
Api-do: Tools for Exploring the Wireless Attack Surface
in Smart Meters

Travis Goodspeed
University of Pennsylvania

Philadelphia, PA
twitter.com/travisgoodspeed

Sergey Bratus, Ricky Melgares, Ryan Speers, Sean W. Smith
Dartmouth College

Hanover, NH
sergey,melgares,rspeers,sws@cs.dartmouth.edu

Abstract—Security will be critical for the wireless interface
offered by soon-to-be-ubiquitous smart meters — since if not
secure, this technology will provide an remotely accessible
attack surface distributed throughout many homes and busi-
nesses. However, history shows that new network interfaces
remained brittle and vulnerable (although believed otherwise)
until security researchers could thoroughly explore their attack
surface. Unfortunately, for the majority of currently available
smart meter wireless networking solutions, we are still in that
pre-exploration phase; “closed” radio stacks with proprietary
features impede exploration by posing multiple hardware
and software obstacles to standard network attack surface
exploration techniques. In this paper, we address this problem
by presenting open and extensible software tools for 802.15.4-
based proprietary stacks that work on commodity digital radio
platforms. We hope this contribution advances the state of the
art beyond the pre-exploration tipping point, and toward real
security.

Keywords-802.15.4, ZigBee, attack surface exploration

I. INTRODUCTION

Soon-to-be ubiquitous smart meters1 provide wireless
network interfaces that are new and unexplored. This com-
bination is worrisome. Wireless network interfaces present
a potentially significant security risk, since they potentially
expose internal systems and networks to any attacker within
radio range—which generally spills beyond typical physical
perimeters such as locked doors and tall fences. Further-
more, history suggests that new kinds of network interfaces,
although initially believed secure by some, too often turn
out to be brittle until tools exist for the security research
community to explore their attack surfaces.

Our tools, collectively named Api-do, as a pun on api-
culture (the craft of beekeeping) and the defensive martial
art of Aiki-do, are to promote the culture of defensive
attack surface exploration for 802.15.4, building on Joshua
Wright’s KillerBee [36].

Looking Back: 802.11: For example, let us look back
to the rollout of a previous widespread wireless network

1The Edison Foundation Institute for Electric Efficiency compiled a
list of target deployments and found that over a 50 million meters will
be in operation by 2019, which will represent almost half of nationwide
households [8]. See also [19], [5].

interface, 802.11. The initial deployments were replete with
significant security holes that were identified and addressed
by defenders once open tools existed to explore the attack
surface.

We enumerate a few examples:

• Initially, vast numbers of office WiFi networks were
completely open to sniffing. Because RF monitor mode
was hard to enable on commodity interfaces, the com-
munity overlooked such attacks. The emergence of
open tools such as Kismet [23] and long-range sniffer
demonstrations such as Shmoo Group’s “WiFi Sniper
Rifle” led to solutions.

• Initially, vast numbers of WiFi firmware and drivers
were susceptible to attacks based on bit-by-bit crafted
frames. Because commodity firmware made injecting
crafted frames difficult, the community overlooked such
attacks. The emergence of Mike Lynn’s “Airjack” driver
[33] led to solutions; custom open drivers for software-
configured Atheros chips led to another wave of im-
provements.

• Initially, WiFi depended on the fundamentally flawed
cryptography of WEP. Because of the difficulty of sniff-
ing in commodity interfaces the community overlooked
these problems; because of difficulty with injection
in commodity interfaces, initial defensive WEP add-
ons such as “weak” IV filtering and dynamic WEP
keying proved inadequate as they did not account for
traffic re-injection attacks. The emergence of KoreK’s
“chopchop,”[25] using access points as oracles for
tweaked frames, led to solutions.

• Initially, WiFi clients did not authenticate access points,
enabling man-in-the-middle attacks and information
disclosure. Because of the limited support for infras-
tructure Master mode in commodity interfaces, the
community overlooked this fundamentally flawed au-
thentication model. The emergence of AP emulation
tools such as “Karma” [22] led to solutions.

History thus shows that network attack surface exploration
techniques are the fundamental building blocks that enable
researchers to reason about threat models. Their use provides

2012 45th Hawaii International Conference on System Sciences

978-0-7695-4525-7/12 $26.00 © 2012 IEEE

DOI 10.1109/HICSS.2012.115

2133

researcher with the information required to prioritize and
prune the branches of attack tree, based on finding out what
is likely to be feasible attack, and what is not, and to estimate
the amount of effort required of the attacker to proceed along
a particular attack tree branch.

