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C O V E R  F E A T U R E

Building the IBM
4758 Secure
Coprocessor 

W
ork leading toward the IBM 4758
started, arguably, in the 1980s when the
Abyss project began exploring tech-
niques to build tamper-responsive hard-
ware and use that technology to protect

against software piracy.1,2 Influenced by this earlier
work, we sought to build a secure coprocessor,
defined as a tamper-responding device derived from
the Abyss, Citadel, and 4755 work. We wanted to
provide a single multipurpose platform that third par-
ties could use to develop and deploy secure coproces-
sor applications, with minimal IBM participation. To
accomplish this, we sought to achieve several goals:

• Ensure that the device can be identified externally
as to contents, using some form of outbound
authentication and public-key interface (PKI).

• Design the device and its software to be securely
configurable and updatable in the field.

• Construct the software architecture to accom-
modate layers of code from different parties, who
may or may not trust each other.

• Avoid letting the compromise of one device
breach the security of another.

• Validate all these assertions through an external
party.

IBM’s Common Cryptographic Architecture prod-
uct group realized that its next-generation product
required properties possessed by the secure coproces-
sor that IBM Research advocated. This knowledge
gave the research team a unique and perhaps nonre-
peatable opportunity: funding and authority to design
and produce the product we thought should exist, as

long as it could be transformed into a CCA follow-on
and meet the appropriate deadlines.

Seeking to provide an environment where applica-
tions could run securely forced us to focus not only on
security mechanisms and their implementation and
management, but also on various flavors of security
policies they must support. Clearly, the hardware on
which applications run must be secure, as must the
operating system and runtime environment in
between, while offering a reasonable API for applica-
tions developers. To fix problems in the field and
enable fast and inexpensive reaction to changing cus-
tomer needs, we implemented part of the code as
firmware, rather than read-only memory. Figure 1
shows the 4758’s three major components and their
interrelationships.

Subdividing the software into different layers raises
issues of trust because upper components rely on the
security that lower layers offer. Applications cannot
be more secure than the kernel functions they call, and
the operating system cannot be more secure than the
hardware that executes its commands.

Thus, if the lower layers are robust, higher layers
can choose whether to relinquish some security. We
designed the lower layers to be relatively permanent
firmware, or static hardware, thereby offering fewer
points of attack throughout operation. Decreasing
complexity, careful evaluation, and more effective
security mechanisms justify the increasing trust along
the vertical arrow. Management of the different lay-
ers must reflect the demand for increasing trust in
lower layers, and be flexible enough to support mul-
tiple security policies in various organizations.

As the “Design Decisions” sidebar notes, we

Meeting the challenge of building a user-configurable secure coprocessor
provided several lessons in hardware and software development and
continues to spur further research.
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achieved our major goals, but learned through hind-
sight several techniques for improving the secure-
coprocessor design process.

SECURITY AND TRUST 
We based the 4758’s security on an architecture and

implementation validated from manufacture to
deployment.

Manufacturing considerations 
Because we sought to provide a third-party pro-

grammable device, the manufacturing process could
not incorporate anything related to the eventual soft-
ware. Programming, loading of code, or both are com-
pleted outside the factory at the customer’s discretion.
Consequently, when a 4758 leaves the factory, it must
be fully armed against tampering.

Initialization and the trusted root 
Each 4758 undergoes the same initialization proce-

dure, eliminating the need for individual personaliza-
tion—which is expensive, error prone, generally
requires a large quantity, and doesn’t fit the general-
purpose secure-coprocessor model. An authentication
protocol is performed in the factory to establish an ini-
tial secret using a valid source of randomness and min-
imal software within the 4758’s ROM. When shipped,
each 4758 can authenticate requests to download code
and respond to tampering. Having a meaningful out-
bound authentication requires a securely generated root
certificate, which is established in the factory environ-
ment.

