
Journal of Biomedical Informatics 46 (2013) 721–733
Contents lists available at SciVerse ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Privacy-preserving screen capture: Towards closing the loop for health
IT usability q
1532-0464/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jbi.2013.05.007

q This work is supported in part by the US National Science Foundations
Trustworthy Computing award #0910842, by the Department of the Air Force
under Air Force Contract #FA8721-05-C-0002, and by Google. Opinions, interpre-
tations, conclusions, and recommendations are those of the authors and are not
necessarily endorsed by the United States Government or Google.
⇑ Corresponding author. Tel.: +1 603 646 1618.

E-mail addresses: joe.cooley@gmail.com (J. Cooley), sws@cs.dartmouth.edu
(S. Smith).

URL: http://www.cs.dartmouth.edu/~sws/ (S. Smith).
1 Current address: MIT Lincoln Laboratory, Lexington, MA 02421, USA.
Joseph Cooley 1, Sean Smith ⇑
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

a r t i c l e i n f o
Article history:
Received 11 July 2012
Accepted 27 May 2013
Available online 13 June 2013

Keywords:
Health IT
Security
Privacy
Usability
Redaction
a b s t r a c t

As information technology permeates healthcare (particularly provider-facing systems), maximizing sys-
tem effectiveness requires the ability to document and analyze tricky or troublesome usage scenarios.
However, real-world health IT systems are typically replete with privacy-sensitive data regarding
patients, diagnoses, clinicians, and EMR user interface details; instrumentation for screen capture
(capturing and recording the scenario depicted on the screen) needs to respect these privacy constraints.
Furthermore, real-world health IT systems are typically composed of modules from many sources, mis-
sion-critical and often closed-source; any instrumentation for screen capture can rely neither on access to
structured output nor access to software internals.

In this paper, we present a tool to help solve this problem: a system that combines keyboard video
mouse (KVM) capture with automatic text redaction (and interactively selectable unredaction) to produce
precise technical content that can enrich stakeholder communications and improve end-user influence
on system evolution. KVM-based capture makes our system both application-independent and OS-inde-
pendent because it eliminates software-interface dependencies on capture targets. Using a corpus of EMR
screenshots, we present empirical measurements of redaction effectiveness and processing latency to
demonstrate system performances. We discuss how these techniques can translate into instrumentation
systems that improve real-world health IT deployments.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Medical enterprises large and small are replacing paper-based
systems with IT-based ones, and upgrading old, piecemeal IT-based
systems with new, federated ones. However, as with any large
engineering project, it is unlikely that the first solution produced
and deployed is exactly right. Standard engineering tenets teach
the importance of ‘‘closing the loop’’; but to do so by understand-
ing and tuning a system requires measuring it, in order for this tun-
ing to be a data-driven process.

However, when it comes to health IT systems, even the process
of just taking such measurements raises a combination of
challenges:
Privacy Preservation In a human-facing IT system, screenshots
comprise the natural domain for measurement. However, in
health IT, screenshots are full of privacy-sensitive material.
First, we have the obvious issues: names and identifying infor-
mation of patients, images of patients, text regarding diagnoses
and medication and other treatments. But there are more subtle
issues as well, such as names of providers, details of health IT
user interfaces protected by vendor agreements, and non-text
indicators (such as ‘‘warning’’ icons) that can betray confiden-
tial patient details.
A measurement methodology needs to respect these privacy
constraints—either by putting cumbersome mechanisms in
place to ensure that private data is never leaked throughout
the analysis process, or by redacting it in the first place.
Context Preservation Traditional work on privacy and confi-
dentiality seeks to hide information. However, to fulfill their
purpose of tuning and analysis, redacted health IT screenshots
still need to contain information—a blacked-out screen would
preserve all privacy, but be useless. We need to balance hiding
of privacy-protected information with communication of work-
flow process context. Our redaction system needs to be effective
both at removing sensitive information, but also at retaining (in
conjunction with end-user feedback) the system behavior infor-
mation we were trying to measure in the first place.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jbi.2013.05.007&domain=pdf
http://dx.doi.org/10.1016/j.jbi.2013.05.007
mailto:joe.cooley@gmail.com
mailto:sws@cs.dartmouth.edu
http://www.cs.dartmouth.edu/~sws/
http://dx.doi.org/10.1016/j.jbi.2013.05.007
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin

722 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
System Impact Medical enterprises deploy IT in order to fur-
ther their medical mission, within the constraints of various
business objectives.
A measurement methodology needs to respect these deploy-
ment constraints—it cannot make assumptions about underly-
ing applications, operating systems, access to source code,
access to structured protocol communications, even access to
documentation. Furthermore, a measurement methodology
cannot disrupt the underlying system; besides impeding enter-
prise mission, changes might also (depending on the system)
invalidate necessary certification.
Workflow Impact For clinicians using health IT systems, the
primary motivation is helping patients rather than wrestling
with computing systems, even to document troublesome sce-
narios in order to enable these systems to be fixed. Conse-
quently, a measurement methodology needs to minimize the
work required and delay experienced by these users: it should
work automatically and quickly; users should be able to quickly
log some issue and move on with their real mission.

This Paper. This paper reports on our research addressing this
aspect of ‘‘closing the loop’’: designing, prototyping, and evaluating
technology to enable redaction of privacy-sensitive elements in
medical IT (privacy preservation), while preserving usage context
and permitting interactively selected unredaction (context preser-
vation), passively acting on raw screen data alone (system impact),
and operating automatically in real time (workflow impact). Draw-
ing on algorithmic techniques that have been used for various as-
pects of image processing, our work is, to the best of our
knowledge, the first to explore these techniques in the context of
automatic redaction of privacy information in health IT (or other
domains).