This information is crucial to building a realistic threat
model, since the latter is built on assumptions about feasible
attacker achievements, their likely cost-vs-benefit to the
attacker, and in turn (combined with the expected attacker
profile) informs the risk assessment.

Looking Forward: 802.15.4: To offset such scenarios
in the smart meter wireless networking, we present open,
commodity-based implementations of radio stacks which
provide compatability with several closed radio stacks which
add proprietary extensions atop of 802.15.4 to the extent
sufficient to implement basic exploratory and offensive tech-
niques such as sniffing, geographic network mapping, crafted
frame injection, and selective jamming.

The tools we present here also helped us demostrate
in [13] that for some digital radio protocols including
802.15.4, even a Faraday cage around an RF network is not
a cure-all protection from remote attacks on its PHY and
link layes. In particular, an attacker who does not own a
radio but can control higher layer protocol payloads may in
fact be able to inject crafted PHY frames into unencrypted
digital radio links using our Packet-in-Packet technique.

We built our tools on top of and around Joshua Wright’s
KillerBee 802.15.4 exploration suite, which we significantly
extended and adapted to several commodity digital radio
platforms, such as the Tmote Sky2 with the freely avail-
able GoodFET firmware and programmer functionality – a
deliberate choice to make the resulting kit as affordable and
accessible as possible.

The aforementioned techniques are not attacks per se;
an adversary capable of successfully replicating them does
not necessarily get the achievement they help characterize.
Instead, they help delineate the major “bottlenecks” that the
attacker must pass on the way to these achievements, and
the payoff of attempting to pass such bottlenecks.

For example, whether an attacker may or may not be able
to remotely exploit wireless link-layer drivers depends on
how well firmware and drivers validate incoming traffic. In
proprietary system where firmware and driver source code
is not available, the likelihood of buggy validation can only
be established by exploring the device’s response to a broad
range of sample inputs. In particular, it usually becomes
apparent whether the device’s network stack implementers
understood the need for such validation, or merely assumed

2The Tmote Sky by Sentilla is a low cost, low power wireless sensor
module that is IEEE 802.15.4 compliant. It utilizes a Texas Instruments
MSP430 microcontroller and contains an array of sensors on board, as
well as a Chipcon 2.4GHz IEEE 802.15.4 wireless transceiver that is
controlled by the MSP430 through an SPI port, all in an integrated USB
dongle package capable of running off two AA batteries, making it a highly
convenient and portable platform for field-use.

that only well-formed traffic from trusted sources will reach
a particular layer of their stack. The answer radically affects
the threat model.

This Paper: Section II presents our tools for sniffing
and geolocation. Section III presents our tools for frame
crafting and injection. Section IV presents our exploration
of jamming. Section V concludes.

II. NETWORK DISCOVERY

To analyze the security of wireless networks, one first
needs to be able to discover them, either passively or
actively.

A. Multi-channel monitoring a must

Unlike 802.11, where discovery can be easily accom-
plished by monitor mode sniffing, this step can be non-trivial
for other digital radio networks. For example, NordicRF
network links can only be sniffed if the sniffer knows the
MAC address of the targeted node, and a similar situation
exists in Bluetooth links [17].

This makes promiscuous sniffing difficult both by con-
figuration and by hardware, and makes identification of
the available networks necessary for reliably capturing their
traffic, not vice versa, and makes it necessary to use more
sophisticated techniques for such identification – across all
available channels. The necessity for convenient tools to
do so is also recognized by other researchers, in particular
Kevin Finisterre [11].

Moreover, even having captured some 802.15.4 frames
on a given channel, one should not assume that the relevant
network traffic is limited to that channel (as would be the
case in common 802.11 or 802.15.4 deployments). Instead,
the protocol may be using multiple channels at once, in
intricate patterns.

We therefore developed OpenEar, an all-channel monitor
application for integration with the KillerBee framework, in
order to enable such multi-channel sniffing in a wardrive-
like enviroment, including capturing fast-frequency-hopping
devices with unknown patterns.

The Wireless Energy Management System experience.:
Our first encounter with the need for an all-channel monitor
occurred when attempting to survey the operation of the
wireless energy management system (WEMS) in use by
Dartmouth College’s Facilities Operations and Management,
as part of the campus energy management system. This is
a commercial product which has been widely accepted and
deployed across the commercial and institutional communi-
ties. It integrates with such functions as automatic billing,
among other features.