Layers and codeload boundaries 
Layer refers to the division of software into inde-

pendent pieces. The initial layer is inserted into ROM

Software:
 • Applications
 • Environment/OS
 • Kernel
 • Loaders

Officers

Firmware:
 • Post
 • Miniboot

IBM

Hardware:
 • Processor
 • Flash, RAM, ROM
 • Locks
 • Tamper-responding unit
 • Crypto functions

IBM

Trust

Figure 1. Overview of
a secure coproces-
sor’s three major
design components:
hardware and firm-
ware, which only IBM
could alter, and soft-
ware, which custo-
mers could configure
in the field to meet
their specific require-
ments.

We found the following to be the crucial ingredients needed
to build a programmable, secure coprocessor.

Hardware tamper response
Relying upon software to react to tampering is too slow. How-

ever, this observation implies a well-sealed package and careful
design of the communication paths between the 4758 and the
outside world. Dissipating heat becomes a problem, which affects
the speed at which components internal to the 4758 can be run.

The ratchet hardware provides the mechanism that assures
prior firmware or software layers that subsequent layers cannot
alter their secrets. Hardware enforces this assurance best, ren-
dering areas of storage invisible, protecting areas from tamper, or
both. The number of ratchet lock settings, and what they protect,
requires careful iterative design—something that deadlines and
other constraints do not always allow for. Ideally, the number of
locks and associated regions would be configured by firmware.

Randomness
Generating initial secrets requires a validated source of ran-

domness, which ensures that possible destruction of a few cards
cannot compromise any others. We encountered two problems
with this requirement, neither of them fatal. First, we could find
no standard for hardware random-number generators (RNGs).

Hence, for the  Federal Information Processing Standards (FIPS)
validation procedure, we could only use the hardware to seed a
pseudorandom-number generator (PRNG), per the FIPS 186-1
standard. Second, the mandatory statistical tests to ensure that
the RNG works correctly—performed on both the hardware
source and the PRNG output—slow the boot process by more
than 20 seconds.

Layered design 
A programmable device must have a layer responsible for

implementing code load security policy. The layer should be val-
idated, as its correctness forms the basis upon which subsequent
layers depend for their own security.

Subsequent layers personalize the device. We initially selected
two layers: one for an operating system and device drivers, the
second for application code. This division made it possible for
third parties to either write applications to an operating system
we supplied, or write everything themselves.

Finally, minimal software in ROM provides for repairs or
extensions of initial facilities using the secure field update archi-
tecture.

Self-initialization
A programmable device must leave the factory ready to

Design Decisions



during the 4758’s manufacturing phase, and the
remaining layers are downloaded into flash memory
using a public-key authentication process associated
with a layer’s owner. A codeload boundary denotes a
defined point at which the system accepts a signed file
authenticating a load-this-layer command.

Officers and signing keys 
At each codeload boundary, an officer and key pair

authenticate loading. The previous layer’s officer
establishes ownership and provides a certificate attest-
ing to the new owner’s initial public key. The officer
owning the layer has complete control over subse-
quent loads, including changing the key pair and
establishing various trust targeting options.

Retaining state
A secure coprocessor provides the ideal place to

keep secrets, provided they disappear upon tamper-
ing and that any compromise of a single device does
not affect any other coprocessor’s security. Secrets are
of various kinds: the initial secret key a 4758 gener-
ates, the signing keys each officer uses, keys to encrypt
persistent data on behalf of applications, and appli-
cation data. Thus, if hackers succeed in compromis-
ing a few 4758s, they will uncover none of the secrets
stored within other 4758s.

Secure boot
A 4758 provides a secure boot of itself. The hardware

and firmware guarantee that the coprocessor stores only
authorized code in flash memory. Authorization is
accomplished at codeload time. Checks of flash for
integrity are made at each boot before passing control
to the next layer. The checks run against hardware-
enforced flash contents that are locked read-only by the
time the operating system and application run.

The validity of these statements follows, in part, from
the secure packaging. An attempt to replace the ROM
or flash contents destroys the 4758’s secrets. The dam-
aged coprocessor might still run the same application
software, but it could not authenticate itself when
booted, and the application software’s battery-backed
RAM and encrypted flash information would be un-
available.