Section 2 motivates this work in the context of closing the loop
for health IT usability research and development. Section 3 pro-
vides an overview of our prototype system. Section 4 describes
our methodologies for text redaction. Section 5 describes the
broader system we built around these techniques. Section 6 evalu-
ates the effectiveness of our approaches. Section 7 presents how
this work can impact real-world health IT systems. Section 8 re-
views related work, and Section 9 concludes.
2 We upgraded to OS X 10.6 midway through development and analysis.
2. Health IT motivation

In concurrent work [1], our lab has been cataloging many ways
in which clinicians report that health IT systems lead to usability
frustration. We list just a few examples:

� The age field for a patient does not allow fine enough units to
correctly determine medication for newborns—or allow a way
to indicate age of patients still in utero.
� A health IT screen with field-defined data did not allow an expe-

rienced clinician to record ‘‘smell of breath.’’
� A drop-down menu did not permit easy discovery of the proper

diagnosis, leading the clinician to pick a wrong one that was at
least ‘‘close.’’
� The interface to refer a patient to a stomach cancer specialist

requires the non-specialist clinician to first identify which of
52 varieties of stomach cancer the patient has.
� A health IT system gives each pending lab result an identical

title, ‘‘Lab Result.’’
� A medication administration system does not recognize that an

order for ‘‘10mgs’’ of a medication can be fulfilled by two 5 mg
tablets.
� An EMR screen gives three ways to exit—whose consequences

differ substantially but which appear the same to the user.
Each such scenario demonstrates the need for ‘‘closing the
loop.’’ The very existence of this litany of problems indicates that
the learned experts who built these health IT systems, even with
the best of foresight and stakeholder input, fail to anticipate usabil-
ity problems that arise in the field. Furthermore, each such prob-
lem is likely solvable. For some; small software changes likely
suffice; others may require experimental evaluation of proposed
solutions or research into new techniques.

However, before developers can try these small changes or
external researchers can explore new techniques, they need to
know about these problems. Unfortunately, current state of the
art does not permit the frustrated health IT user to easily capture
and document these problems. Photographing or printing the
screens violates privacy (both of patients and of providers). Instru-
menting the internals of the health IT software requires access to
code that is usually proprietary—and then requires modifying mis-
sion-critical systems. Often, researchers (such as the first author)
cannot even look at usage logs of the system, due to restrictions
of the university IRB. Just recording oral complaints does not per-
mit easy reproduction of scenarios—and (as the second author
found) other clinicians at the same institution may even disbelieve
the scenario ever even existed.

A system such as ours—which empowers end-users to record
and annotate screenshots automatically redacted of sensitive
information without changing the internals of the health IT system
being passively monitored—would provide a key component in a
solution to systematically alleviate these usability frustrations.
We revisit this vision in Section 7.2.
3. System overview

Again, in this work we explore a core problem in closing the
loop: screencapture of health IT meeting the privacy and logistical
requirements outlined in Section 1. Our prototype system applies
text and image redaction to KVM feeds from health IT systems—
see Fig. 1.

Our system includes functionality essential to implementing
screen capture for sensitive health IT systems. The basic steps of
instrumenting such systems include screen capture, image pro-
cessing and editing, and data sharing. After capture, the system
processes an image to find and redact text. Additionally, the sys-
tem may search for regions within the image that match a set of
image snippets or ‘‘templates’’ and count, redact, or unredact
matching regions. Finally, a user may wish to edit the image and
further redact or unredact a portion of the processed screenshot.

Implementation. The bulk of our system implementation relies
on a mixture of C and C++ code spanning multiple open-source li-
braries and custom-developed libraries and applications, including
boost [2], C++ STL [3], OpenCV [4], liblinear [5], and CGAL [6–8].
Altogether, we implemented approximately 9000 lines of code.

To remain system-independent, we implemented certain func-
tionality with higher-level APIs; our development environment is
a MacBook Pro running OS X 10.5 with 8 GB of memory.2 Certain
low-level OpenCV routines rely on system libraries, but these are
transparent to our code—OpenCV is cross-platform.

Screen Capture. Our system relies on a virtual network computer
(VNC) arrangement to capture screen material from a remote host
[9]. In a nutshell, VNC defines a protocol for transporting a com-
puter’s framebuffer, keyboard, and mouse data over the network.
By building a system with this protocol, our system can capture
and operate on all KVM events in a system-independent fashion.
In our test configuration, Mac OS X 10.6 functions as the ‘‘Capture
System’’ and the application x11vnc [10] running on an Ubuntu

Fig. 1. Our measurement module passively listens to keyboard and mouse input and video output—and consequently remains system-independent and accommodates
closed, mission-critical, and/or certified health IT systems.

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 723
Linux 9.10 running within a VMware [11] instance serves as the
‘‘Capture Target.’’ The client implements read-only functionality
and therefore does not pass keyboard/mouse events from the
VNC client to the VNC server.

Our client connects to the VNC server using TCP. After connect-
ing, the endpoints proceed through a handshake phase and negoti-
ate the protocol version ‘‘RFB 003.008nn’’ and the ‘‘raw’’ pixel
format to transfer screen updates from the server to the client
without compression.
4. Text redaction approaches

Text redaction is a fundamental aspect of the system because it
removes sensitive text from screen capture data, relieving the end-
user from manually redacting screen captures before sharing. By
default, our approach implemented a ‘‘deny-all’’ policy and thus
redacts all text it finds. An end-user can then ‘‘unredact’’ small
regions as necessary to facilitate their conversation. Because redac-
tion affects just text and a small number of icons, our intention is
that overall screen context remains despite removal of potentially
sensitive data.

In a different approach to redaction, our system could simply
redact an entire screen (e.g., turn the entire screen black) and the
end-user could unredact whichever small piece supports their
needs. We believe this approach provides too little screen context
to observers, and would require too much work from end-users.
Unredacted, unsensitive screen data provides context to applica-
tion stakeholders that may help focus their discussion.

Image-based text redaction consists of two principal steps: (a)
finding text in an image (also known as text segmentation), and
then (b) recoloring segmented image regions to ‘‘remove’’ text.
(We note that such segmentation is also the first step of optical
character recognition—OCR.) Redacting images using this approach
ensures that no ‘‘hidden’’ text or other data exists within the final
redacted product (as often plagues redaction in standard office
document formats).

For automatic text redaction, we explored two approaches:
Canny Edge Detection [12], which aims to bound text with boxes,
and Gabor-wavelet filtering [13], which aims to classify individual
pixels as ‘‘text’’ or ‘‘non-text.’’ For Gabor, we looked at both unsu-
pervised classification and supervised classification [14]. (Table 2,
at the end of our discussion, summarizes these techniques.)
4.1. Canny edge detection

In order to be legible, screenshot text exists with an intensity
contrast in relation to its background and thus creates gradient
high points. The Canny approach analyzes an image’s intensity
gradient and marks edges at gradient high points—thus (in theory)
segmenting screenshot text.