When attempting to capture traffic from the WEMS
network, we noticed that the same PAN ID3 of the target
network would appear on different channels, which is not

3The Extended PAN ID is a 64-bit identifier, which is shortened a 16-bit
PAN ID for use in most packets.

2134

standard 802.15.4 behavior, since the 802.15.4 standard
specifies that a chosen PAN ID must be unique from those
of neighboring networks in order to avoid PAN ID conflicts.
Further explanation showed that the system was using a
proprietary channel-hopping algorithm that continuously
determines the 4 best channels at any given time from
the available 16 IEEE 802.15.4 channels, and dynamically
switches from this group of four channels4, for reliability
in real-world environments and interference avoidance in
overlapping Bluetooth and 802.11 channels, since they share
part of the 2.4 GHz spectrum.

B. Tools to Enable Network Discovery

OpenEar: is a 16-channel monitor we built on the
KillerBee framework by assigning each attached device a
unique channel to listen on, so that 16 devices may be used
for simultaneous monitoring of all channels.

OpenEar also extends the KillerBee framework with user-
space threading of the capture process, so that a single
program is able to initialize and shut down capture processes
for all channels at once. This differs from previous work by
security researchers such as Kevin Finisterre [11], since his
method of building an all-channel monitor involved scripting
the start-up of a single non-threaded process for each device
and channel using a Bash shell script.

Threading an all-channel capture process also enables the
sharing of resources between capture processes, such as
location information from an attached GPS device (see II-C).

The OpenEar application enumerates all of the attached
devices, assigns a channel number to each, initializes a
packet capture file for each channel and, optionally, a
database connection for logging information to a MySQL
server using a custom database schema we designed for the
purpose.

OpenEar includes a persistent in-terminal display for
displaying real-time status, which is an important feature
for performing real-time analysis and identifying “chatty”
or saturated areas of service when wardriving or on-site
(cf. Kismet for 802.11, which displays a continually updated
digest of wireless network information gleaned from traffic).

zbWarDrive: is another tool we created in order to
efficiently allocate and use a limited number of devices for
capturing traffic at any given time in an area, where a small
number of networks may be present and where frequent
channel-hopping is not expected. This tool makes use of
injection to inject a beacon request frame and listen for the
beacon response from the network. This expected response is
used to determine if a network is operating on this channel,
and if so, a capture device is assigned to monitor it.

4This group of four channels changes frequently as the system adapts to
changing enviromental RF interference conditions.

C. Location Logging and Estimation

Although KillerBee provides a location estimation tool,
this tool acts as an RSSI strength meter, which in our
experience proved to be an inefficient method for locating
devices during site surveying and wardriving. We therefore
extended the KillerBee framework by adding the ability to
capture and log location information along with captured
packets.

To enable the logging of location information, we used
gpsd [18], an open-source daemon that accepts data re-
ceived from an attached GPS device, formats the GPS data
into a JSON format, and returns the GPS data over a local
TCP/IP connection.5

In order to tag packets with location information, the
OpenEar application initializes a “location” thread in ad-
dition to the capture threads. The sole purpose of the
“location” thread is to continuously poll the gpsd daemon
service and update the current location (latitude, longitude,
altitude), referenced each time a packet is logged. This
location data is fed into the database (if connected) and can
be logged into PCAP files using the PPI-GEOLOCATION
specification [10], which uses per-packet information tags.
Since Wireshark, Scapy, and Kismet currently support the
PPI-GEOLOCATION specification, we find this standard to
be a natural choice for logging location information across
a variety of capture applications and storing it along with
packets.

Logging location information is important for wardrive
post-analysis and geolocation. Location information can be
used to identify saturated (or weak) areas of service or, with
sufficient data, to pinpoint the exact location of a device
or network in order to profile the network or to carry out
physical attacks against the hardware, such as the extraction
of encryption keys from the onboard hardware, as has been
done with ZigBee and 802.15.4 radio chips in the past [15],
[14]. Figure 1 shows a plot of 802.15.4 traffic across the
Dartmouth campus captured with OpenEar.

A more advanced geospatial analysis takes into considera-
tion the received signal strength and grouping of packets by
network or relationship. For the purposes of such analysis,
we experimented with the use of GIS applications such
as ArcMap [4], part of Esri’s ArcGIS suite of geospatial
processing programs, which provide the ability to perform
advanced spatial interpolation. We used the hotspot analysis
interpolation tool in ArcMap to interpolate and estimate
wireless coverage across the campus, based on a limited
number of sample points and strength readings. Figure 2
shows a result of such interpolation.