HARDWARE 
Figure 2 shows the 4758’s hardware architecture

and building blocks. Figure 3 shows the ratchet lock-
ing mechanism that protects access to the flash seg-
ments, with the most liberal policy enforced by the
guardian processor.

Tamper response 
A 4758 responds to tamper attempts in hardware
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respond to tamper. Initialization of each card cannot involve
personalization, in that third-party software ultimately
determines the 4758’s personality. Our procedure uses pri-
vate memory and locks and requires an on-card validated
source of randomness. Self-initialization is crucial to pro-
viding a self-identifying device that third parties can pro-
gram.

Outbound authentication
This feature ensures that external parties can determine the

exact applications running and the relevant history of all enti-
ties that may affect any secrets stored within the 4758. There
must be a trusted root and a description of the history that can
be validated against that root. The root must be established at
the point of manufacture for programmable cards and relies on
the hardware we’ve described. In our implementation, the code
loading “firmware” reflects the layering into firmware, operat-
ing system, and device drivers, then applications. It relies on the
protection of persistent storage areas by ratchet locks, although
more standard certificate formats would have aided interoper-
ability.

General coprocessor and auxiliary processors
A general CPU does not limit the application set, and suit-

able auxiliary processors expand the device’s potential use to
include data encryption standard, modular math, and so on.

This approach offers many trade-offs. As an example, we pro-
vided DES encryption and decryption where the data being
transformed could remain on the host. This approach implies
a level of trust in the host, and proved suitable for certain appli-
cations in which the main problem involved protecting data
in transit. Such long-lived “sessions” complicate the device dri-
vers that deal with host-to-4758 transfers and also complicate
abort processing. The resulting interface had a performance
impact on short transfers as well.

Persistent storage 
This feature provides long-term storage of application or

other data on the coprocessor, protected directly by the 4758
tamper response via battery-backed RAM or indirectly via
encryption using keys stored in battery-backed RAM. Providing
this capability lets applications like protected counters function
wholly within the 4758, without host trust.

Third-party programming interface
The interface to third parties should be as comfortable as pos-

sible. We chose the most suitable operating system available at
the time, given our other constraints. A more familiar API that
included the host-to-4758 protocol, as well as more attention
to ease of development, would be desirable.

In retrospect, we did not always follow the maxim that sim-
pler is better.
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by quickly zeroing its secrets and executing a co-
processor state change, without requiring software
intervention. Tamper conditions include penetration
attempts, temperature extremes, voltage variation,
and radiation.

We prefer this approach because of its speed—using
a software solution would be unreliable and too slow.
Responding to a tamper attempt requires a secure
package, with minimal and carefully engineered access
to the outer world. One consequence of the 4758’s
packaging is that it makes heat dissipation difficult.
An effective solution to this problem requires careful
interleaving of physical techniques.3

Battery-backed RAM 
A 4758 has two types of battery-backed storage.

The coprocessor’s OS manages BBRAM, which pro-
tects software secrets. Lockable battery-backed ram
(LBBRAM) protects firmware secrets and is only
accessed through a separate guardian processor that
also maintains the lock state. A tamper attempt zeros
all the 4758’s battery-backed storage.

Locks 
Hardware locks render areas of flash read-only

memory and make areas of LBBRAM completely inac-
cessible. A separate guardian processor controls the
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Figure 2. The 4758’s
hardware architec-
ture. Built around a
486 processor core,
the coprocessor con-
tains two types of
battery-backed RAM,
a random-number
generator, and per-
sistent storage space
for encrypted data in
flash memory.
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locks, which are implemented as one-way-only ratch-
ets that can be unlocked only by resetting the 4758.

This design provides the required hardware plat-
form for building the trust hierarchy. It ensures that
only authorized firmware or software can change the
code to be executed and that if any level contains cor-
rupted code, we can fix this code and verify the fix.