First, we convert a color screenshot to 8-bit gray scale. We then
apply a Gaussian blur using a 3 � 3 window to reduce image
noise—Canny output qualitatively contained less noise with this
initial blurring step. Next, we executed Canny using low and high
threshold values of 100 and 300 respectively to find edges—the
values provide qualitatively-reasonable redaction results for a vari-
ety of desktop screenshots. Gradient magnitudes greater than the
high threshold are considered edges and traced throughout the im-
age. Values above the low threshold denote edges that branch from
an existing trace process. Together, these tunable values reduce
noise during edge detection. After executing the Canny algorithm,
we find connected components (polygons) using Canny output and
an algorithm suitable for doing so [15]. For each polygon discov-
ered, we compute a bounding rectangle and draw a filled version
of the rectangle into an image ‘‘redaction mask.’’ Finally, we apply
the redaction mask to the original image to produce a redacted
image.

Fig. 2–4 show examples from our prototype. Unfortunately,
standard practice in commercial health IT prevents customers from
disclosing user interface details (e.g., [16]), so we cannot show the
original screenshots used in our experiments, but rather use a rep-
resentative open-source one. In terms of complexity, this sample
would fall at the minimum of our test corpus (Section 6)—e.g., at
the bottom left of Fig. 9a.

4.2. Gabor filters

In general, a wavelet is a wave with some orientation and fre-
quency that, when convolved with an image, resonates and creates
a detectable signal. Gabor wavelets, which are commonly used in
image processing, are comprised of a sine wave modulated by a
Gaussian envelope; for our application, they use a two-dimen-
sional envelope. Both real and imaginary components comprise
the wavelet, but we follow the model of Jain and Bhattarchee
[14] and only use the real, symmetric (cosine) component. When
an individual filter is convolved with an image, our system extrap-
olates border pixels to increase the image size and prevent the fil-
ter from ‘‘falling off’’ the image edge (other extrapolation
approaches failed in our experiments).

Using a bank of filters enables detection of image features of dif-
ferent frequencies and orientations. In the wavelets we used in our
application, we considered five standard deviations of the Gaussian
(again following Jain and Bhattarchee). This left us two tunable
parameters for wavelet functions: wavelength (k) and orientation
(h). For orientation, we followed Jain and Bhattarchee and chose

h 2 f0:0;45:0;90:0;135:0g

Fig. 2. In this paper, we use this sample screenshot from http://www.open-emr.org to demonstrate our techniques in the context of a realistic health IT system—as we are
prevented from disclosing the proprietary screenshots from our test corpus from real EMRs. In terms of complexity, this sample would fall at the absolute minimum of our
corpus—e.g., at the bottom left of the top Fig. 9a.

Fig. 3. This image depicts the rectangles that result from processing Fig. 2 with Canny edge detection, polygon detection, and polygon bounding with rectangles. Note tiny
rectangles enclosed within larger ones—as well as spuriously large rectangles containing the entire screen.

724 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
to detect signals oriented in a uniform variety of positions. For
wavelength, we chose powers of two

k 2 f:5;1:0;2:0;4:0;8:0;16:0;32:0g:

in order to span a collection of feature sizes. When we ran this on a
collection of our screenshot, we found it was effective at detecting
the relevant features.

Feature Vectors. We apply a Gabor wavelet filter by first con-
volving the image with this wavelet function.

If we have a bank of n filters, we then have n filtered images,
yielding (after thresholding) an n-dimensional vector for each pixel
in the image. We then append each pixel’s x and y position to each
vector, and shift each vector to zero mean and unit standard devi-
ation. Thus, applying a bank of n filters yields an n + 2-dimensional
feature vector for each pixel.
4.3. Classification

Once we have used our bank of Gabor filters to turn each pixel
into a feature vector, we then need to determine which vectors
represent text pixels and which represent non-text.

Unsupervised Classification. In our first approach, we use the k-
means algorithm [17] to cluster features into k classes, where
k 2 {2,3}. The algorithm assigns each pixel a class label
i 2 [0,k � 1], where one class may correspond to text if text exists.
Jain and Bhatterjee [14] clustered into three classes for text analy-
sis; we started with that, but found that some screenshots clus-
tered better visually into k = 2 classes.

During k-means clustering, the system relied on stopping con-
ditions of the first of 10,000 iterations or an error rate of .0001.
We chose the initial cluster centers using a more recent technique

http://www.open-emr.org

Fig. 4. This image derives using the filled Canny-detected rectangles (Fig. 3) as a redaction mask to the original image (Fig. 2). Canny missed some true edges throughout the
image (false negatives for edge detection) and added edges where text does not exist near the icons on the left. Canny also added whitespace between words. (We first
eliminated the all-enclosing rectangles from Fig. 3; otherwise, the entire image would have been redacted!)

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 725
[18] and ran the algorithm one time to the stopping conditions be-
fore assigning labels. After running k-means, the label i corre-
sponding to text must be chosen manually. The designated ‘‘text’’
pixels form a mask that redacts text when combined with the ori-
ginal image.

Supervised Classification. The downside to unsupervised classifi-
cation is multi-fold: k and i are chosen manually; the approach
classifies pixels into k clusters whether or not text exists; and k-
means clustering can be slow (particularly with a feature count
easily surpassing one million with modern screen resolutions).

To address these issues, we also tried supervised classification.
Instead of using k-means, we feed each feature vector to a trained
classifier that labels the pixel as ‘‘text’’ or ‘‘not text.’’ All pixels la-
beled as ‘‘text’’ are converted to the color black; all other pixels
maintain their values.

We chose a linear support vector machine (SVM) to label pixels as
members of classes {�1,1}.

We experimented with two classifiers: (a) L1-regularized L2-
loss support vector classification and (b) L1-regularized logistic
regression. We chose these classifiers because after training, they
can contain a 0-valued parameter for each feature that remained
unused during the training process. Such features can be elimi-
nated from input during future predictions and thus not computed
in the first place. Their absence reduces computational overhead in
the running system. (Interestingly, in our tests with EMR screen-
shots, only one feature was not used).

To begin machine learning, we first partition our set of screen-
shots into a training set and testing set. Then to train the classifier,
we generate a set of ground-truth feature vectors and labels from
the training set. We generate ground-truth by manually choosing
the features and labels associated with ‘‘best’’ redaction results
using the unsupervised classification technique described above.
This ground-truth is fed into a program we implemented that
interfaces with the liblinear library [5] to train and save the resul-
tant classifier. The classifier can then be run on any image using
another program we wrote to classify pixels as {�1,1} and thus re-
dact text.

During the SVM training process, we used default liblinear val-
ues for all SVM parameters. We experimented with cross-valida-
tion to tune the constant C in the SVM expression (see liblinear
for details [5]). However, we experienced minimal performance
improvements and therefore relied on default values to train each
classifier.
5. Experimental tools

Section 4 above described our approaches to automatic text
redaction. However, for both clinicians as well as system experi-
menters, it is important to keep users in the loop. This present sec-
tion describes two tools we built for this purpose.