5Gpsd allows multiple applications to share and use a GPS device
concurrently. This is necessary as most GPS devices capable of sending
GPS data to a computer do so over a serial connection, which cannot
be shared or accessed by multiple applications at once. Gpsd provides a
Python API, which facilitates the integration of gpsd into the KillerBee
framework, which is also written in Python.

2135

Figure 1. 802.15.4 packets captured on Dartmouth campus. Each circle
represents a point where an 802.15.4 packet was logged.

Figure 2. ArcMap spatial interpolation using the hotspot analysis tool
(intensity proportional to signal strength)

In order to be able to import data into GIS applications
such as ArcMap, we have developed scripts for extracting
location data from the database and converting into the
shapefile format, a geospatial vector data format accepted by
these applications. Our csvgps2shp.py [30] utility takes
in a csv file with records of the form “ID, RSSI, latitude,
longitude”, where ID is either the name of the network or
device, and RSSI is the received signal strength, and creates
a shapefile using the open-source GDAL (Geospatial Data
Abstraction Library) framework, which includes Python
bindings [12].

III. 802.15.4 FRAME CRAFTING AND INJECTION

The capability to craft packets and frames and inject them
into the network is one of the most important tools for their
practical exploration. Indeed, the progress of network testing
tools was driven by libraries (such as libnet, libdnet, and the
Scapy scripting framework for TCP/IP, and, more recently,
LORCON for 802.11) driving this capability at the lower
layers of the OSI stack model [31].

To facilitate frame construction, we implemented
dot15d4, a layer extension for Scapy that implements a
subset of the IEEE 802.15.4 protocol. We use it extensively

for inferenced packet generation experiments, where injected
frames and packets are adjusted to fit the network environ-
ment.

A. Scapy dot15d4 extension

The infromation about the practical use of the 802.15.4
protocol was taken from a variety of sources, including the
IEEE 802.15.4 Specification [20], [21], ZigBee Specification
[37], and Daintree Network’s Getting Started with ZigBee
and IEEE 802.15.4 primer [7]. As of this writing, our tool
supports crafting of all frame types, and of most subtypes
and features, with the exception of GTS and pending ad-
dresses and some command subtypes that are not yet fully
implemented. The current status of the implementation is
shown in Table I.

For further information please refer to [29], [26].

Class Name Notes
Dot15d4
Dot15d4FCS Includes checksum.
Dot15d4Ack
Dot15d4Data
Dot15d4Beacon GTS & pending addresses

not fully implemented.
Dot15d4Cmd All subtypes are

not yet implemented.
Dot15d4Cmd
-CoordRealign
Dot15d4Aux
-SecurityHeader

Table I
IMPLEMENTATION STATUS OF FRAME TYPES IN SCAPY DOT15D4

The 802.15.4 beacon specification alone, not even in-
cluding the ZigBee beacon specification, has a number of
variable length list fields, fields whose values are dependent
on other fields, and fields whose existence is dependent on
other fields. One example is the frame control field source
addressing mode, which determines whether the frame’s
source address field exists and its length. Figure III-A
demonstrates the complexity of the structures of 802.15.4
beacon frames, as an example.

To address these issues, and make crafting of arbitrary
frames simpler, our Scapy dot15d4 layer6 handles the
relations between these interconnected fields for the subset
of the 802.15.4 protocol that is implemented in Scapy.
Although Scapy provides ConditionalField interfaces that
can be adapted to work well for the questions of existence
of fields based on other fields values, it is more difficult to
force the value of a field based on the value of another field.
In many cases, we made the design choice of leaving these
dependencies untouched by Scapy, so as to allow security
researchers to craft frames that do not adhere strictly to the

6Our dot15d4 layer has been adopted as the base layer for the Cesar
Bernardini’s Scapy 6loWPAN layer, and we hope the community will
continue to be able to build upon this tool to enable further research.

2136

Figure 3. Relationships and dependencies between fields in 802.15.4
Beacon Frames

802.15.4 standard for applications such as intelligent fuzzing
or fingerprinting.