The number of locks and the memory regions they
protect are defined in hardware. The software layers
and security requirements related to codeload signa-
ture must be satisfied within the locked regions, even
though we didn’t know the actual sizes that would be
required. Indeed, we froze the hardware design before
we completely designed the security software archi-
tecture. Choosing the optimal design, in this area par-
ticularly, is an iterative process that doesn’t always fit
within time constraints.

Our trust design ensures that, after boot, the device
goes through a sequence of phases that strictly
decrease in trust. Although this design limits the dam-
age that runtime corruption can cause, it does not per-
mit runtime recovery from runtime corruption.
However, allowing dynamic increases in trust would
require hardware assistance that wasn’t feasible within
the allotted product development time frame.

Randomness 
Each 4758 has a protected random-number gener-

ator (RNG), implemented in hardware, that generates
its own initial secret using relatively straightforward
code in ROM. For applications, validated random-
ness generates a nonce, key, or any initial secret.

Persistent storage 
To preserve data across 4758 power cycles and

resets, we provided persistent storage to hold down-
loaded code, signatures used by the firmware, space
for the two software layers, and application data. We
used flash memory for this purpose. No tamper-
responding hardware can guarantee it has sufficient
power to erase flash contents, so anything stored in
flash is vulnerable to inspection, albeit by destroying
the 4758. Therefore, keeping any information requires
using an encryption key stored elsewhere, in BBRAM.
The boundary between the portion of flash used for
signed codeloads and the portion used for data stor-
age is movable to allow for larger code when required.

This approach proved to be a good way to preserve
large amounts of data. In combination with the ratchet
locks, it supports secure boot of the 4758.

Guaranteeing atomic update in flash memory is dif-
ficult. Flash chips provide only sector-level erase, and
we also had concerns about each chip’s finite lifetime.
The movable boundary between signed loads and soft-
ware data required a handshake between firmware
and software. This led to some dependencies between

miniboot and the contents of Layers 2 and 3,
which can reflect different owners.

Other elements
Data movement within the 4758 takes place

over an internal bus that the host cannot access.
Sensitive applications in the 4758, which can
make no assumptions about the host’s reliabil-
ity, require internal and external bus separation.
However, this separation slows data movement.

A general-purpose computer resides within
the secure environment, providing a user-super-
visor mode and memory protection. This choice
furnishes a general-purpose platform that can
run software similar to the software running on unse-
cured computers. The processor’s capabilities do not
restrict the potential application programs and oper-
ating systems.

The 4578 also includes a modular-math chip, a data
encryption standard (DES) and a secure hash engine.
The modular-math chip accelerates various on-card
algorithms implemented in software, increasing the
4578’s potential applications.4

The DES engine may be used for bulk operations
on external data, without requiring the data to pass
through the secure coprocessor. Some applications
such as streaming media require this feature because
the security issues relate more to handling the pack-
age containing the media than to the security of the
coprocessor’s host. However, implementing long-term
transfers introduced other complications—abnormal
termination of a host process, speed of short opera-
tions, and use of the FIFOs for both DES data and
host-4758 communication.

The hardware aspects of the device limit perfor-
mance for operations such as large numbers of DES
operations on short data5 or DES with alternative
chaining schemes.6

FIRMWARE
To emphasize the logical distinction between them,

we use the terms firmware and software in a slightly
nontraditional way: IBM owns the firmware, whereas
other parties may own the software.

Guardian processor
The guardian processor runs code that is installed

in ROM during the manufacturing process. This code
maintains its in-the-factory or initialized configura-
tion state, and the hardware locks’ state. It also pro-
tects the secrets each layer stores, as instructed by the
embedded main processor, consistent with the locks’
state. Inspection can validate the guardian processor,
which is a relatively small code module.

This processor forms part of the security architec-
ture implementation, which relies on the protection of
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secrets between the software and firmware lay-
ers as trust decreases. Development, testing, and
maintenance are more difficult than for the main
processor, which highlights the trade-off
between a specialized processor for a specific job
and a general-purpose processor.