5.1. Tool: scrubs

Our scrubs tool (Fig. 5) captures and redacts screenshot images
dynamically, in real time, using Canny. Our prototype uses x11vnc
[10], pthreads [19] and the RFB protocol [9].

When a health IT user decides some sequence of activity should
be logged for later analysis, it is possible that automatic redaction
may remove too much information (such as non-sensitive text that
would help illuminate the issue requiring analysis) or too little
(such as a sensitive logo or image). Consequently, our scrubs tool
also provides an edit mode, which pauses display of screen updates
and allows the user to click and drag the mouse to define custom
redaction and/or unredaction rectangles (Fig. 6). While paused
for user edits, the system continually processes and maintains re-
ceived screen updates in the background, and upon returning to re-
cord mode, the system displays a compilation of all updates
processed during pause.

5.2. Tool: five_in_one

The Canny Edge approach to text redaction (Section 4.1) over-
lays a screenshot image with rectangles marking regions of poten-
tial text. In our experiments on EMR screenshots, we found that the
resulting set of rectangles could often benefit from additional mas-
saging. Thus, for the purpose of exploration and for end-user use,
we developed a tool called ‘‘five_in_one’’ (Fig. 7). This tool permits
a wide range of interactive operations, including merging, copying
and deleting rectangles; toggling display between transparent and
solid rectangles; generating (and then automatically applying)
redaction templates; overlaying with a grid; and thinning out
redundant rectangles. Fig. 8 shows one example.

6. Evaluation

To evaluate our system, we looked at the relative effectiveness
of the two approaches to automatic redaction (Sections 6.1 and

Fig. 5. Our scrubs tool enables automatic redaction, interactively tunable, in real time.

Fig. 6. Our scrubs tool automatically applies redaction, and then permits custom redaction and unredaction.

Fig. 7. Our five_in_one tool enables experiments and end users to analyze and edit the rectangular regions of potential text flagged by Canny redaction, and to generate and
apply templates.

726 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
6.2) and at non-text aspects of privacy preservation (Section 6.3).
We also looked at effectiveness of context preservation (Sec-
tion 6.4), as well as basic computational costs (Section 6.5). Sec-
tion 6.6 summarizes.

For our empirical analysis, we used a corpus of 80 screenshots
from EMR systems at two large healthcare providers. As we noted
earlier, although the datasets contain fake patient data, the donor
organizations still considered the details sensitive, so we cannot
publicly show them. In one dataset, images were in PNG format,
RGB color, and were approximately 1500 � 1900 pixels and 1–
1.5 MB each. In another, images were also PNG and RGB, but
1680 � 1080 pixels and 230–390 KB. Due to their sensitive nature,
we stored the corpus in an AES-encrypted disk volume.

Fig. 9 illustrates the complexity of the datasets according to
the number of redaction rectangles generated for each
screenshot.
6.1. Canny

Our testing showed that Canny-based text redaction requires
improvements before the system can apply it meaningfully to
health IT datasets, such as the EMR screenshots we used.

The Canny approach had several problems. It generated redac-
tion rectangles that cover large parts of the screen, thus reducing
potentially useful, non-private screenshot context. (Occasionally,
Canny even redacted the entire screen!) The Canny approach also
sometimes found interior edges of letters such as ‘‘p’’ which pro-
duce very small rectangles embedded in larger ones. Canny left
whitespace between words, which may enable word-based
frequency analysis that reveals redacted text. Canny also tended
to miss some text (false negatives) while redacting some non-text
(false positives). For example, Fig. 3 shows false negative and
spuriously large rectangle issues; Fig. 10 shows false negative

Fig. 8. As one example of five_in_one editing, a user can clean up the redaction rectangles produced by Canny by first thinning out superfluous rectangles and then enlarging
the remaining rectangles one pixel at a time.

1000

5000

0 50screenshot

re
ct

an
gl

e
co

un
t dataset 2

dataset 1

color values, dataset 1

color values, dataset 2
0

0

250

250

1e-07

0.1

1e-07

0.1

pi
xe

l
fra

ct
io

n
pi

xe
l

fra
ct

io
n

R
G
B

Fig. 9. Measures of the visual complexity of our EMR datasets: (a, top): Canny
redaction rectangles, sorted; (b, bottom): normalized color variety.

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 727
issues; Fig. 4 shows examples of whitespace and false positive
issues.

Our analysis did suggest ways that Canny redaction could be
tuned to be usable for this application. As Fig. 11 shows, We can elim-
Fig. 10. Canny redaction on a gm
inate rectangles that cover all or most of the screen, and rectangles
that contain a large number of the other rectangles. As Fig. 12 shows,
we can also identify (and then merge) rectangles that are close en-
ough vertically to be considered on the same ‘‘text line,’’ but whose
horizontal gap is small enough to be considered whitespace.

Manual editing with our five_in_one tool can reduce the rectan-
gle count by 75%, in samples from our corpus. Reducing rectangle
count can reduce the latency of subsequent processing steps that
involve all Canny rectangles, such as rendering rectangles in an im-
age or analyzing and merging adjacent words.
6.2. Gabor

Visually, Gabor-filtering redacts more precisely than Canny-
based filtering. Unlike the Canny-based approach, Gabor fills
whitespace between words and redacts fractional characters. Ga-
bor also redacts fewer non-text objects (such icons and logos)
and did not erroneously redact large rectangles from the screen-
shot, as Canny-based redaction did.

Qualitative Analysis. Fig. 13 revisits Fig. 2 using Gabor-based
redaction where k = 2 and i = 0. In Fig. 13, note how Gabor-based
redaction fills whitespace between words in sentences but does
not redact objects such as the full icons. It does not redact large
rectangles from the screen as Canny-based redaction. However,
as Fig. 14 shows, Gabor will occasionally fail to redact text with
certain font scales and textures.

Quantitative Analysis for Unsupervised. To evaluate unsupervised
Gabor redaction, we chose a few representative but dissimilar
(using the metric we present below, in Section 6.4) screenshots
from dataset 1. For each screenshot, we chose the unsupervised
redaction that looked best qualitatively, and then manually
counted the text characters missed by redaction. In these
screenshots, the character counts ranged from 1094 to 2145. False
negatives (characters entirely unredacted) ranged from 0.036% to
ail inbox shows missed text.

