004.
[9] D. Langille. Virtualization with freebsd jails, 2006.

[10] Z. Liang, V. Venkatakrishnan, and R. Sekar. Isolated pro-
gram execution: An application transparent approach for
executing untrusted programs. In Proceedings of the An-
nual Computer Security Applications Conference (ACSAC),
December 2003.

[11] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In Proceed-
ings of the FREENIX Track: 2001 USENIX Annual Techni-
cal Conference (FREENIX ’01). The USENIX Association,
2001.

[12] D. Price and A. Tucker. Solaris zones: Operating system
support for consolidating commercial workloads. In Pro-
ceedings of the 18th Large Installation Systems Administra-
tion Conference (USENIX LISA ’04). The USENIX Associ-
ation, 2004.

7

[13] A. Tucker and D. Comay. Solaris zones: Operating system
support for server consolidation. In USENIX 3rd Virtual Ma-
chine Research and Technology Symposium, 2004.

[14] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman. Linux security modules: General security support
for the linux kernel. In Proceedings of the 11th USENIX Se-
curity Symposium, pages 17–31, Berkeley, CA, USA, 2002.
USENIX Association.

[15] M. Zec. Implementing a clonable network stack in the
freebsd kernel. In Proceedings of the USENIX 2003 An-
nual Technical Conference, FREENIX Track, pages 137–
150. The USENIX Association, 2003.

8