Boot code
The 4758’s boot code consists of two logical

parts—Layer 0 in ROM and Layer 1 in flash.
Because both the card and the processor are
complex, we relied on a power-on self-test to
provide some degree of confidence that the hard-
ware works as designed. Both functional and
security purposes required burning the POST
into ROM, but POST software could pose prob-
lems. Therefore, we split the POST into two
parts, placing the most basic tests in POST 0 in
ROM and the remaining tests in POST 1 in
flash. This keeps POST 0 simple, small, and,

hopefully, relatively bug-free, while POST 1 contains
the remaining tests and is reloadable, if necessary.

We also incorporated this idea into the security
firmware for the same reasons. We called the code
Miniboot and split it into two parts: a small basic part
in ROM and the rest in flash.

POST 0 checks the hardware that Miniboot 0 will
use, and POST 1 checks the rest. After a power-on or
reset, POST 0 always runs first, then Miniboot 0, then
POST 1, then Miniboot 1. The coprocessor performs
authenticity and validity checking before control
passes to Layer 1.

Miniboot 0 can generate a random symmetric key
to perform encryption and decryption, request an incre-
ment of the hardware lock setting, generate a unique
secret and store it, advance the 4758 state to initialized,
and accept and recognize a properly signed flash load.
We placed more complexity, including PKI and out-
bound authentication, in the updatable flash memory.

Establishing officers
Each layer has a security officer and a key pair

which that officer uses for signing commands to the
firmware. IBM is the officer for the firmware, and this
association is established at the manufacturing site.
An officer can assign ownership of the next layer by
signing an establish owner command and must also
certify the public key of the next owner. Beyond this,
an officer doesn’t need to know anything about the
next layer’s contents.

This process implements a trust hierarchy between
independent and possibly mutually suspicious partic-
ipants. It also implies that the more-trusted officer
must take responsibility for ensuring that officer iden-
tifiers associated with different entities or different
purposes do not collide.

Establishing keys 
To establish a signing key, the officer of the previous

layer in the trust hierarchy signs a certificate validat-
ing the initial public key associated with a new offi-
cer. The 4758 records this new key the first time the
new officer presents a codeload command.

Relinquishing ownership. A 4758’s characteristics can-
not be altered without the acquiescence of the own-
ing parties. Once a layer has an owner, only that
owner can surrender ownership. An owner can save
and offload sensitive data or delete such data without
placing undue trust in the previous owner’s intentions
or security practices. Miniboot deletes an owner’s
BBRAM data before the next application loads.

Downloading contents. If a layer’s owner has signed the
command and, if necessary, has also provided a cer-
tificate validating the public key, miniboot accepts a
specific layer’s content. No portion of the firmware and
none of the lower officers need know anything about
the codeload’s content. The ratchet mechanism pro-
tects the information essential to verifying contents and
keys, which is stored in the protected part of flash.

Targeting
Officers can target their commands to cards with

specific configuration properties. This allows a full
spectrum of control, from individual cards to all, with
a single one-round protocol.

We found that targeting individual cards was ben-
eficial in at least two situations. In the first, contracted
software development of crypto outside the United
States had to satisfy export restrictions: The code
could only be loaded on the cards under the con-
tractee’s control. In the second situation, we needed
some diagnostic information for debugging some
4758s that had been in use. This required download-
ing a debug Layer 2 that had an officer 2 identifier
associated with the nondebug Layer 2. We built the
appropriate command and targeted it to the one card
whose owners had requested it. The command would
fail when played against any other card.

Trust
Officers can establish the conditions under which

their secrets will be destroyed. This property allows
officers to close a backdoor to sneaky behavior by
more privileged officers. Multiple developers asked
us, “Why do you have options, when clearly only X
is necessary?”—but they all indicated a different value
of X.