 1e-06
 0.0001

 0.01
 1

 100
 10000
 1e+06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ou

nt

Fraction of Total Boxes Contained by a Box (lower is favorable)

Histogram of Bounding Box Content

Fig. 11. Histogram of the fraction of total redaction rectangles in a corpus screenshot contained wholly within a given redaction rectangle.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 200 400 600 800 1000 1200 1400 1600

C
ou

nt

Distance in x-Pixels Between Rectangle Pairs

Horizontal Whitespace Between Pairs of Rectangles

Fig. 12. Histogram of horizontal distances between pairs of rectangles heuristically on the same text line. If ðxþwÞ 6 x0; y� h
2

� �
6 y0 6 yþ h

2

� �
, and yþ h

2 6 ðy0 þ h0Þ 6 yþ 3
2 h,

then we includes the value x0 � (x + w) in the histogram.

728 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
2.7%; partial false negatives (characters with at least one pixel left
unredacted) ranged from 1.7% to 4.3%. We did not count false pos-
itives because they represent non-characters, and would require
counting pixels to be meaningful.

Quantitative Analysis for Supervised. As Section 4.3 above dis-
cussed, we started by running unsupervised Gabor on dataset 1
and, for each screenshot, choosing the ‘‘best’’ screenshots manu-
ally, considering the various output classes of the redaction pro-
cess, including partial false negatives. (Section 7.2.2 and Fig. 7.5
in the first author’s thesis [20] contain more information on this
process.) We then used these labels to train the L1-regularized lo-
gistic regression classifier on dataset 1. To evaluate supervised Ga-
bor classification, we then applied this trained classifier to dataset
2, and compared the results against the ‘‘ground truth’’ obtained by
running our unsupervised Gabor variations on each screenshot and
manually choosing the best one (See Fig. 15.).

The mean classification performance is 95.2% with a stddev of
.953% and a minimum performance value of 93.2% (larger minima
are better than smaller ones). The mean false-negative rate is .307%
with a stddev of .338% and a maximum value of 1.4% (smaller max-
ima are better than larger ones).
6.3. Non-text information leakage

Our experiments also revealed ways in which redacted health IT
screenshots still revealed possibly sensitive information. The posi-
tioning of redacted text within a page can betray information, as
can similarities and differences between successive lines of re-
dacted text. A tick-box with a redacted ‘‘checkmark’’ is still distin-
guishable from unchecked box; visual ‘‘alerts’’ such as red
exclamation points or yellow-highlighted text also convey poten-
tially sensitive information.

To address these concerns, we explored techniques to normal-
ize redaction rectangles against a background grid, to identify
and redact specific icon templates, and to identify and redact spe-

Fig. 13. This image shows Gabor-based redaction on the OpenEMR screenshot from Fig. 2. Gabor preserves more structure of objects such as the icons and horizontal lines,
connects whitespace between words in sentences, and (although not shown here) redacts fractional characters at the edge of a screenshot.

Fig. 14. Gabor-based redaction can leave text partially unredacted, and miss text altogether, as this example from a Wikimedia Commons EMR image shows.

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 729
cific colors (e.g., red). (Again, the first author’s thesis [20] has more
information.)

6.4. Context preservation

As the introduction noted, traditional approaches to privacy and
confidentiality seek to hide information. However, for our health IT
screenshot capture tool to be useful, we also need to preserve
information: the context of the health IT screenshot involved.

To quantitatively evaluate how well our techniques work at
preserving context, we looked at two ways of measuring differen-
tiating information between pairs of redacted screenshots (using
unsupervised Gabor).

In the first approach, we measured the fraction of overlapping
text-redacted pixels in an image pair. With this metric, changes
accumulate only when a pair of pixels exist, at least one pixel of
the pair begins non-black, and both pixels are redacted. When
one or both pixels begin non-black and the pixels correspond to
text, redaction removes differentiating information by converting
both values to black. Removing information reduces differentiating
screenshot context. Taken to the limit, redaction blackens each
screenshot entirely and leaves no differentiating information.

Looking at all pairs of screenshots in dataset 1, the mean frac-
tion of overlapping, redacted text is 9.3% with a standard deviation
of 3.5%; for pairs of identical screenshots, 23.7% and 3.6%. Redac-
tion preserves 90% of differentiating information in all pairs and
76% in pairs of identical screenshots—on average, redaction affects
no more than 24% of the pixels in any screenshot.

In our second approach, we computed a distance between two
screenshots by counting the number of pixels that match within
the pair. Because our health IT screenshots are nearly identical in
size and aligned in content (e.g., items such as menus are not pix-
el-shifted among screenshots) this measurement gives a notion of
similarity that enables useful pairwise-screenshot comparisons (as
we qualitatively validated). Fig. 16 shows the results of text redac-
tion in similarity of over 1275 screenshot pairs of dataset 1 (we ex-
cluded pairs of identical screenshots). Overall, redaction has little
impact on pairwise screenshot similarity with changes ranging
from 2% to 15%. Text redaction retains potentially important con-
text in the health IT screenshots.

6.5. Latency

The principal computational component of our system con-
sisted of text redaction.

To measure latency of text redaction, we used a MacBook Pro
running Mac OS X 10.7 with 8 GB of memory serves as the exper-
imental platform. An AES-256-encrypted disk image stores image,
feature, and label files associated with redaction. To obtain timing
information, we used dtrace and programmatically printed timing
information. All file loads were measured using a cold file cache.
Table 1 shows the results.

6.6. Summary

Table 2 summarizes the two techniques we evaluated for auto-
matic redaction in health IT screenshots. Overall, supervised Gabor
seems the best immediate candidate. However, in future work, it
would be interesting to explore a hybrid approach: first, applying
fast Canny-based reduction; then using the merging and filtering
heuristics from Section 6.1 to reduce the number of superfluous
rectangles; then applying supervised Gabor redaction over a ran-
dom sampling of pixels from each redaction rectangle to eliminate
false-positives—as a lack of Gabor-detected text would let us auto-
matically discard the redaction rectangle. After this, we would
merge whitespace. As a result, we may be able to increase Canny’s

0

1

fra
ct

io
n

screenshot
0 25

overall performance:

text not text

re
da

ct
ed

no
t

re
da

ct
ed

true
positive

false
positive

false
negative

true
negative

Fig. 15. Effectiveness of Gabor-based text redaction. We trained a liblinear L1-regularized logistic regression classifier on dataset 1 and applied it to dataset 2; in both cases,
we used the qualitatively best unsupervised Gabor redaction as ‘‘ground truth’’ labeling.