B. Inferenced packet generation

We developed techniques for gathering data about net-
works from a combination of active and passive listening.
This information is loaded into the central database over a
“learning period.” Data from multiple frames captured can
be merged to inference data, which may not be available
from any single frame. Using this data, tools can craft
packets with the user having to define only minimal data.
For example, given a type of frame and a target (desti-
nation) short address, the tool (a number of functions in
zbForge.py) can pick an appropriate source address that
was observed communicating with the target, and use that
address in the packet being constructed. The tool will also
use a sequence number that follows from the most recent
number observed, with some randomization added. The goal
of this tool is to require minimal user effort or interaction,
yet produce realistic looking packets, which are more likely
to be accepted by target devices and which are more difficult
to detect in packet analysis than packets generated without
inferencing.

The database is programmed with a number of views
to quickly return the most recent “inferred” status between
devices. The tool retrieves this data based on the parameters
supplied to it in the makeLinkData function. The output
of this function, together with the desired type of frame is
used to generate a Scapy dot15d4 object which can then
be injected.

Figure 4 illustrates this process.
If a user specifies that they would like to spoof a beacon

frame, they need only to specify the sending device, and
the remaining information (such as the sequence number,
network PAN ID, long address) will be inferred. Many other
types of packets similarly need only minimal information

kb = killerbee.getKillerBee(channel)
link = makeLinkData(srcTarget, dstTarget)
_, scapy = create(link, FRAME_802_DATA)
print "Sending forged frame:"
scapy.show2()
kb.inject(str(scapy))

Figure 4. Example Usage of zbForge Functions

(usually sender and receiver) specified by the user, and the
remainder of fields are calculated.

IV. REFLECTIVE AND SELECTIVE JAMMING

The capability to suppress network messages is an im-
portant complement to crafting and injecting them. The
effectiveness of their various combinations for manipulating
the state of network’s nodes had been shown early on for
attacks on TCP/IP (e.g., the “Mitnick attack” [27], Ptacek
and Newsham’s seminal NIDS evasion paper [28], etc.), and
is pivotal for a variety of wireless attacks.

Accordingly, we explored message suppression in the
wireless medium by using RF (radio frequency) jamming
techniques to intercept and corrupt traffic.

Further, to enable several common exploration, exploita-
tion, and attack techniques, we need to be able to reflexively
and selectively jam certain transmissions. We implemented
reflexive jamming techniques to avoid some jamming de-
fense strategies which try to differentiate jamming (inten-
tional denial-of-service) from other non-malicious issues in
the network. Wood claims that “a node can easily distinguish
jamming from the failure of its neighbors by determining
that constant energy, not lack of response, impedes commu-
nication” [35, 50]. However, a reflexive or selective jamming
attack, as implemented here, have no constant energy, and
even most devices listening in a monitor/promiscuous mode
will not see the jamming frame independently of the frame
that it jammed. Many authors classify such an attack as a
collision attack, to separate it from ‘traditional’ jamming.
Wood states that these malicious collisions “create a kind of
link-layer jamming, but no completely effective defense is
known” [35, 51].

A. Reflexive Jamming on the Tmote Sky with GoodFET

We implemented reflexive jamming on the Tmote Sky
device using GoodFET firmware as a basis, and our func-
tionality been added to the public GoodFET CCSPI firmware
(as verb 0xA0).

The goodfet.ccspi application first places the ra-
dio into promiscuous mode, disables CRC checking, and
tunes to the desired channel before placing the firmware
into reflexive jamming mode. Reflexive jamming has been
tested against communications and seems to have constant
effectiveness against packets greater than 12 bytes in length
(due to the inevitable delay between registering a frame
event and preparing the radio for the jamming transmission).

2137

Corruption typically occurs between the 8th and 12th byte
of the frame. The jam is triggered by the SFD (Start of
Frame Deliminator) line on the Chipcon2420 radio going
high, as shown in Figure 5. When the firmware application
observes this condition, it immediately shifts the radio into
TX mode, loads a frame into the TXFIFO buffer, and sends
the STXON strobe command to start transmission without
the radio performing the CCA (clear channel assessment)
which is designed to prevent collisions.

Figure 5. Chipcon 2420 Receive Operation Pin Values [32, 34]

Figure 6 shows a series of beacon frames, with frame
13 and 14 being sent when jamming was not enabled, and
frames 15 and 16 being sent once reflexive jamming was
enabled. Note that the eighth byte (0x46) in the frame is
the first byte to be corrupted by the reflexive jam. This means
that in the current implementation, frames of 7 bytes or
shorter cannot be reflexively jammed, however, most frames
of interest, including virtually any frame with a payload,
will be of sufficient length to jam with this technique.
Acknowledgement frames are not currently vulnerable, but
the Chipcon2430 chip, which has the radio and an 8051
MCU on the same die, may enable successful jamming on
such shorter frames in future work.