These requirements were the primary reason for
choosing to have a single control point for loading and
reloading subsequent segments. One central policy
enforcer simplified the issues regarding which code a
particular layer needs to trust to destroy its secrets
under all scenarios.

Once a layer has an
owner, only that

owner can surrender
ownership. An owner
can save and offload

sensitive data or
delete such data
without placing

undue trust in the
previous owner’s

intentions or
security practices.



Configuration and outbound authentication 
The trust hierarchy depends on knowing a 4758’s

software history. If an erroneous or malicious software
layer was installed but then overwritten, it must be
impossible to detect the potential compromise of cru-
cial data or secrets. For the 4758 Model 1, each change
in Layer 1 in the IBM firmware, in which the tamper-
responding package validates and protects the ROM,
results in adding a new certificate to the chain-keep-
ing history. With Model 2, we implemented “outbound
authentication,” which also serves Layers 2 and 3.3

Each significant change in software is recorded in a
certificate chain and made available to applications,
not just host programs that talk to Miniboot. The cer-
tificate chain is truncated at Layer 1 when all Layer 2
and 3 software and associated secrets have been
deleted. A corrupted entity cannot hide its presence
or impersonate a more trusted entity because changes
in configuration are coupled to key pair changes.
Hence, an application can attest to its environment
and provide that information to any partner. The part-
ner can then make an informed trust decision.

The current implementation follows the design deci-
sion that Layer 1 is aware of the characteristics of
Layers 2 and 3, which can have separate owners.
Alternative approaches to Layers 2 and 3 require revis-
iting this code. Also, the certificates are in a nonstan-
dard format; we made design decisions before
standards emerged and we had serious concerns about
codespace. 

SOFTWARE 
Two layers give a 4758 its runtime personality.

Assuming all is well, Miniboot 1 passes control to
Layer 2. Depending on various options and the cur-
rent configuration, the system may have cleared the
BBRAM secrets associated with Layer 3, but it does
not require Layer 3 to be runnable. Layer 2 determines
the actions that will be taken with respect to Layer 3.

CP/Q operating environment
The 4758 needs a runtime environment that is con-

figurable, efficient, secure, has a small footprint, and
provides a reasonable programming API. Con-
figurability was important because some of the 4758’s
hardware requires special device drivers. The 4758
needed to have a small footprint because it has no pag-
ing, which limits the actual memory to what is phys-
ically present within the coprocessor.

Given our time constraints, CP/Q—a commercial,
off-the-shelf, modular operating system—offered the
best available operating environment. This system also
supports separation of supervisor and user tasks—a
basic reliability feature. CP/Q is not a multiapplica-
tion environment with multiple security levels. The
CP/Q designers did not address the problem of

enforced separation between possibly hostile
running applications, either sequentially or in
parallel.

When we were designing the 4758, we did
not find a validated, secure operating system
suitable for an embedded environment that had
been designed from the start for security rather
than as a general-purpose OS. In hindsight, an
OS with a wide community of developers and
established software, such as Linux, would have
been a better choice, provided that it offered a
reasonable runtime footprint and good perfor-
mance.

CP/Q++
We expanded CP/Q to include device drivers

for the 4758’s hardware. We call the resulting
operating environment CP/Q++. CP/Q++ is well
suited to the modular coding style the 4758’s
developers used to develop device drivers and
applications while working at multiple sites. Moreover,
we could leverage plenty of local expertise because some
of the CP/Q++ developers had written CP/Q. The
address-space separation made it somewhat easier to
find and fix integration problems. CP/Q++ also simpli-
fied debugging, which probably shortened the develop-
ment period.

Multiple address spaces imply multiple context
switches, memory aliasing, and passing requests by
message, all of which adds overhead. A timing exer-
cise, performed fairly early in the initial development,
showed that cross-memory operations did not con-
tribute significantly to overhead.