More similar
Less similar

pair number

-0.02
 0

 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16

Fr
ac

tio
n

of
 im

ag
e

pi
xe

ls
ch

an
ge

d
m

at
ch

in
g

st
at

us

 0 200 400 600 800 1000 1200

Fig. 16. Effect of text redaction on similarity of pairs of distinct screenshots in dataset 1. Fractions that fall above the horizontal line correspond to screenshots that are more
similar after redaction.

730 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
sensitivity threshold to redact lower-contrast text while maintain-
ing a low false positive rate.
7. Improving real-world health IT systems

We designed our system within the context of a larger vision: a
privacy-protected ‘‘Redaction Service’’ that interacts with a moni-
tored health IT system, a ‘‘Sharing Service’’ that functions as a
repository for application stakeholders to share redacted screen-
shots, the health IT system itself with developers and maintainers,
and an end-user who desires their system to be monitored and a
web-browser through which the end-user can interact with redac-
tion and sharing services. Fig. 17 illustrates this vision.
7.1. The pieces

Our current prototype implements screen capture and text
redaction. For roll-out in medical enterprises, one would need to
Table 1
Our measured costs of redaction.

Mean Stddev

Latency to classify pixels (s)
Canny 0.096 0.009
Unsup. Gabor 2.077 0.722
Sup. Gabor 2.077 0.017

Latency to generate elements for 28 Gabor filters (s)
Set up 0.365 0.004
Build 13.12 0.181
Normalize 4.569 0.033

Latency to load Gabor elements from file on disk (s)
Features 5.987 0.407
Labels 0.226 0.069
add the system components to support sharing of data—and to
support end-user annotation (both graphical—circles and ar-
rows—and text). One would also need to expand the currently lim-
ited UI with more easy-to-use affordances such as drop-down
menus.

On a lower level, potential future work could also explore trying
ways to improve on the core Gabor and Canny techniques.

For example, currently, we follow the standard practice of tun-
ing Gabor parameters heuristically by starting with a parameter set
that worked for others and hand-tuning variables until the system
provides ‘‘useful’’ results. Dunn and Higgins propose a systematic
method to select the parameters based on decision theory and
assuming the images have only two textures of interest [21]; Wel-
don proposes a systematic approach based on minimizing pre-
dicted error [22]. Adapting one these of approaches might reduce
the need for heuristics while still providing good results.

We could perhaps improve computational efficiency of Gabor
by applying the concept of steerable filters developed by Freeman
and Adelson [23]; two steerable filters could replace four Gabor
orientations and therefore reduce the overall filterbank size by
one half.

In our experiments, we used Canny to detect the edges of the
text regions. Researchers such as Atae-Allah et al. [24] and Bar-
ranco et al. [25] propose using Jensen-Shannon divergence as an
alternative technique to detect edges; it would be interesting to
apply that technique in our setting.

(Sections 9.2 and 9.3 in the first author’s thesis [20] contain
longer discussion of technical extensions to this work.)
7.2. Health IT usability

In Section 2, we discuss a few of the many real-world scenarios
we have identified where health IT users experience frustration.

Table 2
Summary of redaction techniques.

Canny Finds edges Fast Many errors;
requires tuning

Gabor Finds texture Slow More accurate
Unsupervised: requires

human judgment
Supervised: requires

training set

Fig. 17. Our system within the context of a larger vision. The figure includes a
‘‘Redaction Service’’ that interacts with the monitored heath IT system, a ‘‘Sharing
Service’’ that functions as a repository for application stakeholders to share
redacted screenshots, a monitored health IT system, an end-user who wish their
system to be monitored and a web-browser through which the end-user can
interact with redaction and sharing services. Within this big-picture context,
internal components of the bold box labeled ‘‘Redaction Service’’ define the
contribution of this work. A sample usage scenario follows the numerical labels in
the following steps. (1) An administrator enables the ‘‘Redaction Service.’’ (2) An
end-user triggers the ‘‘Redaction Service’’ to log a monitored host. (3) The
‘‘Redaction Service’’ connects to the monitored host and begins logging, with
automatic redaction. (4) The end-user interacts with monitored health IT system.
(5) The end-user reviews and possibly edits logged data. (6) The end-user publishes
redacted screenshots.

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 731
With our system in place, when the health IT user experiences
frustration, she simply presses a button to generate a redacted
screenshot of the scenario in question. Either at that point, or later
in the day, she can then use our tools to touch up the image (e.g.,
by unredacting text that needs to be visible) and annotate it, to ex-
plain the issue:

� ‘‘See, these lab results all have the same title—useless!’’
� ‘‘This initial dropdown menu does not contain the right

diagnosis.’’
� ‘‘The system should recognize that two 5 mg pills equals one

10 mg pill, in this case!’’
� ‘‘I don’t know which type of stomach cancer; that’s why I’m

referring the patient to a specialist.’’

We now have a record—already scrubbed of IRB-sensitive mate-
rial—which can propagate onto developers, IT managers, and
usability researchers.

With established feedback paths, such stakeholders can begin
to understand empirically the day-to-day, system-effects of their
decisions.

A simple capture system can also provide direct value to end-
users by endowing them with a larger, empirical role in the soft-
ware maintenance cycle. They can capture, annotate, and share
problems, configurations, ideas, bugs, and other captured scenarios
with stakeholders. They can inform existing ad hoc stakeholder
interactions such as online support forums and help-desk interac-
tions with rich, contextual data. Additionally, end-users can use
traces as visual web search keys during their own investigations.

Playing a larger role in the software maintenance cycle can
motivate end-users to share their findings continually: if end-users
believe and experience that their contributions make a positive dif-
ference to their workflow, end-users may be motivated to contrib-
ute further. Consequently, organizations may improve empirical
insight into their information security systems and associated risk
calculations. When organizations lack the expertise to analyze
traces in-house, they could hire third parties to do so.
8. Related work

Our work combines existing technologies of screen capture and
computer vision with a goal of improving the quality of communi-
cations among application stakeholders and ultimately, improving
our understanding of ‘‘usable security’’. Many research and com-
mercial products explore complementary tasks; Fig. 18 sketches
this space.