If this attack is done without acknowledgment spoofing,
the sending device may repeatedly try to transmit its packet
as it is not being acknowledged. This means that an exhaus-
tion attack on a sending device can be furthered using this
technique. The sending device would not know where in
the frame the collision occurred in the frame, as it cannot
monitor while it is transmitting due to the basic properties of
radio media. An intrusion detection system may be able to
monitor frames if it knew the expected frames to determine
if collisions were occurring later in the frame, which may
be statistically unusual in non-malicious interference.

B. Acknowledgment Spoofing

In an acknowledgment spoofing attack, we want to prevent
some frames from being received at their destination, while
making the sender believe that these have been received.
In the IEEE 802.15.4 specification, the acknowledgment bit

Frame 13: 13 bytes on wire, 13 bytes captured
IEEE 802.15.4 Beacon, Src: 0xef01
FCS: 0x9fba (Correct)

0000 00 80 ac 01 39 01 ef 46 cf 00 00 ba 9f

Frame 14: 13 bytes on wire, 13 bytes captured
IEEE 802.15.4 Beacon, Src: 0xef01
FCS: 0xd247 (Correct)

0000 00 80 ad 01 39 01 ef 46 cf 00 00 47 d2

Frame 15: 13 bytes on wire, 13 bytes captured
IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS
FCS: 0x3b7c (Incorrect, expected FCS=0x215a
[Expert Info (Warn/Checksum): Bad FCS]

[Malformed Packet: IEEE 802.15.4]
0000 00 80 ae 01 39 01 ef 93 99 99 b9 7c 3b

Frame 16: 13 bytes on wire, 13 bytes captured
IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS
FCS: 0x3a42 (Incorrect, expected FCS=0xcbea
[Expert Info (Warn/Checksum): Bad FCS]

[Malformed Packet: IEEE 802.15.4]
0000 00 80 af 01 39 01 ef 33 33 33 33 42 3a

Figure 6. 802.15.4 Beacon Frames Undergoing Reflexive Jamming

is set in the frame control field if a sender desires their
transmission to be acknowledged by the receiver.

The acknowledgment frame type simply consists of a 2
byte frame control field (FCF), 1 byte sequence number
(matching the sequence number of the frame being acknowl-
edged), and a 2 byte frame check sequence (FCS). The FCF
is known in advance for the acknowledgment field, and the
FCS is a non-cryptographic checksum that can be calculated
prior to sending the packet. The one piece of data which
needs to be captured from the original packet is the sequence
number. The sequence number is always the third byte of a
802.15.4 frame.

Most collision attacks need a frame to be generated and
transmitted after another one is jammed, and these depend
on the specific style of the attack. Implementation can be
done using Scapy dot15d4 and KillerBee, or even using
the zbForge library to assist in packet generation, and
then the frame can be transmitted either by the reflexive
jamming device or another radio interface. Choosing the
proper frames to jam, and generating the proper preceding
or follow-up frames is key to making an effective, as well
as targeted, attack.

C. Selective Jamming on the USRP2

Selective jamming is the process of listening for a specific
transmission or packet, and disrupting it by transmitting
noise or a packet at the same time. Although this technique
has been covered numerous times by academic researchers
in the past [24], the aim is to lower the barrier of entry by
implementing the selective jamming technique on a platform
that is commonly used by security researchers: the Ettus

2138

Research USRP2 [9].7

To implement selective jamming on the USRP2, we ported
the UCLA framework [6] to the USRP2 and implemented
traffic recognizer and jammer/transmitter signal processing
blocks, while using the existing receiver and demodulation
components provided by the framework to enable the re-
ception of 802.15.4 traffic. Figure 7 shows the selective
jamming architecture.

Figure 7. Selective Jamming Architecture on USRP2

Given a bit mask to match against, the traffic recognizer
reads the incoming packet byte by byte, comparing the bytes
against the mask. Upon a match, the transmitter is activated,
which simply generates a burst of noise on the given channel,
although a random packet could be sent as well.