We needed to choose which pieces to build into Layer
2, which were always loaded and started, and what
privileges and resources to allow each module. We used
CP/Q’s builder and system-level debugger internally to
experiment with various configurations. During the
development phase in particular, we used the debugger
to ensure that only required privileges were assigned
and to confirm dependencies among modules. Adding
test programs using the system-level debug environ-
ment simplified testing and debugging of interactions
between modules. During the integration phase, we
didn’t always recognize that we needed to view the con-
figuration file as part of the code base.

Each thread in CP/Q has a priority that we assigned
to optimize system throughput, a fairly easy task given
CP/Q’s configurability. However, we could only esti-
mate the actual mix of work because this task is highly
application-dependent.

Host-4758 protocol
Communication between the 4758 and the host in

which it resides involves two main activities: estab-
lishing a connection between the communicating part-
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ners and transferring information data,
requests, and results. We selected what seemed
to be a minimal design, always initiated from
the host, that could exchange several inbound
and outbound buffers. Assuming that the host
OS would have threading capabilities, we used
a blocking protocol on the host side. The com-
municating partners identify themselves to one
another via a 16-byte agent ID. We used mail-
boxes and interrupts to implement the proto-
col with a host device driver, a communications
manager in the 4758, and some underlying
hardware.

The protocol delivers very good performance
for large, bulk-DES operations and is general
enough to allow experimentation with other
variants, such as using long-lived buffers for
data transfer. However, it is not a familiar par-
adigm. Setup overhead has a tremendous
impact on performance for small operations.
Long-lived operations, shared between the 4758

and the host device drivers, imply complex abort pro-
cessing.

Different owners 
We subdivided the software into two sublayers—

Layers 2 and 3—with independent officers, each with
its own independent keys. Various customers have
used the ability to program a 4758, typically building
on CP/Q++ or other IBM software. Such customiza-
tion makes it possible to use the 4758 for applications
that have specialized requirements and to test the
results on real hardware.

The programming environment has complexities of
its own. The variety of security and trust options
offered to third parties, and to Layer 2, appear to be
more than customers needed.

Further, Miniboot 1 makes some guarantees regard-
ing the protection of secrets associated with Layer 3
when reloading Layer 2, Layer 3, or Miniboot 1. These
guarantees may be too closely associated with CP/Q++.
For example, Miniboot 1 increments the ratchet so that
Layer 2 is unable to write to Layer 3’s flash area, even
though the guardian processor’s policy, shown in
Figure 3, is more permissive. This restriction avoids a
vulnerability associated with having all protected flash
segments on the same chip: A write to any one sector
can erase all sectors. However, it precludes using Layer
3 as a read/write file system extension of Layer 2.

Outbound authentication issues
CP/Q++ offers an application programming inter-

face that requires the cooperation of Miniboot 1. To
provide services to Layers 2 and 3, the API extends
the certificate chain that traces all updates to the
firmware. It also provides a key pair and configura-

tion history, which allow the entity’s potential part-
ners to make an informed trust decision. The private
key remains in the 4758.

Extending or replacing CP/Q++
The separation of authority between Layers 1 and 2

allows placing alternative or third-party software in
Layer 2. Reassigning Officer 2 to allow experimentation
does not compromise the security of deployed cards.

As shipped by IBM, Layer 2 contains all the super-
visor-level code and will load, at most, one user-level
application—which is insufficient for some experi-
ments. A research extension of CP/Q++ allows load-
ing additional supervisor and user-level code. Instead
of acquiring and learning the CP/Q configuration and
build tools, the developer can use the symbolic debug-
ging documented as part of the toolkit.7,8 The OS
extensions form part of the read-only disk image
downloaded into Layer 3, so installation is the same
as for application code, and the signed download com-
mand acts as the authenticator. This approach
bypasses some of the outbound authentication prob-
lems associated with modular, extensible OSs.

A research adaptation of Linux for the 4758 is
under development. However, the assumptions
Miniboot makes with respect to the division into two
owners—Layers 2 and 3—are tested, with a few sur-
prises.