GUI tools. The MIT Sikuli research project combines computer
vision and programming to enable users to create machine-inde-
pendent, visually-programmed and actuated programs [26]. A
commercial product call eggPlant also allows developers to test
GUIs with machine-independent, automation scripts [27]. Many
screen capture applications such as Snipping Tool [28], Snapz Pro
X [29], and xwd [30] exist. Some programs capture still screen-
shots, others capture both stills and video, and some allow end-
users to annotate captures. Google’s in-house UseTube [31] sup-
ports employees who wish to perform user studies of any net-
work-connected computer; it simplifies the act of performing,
archiving, and accessing user studies.

Interactive graphics and image tools. Many commercial and free-
software tools such as Gimp [32], Photoshop [33], Aperture [34], Fi-
nal Cut Studio [35], Pixelmator [36], and Imagemagick [37] allow
one to paint, create, touch up, and modify still images and/or video.
These applications could be used to manually redact text from a
screenshot. Google Goggles can extract and recognize text from
natural scenery for purposes such as language translation among
many others [38]. The scope of our system is limited to computer
screenshots. However, screenshots taken with a camera may in-
clude angles and lighting similar to the natural scenery submitted
to Google Goggles.

Data de-identification. In the medical domain, a large body of
work relates to deidentifying protected health information (PHI)
in electronic documents once it is already in text format [39,40].
Deidentified data records can still contain visual information that
reveals sensitive data. Research in the context of databases that
contain a mix of sensitive and unsensitive records explored the
concepts k-anonymity [41] and l-diversity [42].

In some circumstances, redacted text in our system may suffer
from a visual form of the k-anonymity problem; these techniques
may apply in our setting.

Document Analysis. Document redaction products such as Rapid
Redact [43] and brava! [44] exist in the commercial marketplace.
These products parse document structure and can help users
achieve WYSIWYG. In contrast, our system redacts material from
images directly (rather than relying on textual metadata).

The International Conference on Document Analysis and Recog-
nition (ICDAR) has many papers and competitions related to the
problem applying machine learning and computer vision to ana-
lyze documents [45]. A 2003 competition sponsored by ICDAR
has datasets available for optical character recognition (OCR), word

Fig. 18. Sketch of classes of data and tools which act on them. Our work explores
automatic discovery and then redaction of text on otherwise flat screenshots.

732 J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733
recognition, text locating, and other purposes [46]. These datasets
do not apply directly to our problem; we segment text, in some
cases have a more constrained segmentation problem, and do not
apply OCR.

Text segmentation. Our work builds on existing text segmenta-
tion research [14] to redact text automatically from screenshots.

9. Conclusion

Effective usability engineering in any system requires closing
the loop, so users can easily identify and communicate trouble-
some scenarios. In an interactive electronic system, a natural way
to do this is via screenshots. In health IT, privacy concerns require
that any such screenshots have sensitive data redacted and the
logistics of real-world health IT require that any solution not touch
the internals of the software.

To address these concerns, we have designed, built, described,
and empirically analyzed a system that allows end-users to take
screen captures on sensitive systems. The system automatically re-
dacts screenshot text and allows end-users to fine-tune redacted
results for their needs. The automated redaction process requires
no end-user intervention. We evaluated our system using a corpus
of screenshots from EMR systems at two large medical facilities.

Now that we have established that this core redaction step is
feasible, the next step would be incorporating it in the larger vision
of Fig. 17 and deploying the system in a real user environment. Po-
tential areas for other future work include improving Canny for
general-purpose use, implementing predicate matching to process
screenshots according to logical conditions, and building a larger
ground-truth data corpus.

Ultimately, our redaction system can facilitate data-driven
communications among application stakeholders and guide sys-
tem evolution to address stakeholder needs. With accurate and
timely tuning enabled by our work, stakeholders can achieve and
maintain usable and secure health IT systems in practice.

Acknowledgments

This work is based on the first author’s MS thesis work [20].
The authors are also grateful to Andrew Gettinger, David Han-
auer, Ross Koppel, and Lorenzo Torresani and for their helpful ad-
vice and assistance.
References

[1] S.W. Smith, R. Koppel, Healthcare information technology’s relativity
problems: a typology of how patients’ physical reality, clinicians’ mental
models, and healthcare information technology differ, Journal of the American
Medical Informatics Association, 2013, submitted for publication.

[2] The boost Community, boost C++ Libraries <http://www.boost.org/> (April
2011).

[3] ISO/IEC 14882:2003: Programming Languages: C++, 2003.
[4] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal of Software Tools.
[5] Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: a library for large

linear classification. Journal of Machine Learning Research 2008;9:1871–4.
[6] CGAL, Computational Geometry Algorithms Library <http://www.cgal.org>.
[7] Zomorodian A, Edelsbrunner H. Fast software for box intersections. In:

Proceedings of the Sixteenth Annual Symposium on Computational
Geometry, SCG ’00. New York, NY, USA: ACM; 2000. p. 129–38.

[8] L. Kettner, A. Meyer, A. Zomorodian, Intersecting Sequences of dD Iso-oriented
Boxes, in: CGAL User and Reference Manual, 3.7 Edition, CGAL Editorial Board,
2010.

[9] T. Richardson, The RFB Protocol, RealVNC, Ltd. (3.8).
[10] Karl Runge, x11vnc: a VNC server for real X displays <http://

www.karlrunge.com/x11vnc/> (January 2011).
[11] VMware, VMware <http://www.vmware.com> (April 2011).
[12] Canny J. A computational approach to edge detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence PAMI 1986;8(6):679–98.
[13] Gabor D. Theory of communication. Part 1: the analysis of information. Journal

of the Institution of Electrical Engineers – Part III: Radio and Communication
Engineering 1946;93(26):429–41.

[14] Jain A, Bhattacharjee S. Text segmentation using Gabor filters for automatic
document processing. Machine Vision and Applications 1992;5:169–84.

[15] Suzuki S, Abe K. Topological structural analysis of digitized binary images by
border following. Computer Vision, Graphics, and Image Processing
1985;30(1):32–46.

[16] Koppel R, Kreda D. Health care information technology vendors’ ‘‘Hold
Harmless’’ clause: implications for patients and clinicians. Journal of the
American Medical Association 2009;301(12):1276–9.

[17] Lloyd S. Least squares quantization in PCM. IEEE Transactions on Information
Theory 1982;28(2):129–37.

[18] D. Arthur, S. Vassilvitskii, k-means++: The Advantages of Careful Seeding,
Technical Report 2006-13, Stanford InfoLab, June 2006.

[19] The IEEE and The Open Group, The Open Group Base Specifications Issue 6 –
IEEE Std 1003.1, 2004 Edition, IEEE, New York, NY, USA, 2004.