One limitation encountered while working with the
USRP2 was the inability to easily analyze packets in real
time so that the transmission can be disrupted before it
finishes. For all of the USRP2’s glory, the latency between
the USRP and the host computer prevents one from jamming
packets in real-time or within the same frame; the analysis
logic cannot therefore reside on the host computer. One
solution is to implement the traffic recognizer component di-
rectly on the FPGA, which requires modifying the firmware
on the FPGA, written in VHDL. A recently released paper
on reactive jamming in regards to 802.15.4 and the USRP
does exactly just this [34]. The required effort, however, is
comparable with implementing the technique on an much
cheaper microcontroller, such as the Tmote Sky with Good-
FET.

Despite this limitation, the USRP2 was able to inference
and jam particularly long sequences or exchanges, such as
that which occurs when a device joins a network. Similarly,
if the ACK bit for a particular packet is set, this will
indicate that an ACK is expected as the next packet, allowing
us to inference and activate our jammer ahead of time to
selectively jam the ACK.

7We note that this is the only non-commodity component of our tool
suite, as the rest of them use commodity Chipcon-based and comparable
digital radio platforms. The commodity chipset devices on the market at
the time of research were not able to reliably execute this attack, however
we expect to rectify this problem in future work.

V. CONCLUSION

We conclude with some thoughts on commodity hardware
vs software-defined radio.

In our effort to get the 802.15.4 exploration tools in the
hands of as many researchers and asset owners as we can
reach, we purposefully avoided the academically popular
software-defined radio platforms whenever possible. Our
vision of a proper, broadly available toolkit is a combination
of a laptop-hosted software and an affordable USB stick
peripheral.

Figure 8. Our Custom Field-Ready Casing on an Atmel RZUSBSTICK

Unfortunately, software-defined radio peripherals such as
USRPs are not only expensive but also require considerable
expert knowledge to operate. The contrast with commodity
radio chips is striking, in that commodity digital radio
chip-based platforms would facilitate easy access for asset
owners, engineers, and even vendors’ own testers, increasing
the size of the smart meter wireless research community
possibly by an order of magnitude if not more.

In conclusion, we would like to quote Joshua Wright, a
pioneer of practical wireless security, whose message we
fully support:

Practical security does not improve until tools
for exploration of the attack surface are made
available.

ACKNOWLEDGMENTS

The authors thank Joshua Wright, Michael Ossmann, and
Kevin Finisterre for lending their expertise and support.
This research was supported in part by the Department of
Energy under Prime Award No. US DOE DE-OE0000097,
Subaward No. 2010-01251-01 and in part by the National
Science Foundation under Grant Award Number 1016782.
The views and conclusions contained in this document
are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed
or implied, of the DOE or NSF.

REFERENCES

[1] Aircrack-ng. http://www.aircrack-ng.org/.

[2] Airbase-ng. http://www.aircrack-ng.org.

[3] Airpwn. http://airpwn.sourceforge.net/Airpwn.html.

[4] Esri. “ArcGIS.” http://www.esri.com/software/arcgis/.

2139

[5] Chaudhary, R. (2010, November 17). In-State: Smart Energy
to Fuel 802.15.4 and ZigBee Adoption. Smartgrid TMCNET.

[6] Choong, Leslie, “Multi-Channel IEEE 802.15.4 Packet Capture
Using Software Defined Radio,” UCLA, 2009.

[7] Daintree Networks. “Getting Started with ZigBee and IEEE
802.15.4.” www.daintree.net/downloads/whitepapers/zigbee
primer.pdf. 2008.

[8] The Edison Foundation Institue for Electric Efficiency,
“Utility-Scale Smart Meter Deployments, Plans and Pro-
posals - February 2010.” http://www.edisonfoundation.net/iee/
issuebriefs/IEE SmartMeterRollouts update.pdf.

[9] Ettus Research. “USRP2.” http://www.ettus.com.

[10] Ellch, Jon. “Per-Packet Information specification for Geolo-
cation.” Version 1.2.0. Crucial Security, Inc., March 2011.
http://new.11mercenary.net/∼johnycsh/ppi geolocation spec/.

[11] Finisterre, Kevin. “Successful Zigbee Wardrive Rig is
Online!” Joint Direct Attack Munition Smart Weaponry
Blog. http://www.digitalmunition.com/ /Blog/Entries/2010/10/
13 Successful Zigbee Wardrives!.html. October 2010.

[12] Open Source Geospatial Foundation. “Geospatial Data Ab-
straction Library.” http://www.gdal.org.

[13] Goodspeed, T.; Bratus, S.; Melgares, R; Speers, R.; Shapiro,
R. Packets in Packets: Orson Welles In-Band Signaling Attacks
for Modern Radios. 20th USENIX WOOT. 2011.