Application development and the toolkit
To ease the learning curve for 4758 application

developers, we provided a familiar coding environ-
ment.7,8 We considered several factors, including the
compilation and link stages, the platform on which
the new application was to run, and the CP/Q++ run-
time environment. We constructed an extended
CP/Q++ and configured it to contain a debug probe
and various means for the probe to use either the PCI
bus or the serial port to converse with the host.

We supported the C programming language and
compilers supplied by both IBM and Microsoft.
Unavoidable additional steps included the translation
from the host-based executable to the runtime format
CP/Q++ requires, and subsequent packaging and
downloading of the codeload to the 4758.

The new API includes the CP/Q operating system and
the API provided by the device drivers used to access the
4758’s unique hardware. If the internal API proved inad-
equate, we provided no means to enhance CP/Q++.

Given the relatively lengthy download time, we
could have reduced the development time by further
extending CP/Q to deal with loading programs that
reside on the host, but we didn’t give that effort a
high priority. In a production 4758, we cannot short-
circuit the secure download process, and we cannot
bypass the FIPS testing done in Miniboot and POST.

The Host-4758 
protocol delivers

very good
performance for
large, bulk-DES

operations and is
general enough 

to allow 
experimentation

with other variants,
such as using 

long-lived buffers
for data transfer.



Applications
We designed the 4758 so that third parties could

write their own applications without IBM’s involve-
ment, approval, or even knowledge. We believe the
4758 was the first commercially available, secure
coprocessor to provide this facility. Several applica-
tions that require hardware protection, such as bank-
ing, use the initial application, IBM’s CCA. The 4758
has been used to provide CCA extensions, metering
applications, an implementation of PKCS-11, and sup-
port for various research projects.

Each application developer must recreate a secure
protocol for communicating between a host applica-
tion and its corresponding 4758 application. A larger
collection of possible plug-in modules or code sam-
ples, a more mainstream coding environment, and a
better-publicized API might have encouraged wider
use.

In developing the 4758, we met our major research
security goals and provided the following features: 

• a lifetime-secure tamper-responding device,
rather than one that is secure only between resets
that deployment-specific security officers per-
form;

• a secure booting process in which each layer pro-
gressively validates the next less-trusted layer,
with hardware restricting access to its secrets
before passing control to that layer; 

• an actual manufacturable product—a nontrivial
accomplishment considering that we designed the
device so that it does not have a personality until
configured in the field;

• the first FIPS 140-1 Level 4 validation, arguably
the only general-purpose computational platform
validated at this level so far; and

• a multipurpose programmable device based on a
99-MHz 486 CPU internal environment, with a
real operating system, a C language development
environment, and relatively high-speed crypto.

We are continuing to build on the success of the
4758 project. Currently, we are pursuing work on
secure coprocessors in several areas. For example,
we’re exploring the use of Linux as the operating sys-
tem, with security enhancements such as SELinux,9

a socket-based card-to-host protocol, and a host-
based file system that allows booting the operating
system and applications from the host for faster devel-
opment. We are also exploring other embedded
processors, such as the Power PC 405GP,10 the addi-
tion of a network communication channel, and other
form factors, particularly those appropriate for lap-
tops. ✸
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New for 2002!
Announcing 2 New Resources for Mobile,
Wireless, and Distributed Applications

The exploding popularity of mobile Internet access, third-

generation wireless communication, handheld devices, and

Bluetooth have made pervasive computing a reality. New

mobile computing architectures, algorithms, environments,

support services, hardware, and applications are coming

online faster than ever. To help you keep pace, the IEEE

Computer Society and Communications Society are proud to

announce two new publications:

IEEE Pervasive Computing
Strategies for mobile, wireless, and distributed
applications, including

Mobile computing
Wireless networks
Security, scalability, and reliability
Intelligent vehicles and environments
Pervasive computing applications

http://computer.org/pervasive

IEEE Transactions on Mobile Computing
State-of-the-art research papers on topics 
such as

Mobile computing
Wireless networks
Reliability and quality assurance
Distributed systems architecture
High-level protocols

http://computer.org/tmc
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