[20] J.A. Cooley, Screen Capture for Sensitive Systems, Computer Science Technical
Report (M.S. Thesis) 2011-690, Dartmouth College, May 2011.

[21] Dunn D, Higgins W. Optimal Gabor filters for texture segmentation. IEEE
Transactions on Image Processing 1995;4(7):947–64.

[22] T.P. Weldon, The Design of Multiple Gabor Filters for Segmenting Multiple
Textures, Tech. rep., University of North Carolina at Charlotte, 2007.

[23] Freeman WT, Adelson EH. The design and use of steerable filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1991;13:
891–906.

[24] C. Atae-Allah, J. Gomez-Lopera, P. Luque-Escamilla, J. Martinez-Aroza, R.
Roman-Roldan, Image segmentation by Jensen–Shannon divergence.
Application to measurement of interfacial tension, in: Proceedings of the
15th International Conference on Pattern Recognition, vol. 3, 2000, pp. 379–
382.

[25] Barranco-López V, Luque-Escamilla P, Martínez-Aroza J, Román-Roldán R.
Entropic texture-edge detection for image segmentation. Electronics Letters
1995;31(11):867–9.

[26] Yeh T, Chang T-H, Miller RC. Sikuli: using GUI screenshots for search and
automation. In: Proceedings of the 22nd Annual ACM Symposium on User
Interface Software and Technology, UIST ’09. New York, NY, USA: ACM; 2009.
p. 183–92.

[27] TestPlant, eggPlant <http://www.testplant.com/> (January 2011).
[28] Microsoft, Snipping Tool <http://windows.microsoft.com> (January 2011).
[29] Ambrosia Software Inc., Snapz Pro X <http://www.ambrosiasw.com/utilities/

snapzprox/> (January 2011).
[30] Community Supported, xwd <http://www.xfree86.org/> (January 2011).
[31] LaRosa M, Poole D, Schusteritsch R. Designing and deploying UseTube Google’s

global user experience observation and recording system. In: CHI ’09:
Proceedings of the 27th International Conference Extended Abstracts on
Human Factors in Computing Systems. New York, NY, USA: ACM; 2009. p.
2971–86.

[32] The GNU Project, GIMP: The GNU Image Manipulation Program <http://
www.gimp.org/> (January 2011).

[33] Adobe, Photoshop <http://www.adobe.com/products/photoshop/photoshop/
whatisphotoshop/> (January 2011).

[34] Apple, Aperture <http://www.apple.com/aperture/> (January 2011).
[35] Apple, Final Cut Studio <http://www.apple.com/finalcutstudio/> (January

2011).

http://www.boost.org/
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0005
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0005
http://www.cgal.org
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0010
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0010
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0010
http://www.karlrunge.com/x11vnc/
http://www.karlrunge.com/x11vnc/
http://www.vmware.com
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0015
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0015
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0020
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0020
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0020
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0025
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0025
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0030
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0030
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0030
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0035
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0035
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0035
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0040
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0040
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0045
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0045
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0050
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0050
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0050
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0055
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0055
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0055
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0060
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0060
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0060
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0060
http://www.testplant.com/
http://windows.microsoft.com
http://www.ambrosiasw.com/utilities/snapzprox/
http://www.ambrosiasw.com/utilities/snapzprox/
http://www.xfree86.org/
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0065
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0065
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0065
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0065
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0065
http://www.gimp.org/
http://www.gimp.org/
http://www.adobe.com/products/photoshop/photoshop/whatisphotoshop/
http://www.adobe.com/products/photoshop/photoshop/whatisphotoshop/
http://www.apple.com/aperture/
http://www.apple.com/finalcutstudio/

J. Cooley, S. Smith / Journal of Biomedical Informatics 46 (2013) 721–733 733
[36] Pixelmator, Pixelmator <http://www.pixelmator.com/> (January 2011).
[37] Community Supported, ImageMagick <http://www.imagemagick.org/script/

index.php> (January 2011).
[38] Google, Google Goggles <http://www.google.com/mobile/goggles/> (January

2011).
[39] Meystre S, Friedlin F, South B, Shen S, Samore M. Automatic de-identification

of textual documents in the electronic health record: a review of recent
research. BMC Medical Research Methodology 2010;10(1):70.

[40] Aberdeen J, Bayer S, Yeniterzi R, Wellner B, Clark C, Hanauer D, et al. The MITRE
identification scrubber toolkit: design, training, and assessment. International
Journal of Medical Informatics 2010;79(12):849–59.
[41] Sweeney L. k-Anonymity: a model for protecting privacy. International Journal
of Uncertainty Fuzziness and Knowledge Based Systems 2002;10(5):557–70.

[42] A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, L-diversity:
privacy beyond k-anonymity, ACM Transactions on Knowledge Discovery
Data. 1, 1, Article 3 (March 2007). http://doi.acm.org/10.1145/
1217299.1217302.

[43] RapidRedact, RapidRedact <http://www.rapidredact.com/> (January 2011).
[44] Informative Graphics Corporation, brava! <http://www.infograph.com/

company.asp> (January 2011).
[45] ICDAR <http://www.icdar2011.org/EN/volumn/home.shtml> (April 2011).
[46] ICDAR Dataset <http://algoval.essex.ac.uk/icdar/Datasets.html> (April 2003).

http://www.pixelmator.com/
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/index.php
http://www.google.com/mobile/goggles/
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0070
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0070
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0070
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0075
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0075
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0075
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0080
http://refhub.elsevier.com/S1532-0464(13)00073-7/h0080
http://doi.acm.org/10.1145/1217299.1217302
http://doi.acm.org/10.1145/1217299.1217302
http://www.rapidredact.com/
http://www.infograph.com/company.asp
http://www.infograph.com/company.asp
http://www.icdar2011.org/EN/volumn/home.shtml
http://algoval.essex.ac.uk/icdar/Datasets.html

	Privacy-preserving screen capture: Towards closing the loop for health IT usability
	1 Introduction
	2 Health IT motivation
	3 System overview
	4 Text redaction approaches
	4.1 Canny edge detection
	4.2 Gabor filters
	4.3 Classification

	5 Experimental tools
	5.1 Tool: scrubs
	5.2 Tool: five_in_one

	6 Evaluation
	6.1 Canny
	6.2 Gabor
	6.3 Non-text information leakage
	6.4 Context preservation
	6.5 Latency
	6.6 Summary

	7 Improving real-world health IT systems
	7.1 The pieces
	7.2 Health IT usability

	8 Related work
	9 Conclusion
	Acknowledgments
	References