[14] Goodspeed, Travis. “Extracting Keys from SoC Zigbee
Chips.” http://travisgoodspeed.blogspot.com/2009/08/
extracting-keys-from-soc-zigbee-chips.html.

[15] Goodspeed, Travis. “Breaking 802.15.4 AES128 by
Syringe.” http://travisgoodspeed.blogspot.com/2009/03/
breaking-802154-aes128-by-syringe.html.

[16] Goodspeed, Travis. “GoodFET Project.” http://goodfet.
sourceforge.net.

[17] Goodspeed, Travis. “Promiscuity is NRF24L01’s
Duty.” http://travisgoodspeed.blogspot.com/2011/02/
promiscuity-is-nrf24l01s-duty.html.

[18] “gpsd.” http://gpsd.berlios.de.

[19] Itron. “Itron Selected by CenterPoint Energy as AMI
Technology Provider: Agreement Outlines Phased Deploy-
ment for OpenWay Meters in Houston.” Press release (May
14, 2008). http://www.itron.com/pages/news press individual.
asp?id=itr 016460.xml.

[20] IEEE Computer Society, LAN/MAN Standards Committee.
“Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (LR-WPANs).” IEEE 802.15.4-2006,
New York, NY, 2006. http://standards.ieee.org/getieee802/
download/802.15.4-2006.pdf.

[21] IEEE Computer Society, LAN/MAN Standards Committee.
“Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low Rate Wireless
Personal Area Networks (LR-WPANs), Amendment 1: Add
Alternate PHYs.” IEEE 802.15.4a-2007, New York, NY, Au-
gust 2007. http://standards.ieee.org/getieee802/download/802.
15.4a-2007.pdf.

[22] “Karma” http://www.theta44.org/karma/.

[23] “Kismet.” http://www.kismetwireless.net/.

[24] Konings, B., Schaub, F., Kargl, F., Dietzel, S. “Channel
switch and quiet attack: New DoS attacks exploiting the 802.11
standard.” Proceedings of the IEEE 34th Conference on Local
Computer Networks, LCN (2009)

[25] KoreK. “chopchop.” http://www.aircrack-ng.org/doku.php?
id=korek chopchop.

[26] Melgares, Ricky A. “802.15.4/ZigBee Analysis and Security:
tools for practical exploration of the attack surface.” Dartmouth
Computer Science Technical Report TR2011-689, June 2011.

[27] Northcutt, Stephen. “Network Intrusion Detection: An Ana-
lyst’s Handbook.” Sams, June 1999.

[28] Ptacek, Thomas and Newsham, Timothy. “Insertion, Evasion,
and Denial of Service: Eluding Network Intrusion Detection.”
Secure Networks, Inc., January, 1998. http://insecure.org/stf/
secnet ids/secnet ids.html.

[29] Speers, Ryan M. “IEEE 802.15.4 Wireless Security: Self-
Assessment Frameworks.” Dartmouth Computer Science Tech-
nical Report TR2011-687, June 2011.

[30] Speers, Ryan and Ricky Melgares. “Api-do: Tools for Zig-
Bee and 802.15.4 Security Auditing.” http://code.google.com/
p/zigbee-security/.

[31] Schiffman, Mike. “Building Open Source Network Security
Tools: Components and Techniques.” Wiley, October 2002.

[32] Texas Instruments. “CC2420: 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver.” SWRS041B, Dallas, TX, 2010.

[33] Vladimirov, Andrew, Gravrilenko, Konstantin, and
Mikhailovskiy, Andrei. “Wi-Foo: The Secrets of Wireless
Hacking,” page 174. Pearson Education, 2004.

[34] Matthias Wilhelm, Ivan Martinovic, Jens B. Schmitt, and
Vincent Lenders. “Short Paper: Reactive Jamming in Wireless
Networks How Realistic is the Threat?.” ACM WiSec ’11.
http://www.lenders.ch/publications/conferences/wisec11.pdf.

[35] Wood, Anthony D. and J.A. Stankovic. “Denial of Service in
Sensor Networks.” Prentice–Hall, Inc, 2002. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.20.6380.

[36] Wright, Joshua. “KillerBee: Framework and tools for exploit-
ing ZigBee and IEEE 802.15.4 networks.” Version 1.0, 2010.
https://code.google.com/p/killerbee/.

[37] ZigBee Alliance. “ZigBee Specification.” ZigBee Document
053474r17, January 2008.

2140

