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Abstract

In Dartmouth’s ”Greenpass” project, we’re building an experimental system to explore two levels of authorization issues
in the emerging information infrastructure. On a practical level, we want to enable only authorized users to access an internal
wireless network—while also permitting appropriate users to delegate internal access to external guests, and doing this all
with standard client software. On a deeper level, PKI needs to be part of this emerging information infrastructure—since
sharing secrets is not workable. However, the traditional approach to PKI—with a centralized hierarchy based on global
names and heavy-weight X.509 certificates—has often proved cumbersome. On this level, we want to explore alternative PKI
structures that might overcome these barriers.

By using SPKI/SDSI delegation on top of X.509 certificates within EAP-TLS authentication, we provide a flexible, decen-
tralized solution to guest access that reflects real-world authorization flow, without requiring guests to download nonstandard
client software. Within the “living laboratory” of Dartmouth’s wireless network, this project lets us solve a real problem with
wireless networking, while also experimenting with trust flows and testing the limits of current tools.

1 Introduction

Dartmouth College is currently developingGreenpass, a
software-based solution to wireless network security in large
institutions. Greenpass extends current wireless security
frameworks to allow guest access to an institution’s wire-
less network and selected internal resources (as well as to
the guest’s home system).

This project, which enhances EAP-TLS authentication with
SPKI/SDSI-based authorization decisions, is a novel, exten-
sible, feasible solution to an important problem.

• Our solution isseamless.Guests can potentially access
the same access points and resources that local users
can. The same authorization mechanism can apply to
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local users, and can also be used for application-level
and wired resources.

• Our solution is alsodecentralized: it can accommo-
date the way that authorization really flows in large
academic organizations, allowing designated individ-
uals to delegate network access to guests.

Although we are initially targeting universities, Greenpass
may apply equally well in large enterprises.

This paper. This paper provides a snapshot of the current
state of our project. Section 2 reviews the problem we seek
to solve, and Section 3 reviews the existing wireless secu-
rity standards we build upon. Section 4 presents weaknesses
in some current attempts to secure wireless networks. Sec-
tion 5 presents our approach: Section 6 discusses the del-
egation piece, and Section 7 discusses the access decision
piece. Section 9 discusses future directions, and Section 10
offers some concluding remarks.

More lengthy discussions (e.g., [Gof04, Kim04]) of this
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work will appear this Spring.1

2 The Problem

Wireless network access is ubiquitous at Dartmouth, and we
see a future where a lack of wireless network access at a
university—including access for visitors to the campus—is
as unthinkable as a lack of electricity. Many institutions,
however, want to restrict access to their wireless networks
for several reasons: the cost of providing network bandwidth
and resources; the credibility or liability hit the institution
may incur should an outside adversary use the network to
launch an attack or spam; the ability to block users who
have not installed critical security patches; and the ability
(for reasons of license as well as levels-of-protection) to re-
strict certain local network resources to local users.

Access to a wired network often depends, implicitly, on the
physical boundaries of the network. Most establishments
do not install courtesy network jacks on the outside walls
of their buildings: a standard door, therefore, fulfills most
access-control needs. Wireless network traffic, on the other
hand, travels on radio waves, extending the network’s phys-
ical boundaries. Access control and encryption must be de-
signed into the link layer or higher to prevent unauthorized
use and/or eavesdropping.

This future raises some challenges:

• We need to permit authorized local users to access the
network.

• We also need to permit selected guests to access the
network.

• We must minimize the hassle needed to grant access
to guests, and we must accommodate the decentralized
ways that authority really flows in large organizations.

• The security should cause little or no additional effort
when regular users and guests use the network.

• The type of guests and the manner in which they are
authorized will vary widely among the units within an
institution.

• We must accommodate multiple client platforms.

• The solution must scale to large settings, more general
access policies, and decentralized servers.

• The solution should also extend toall authorization—
wired or wireless, network or application, guest or
intra-institution.

1As of press time, the cited theses have been published as technical
reports.

• The solution must be robust against a wide range of
failures and attacks.

We have encountered several definitions of “guest access” to
a wireless network, many of which differ substantially from
our own. Two basic definitions we have seen are as follows:

• Definition 1. The trivial solution: the network is open
and all passersby, even uninvited ones, can potentially
become “guests.”

• Definition 2. Insiders can connect to aVPN (vir-
tual private network) or to the inside of a firewall, al-
lowing them to access private resources. Guests have
basic wireless access—perhaps with a bridge to the
Internet—but remain outside the firewall or VPN.

Our requirements for guest access, on the other hand, are as
follows:

• Definition 3. We want guests to access the inside;
that’s the whole point. But we also need to control who
becomes a “guest,” and we want to permit authoriza-
tion to flow the way it does in the real world: we don’t
want a centralized authority (or a central box and rights
system purchased from a single vendor) controlling all
end-user decisions.

3 Background

Wireless networking comes in two basic flavors. In thead
hoc approach, the wireless stations (user devices) talk to
each other; in theinfrastructureapproach, wireless stations
connect to access points, which usually serve as bridges to a
wired network. We are primarily interested in infrastructure
networking. Understanding the numerous protocols for ac-
cess control in infrastructure mode requires wading through
an alphabet soup of interrelated standards and drafts. We
will provide a brief overview of these standards in this sec-
tion; Edney and Arbaugh’s recent book [EA03] explores
them thoroughly.

Rudimentary access control to a WLAN could be imple-
mented by requiring users to enter the correctSSIDfor the
access point they are trying to connect to, or by accepting
only clients whose MAC addresses appear on anaccess-
control list (ACL). Both these techniques are easily defeat-
able, as we discuss below in Section 4.

Wired equivalent privacy (WEP)is a link-layer encryption
method offered by the original IEEE 802.11 wireless Eth-
ernet standard. WEP is based on a shared secret between
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the mobile device and access point. WEP has numerous
flaws, which Cam-Winget et al. [CWHWW03] and Borisov
et al. [BGW01] discuss in detail.

Wi-Fi Protected Access (WPA)is a stronger authentication
and encryption standard released by the Wi-Fi Alliance, a
consortium of vendors of 802.11-based products. WPA is,
in turn, a subset of802.11i, the IEEE draft that standardizes
future 802.11 security. WPA provides an acceptable secu-
rity standard for the present, until 802.11i is finalized and
becomes widely supported.

WPA and 802.11i both use802.1x [CS01], a general
access-control mechanism for any Ethernet-based network.
802.1x generalizes theExtensible Authentication Protocol
(EAP) [BV98], originally designed for authentication of
PPP dialup sessions.

In a wireless context, 802.1x access control works as fol-
lows:

• By trying to connect to an access point, a mobile device
assumes the role ofsupplicant.

• The access point establishes a connection to anauthen-
tication server.

• The access point (which, in 802.1x terminology, as-
sumes the role ofauthenticator) relays messages back
and forth between the supplicant and the authentication
server. These relayed messages conform to the EAP
packet format.

• EAP can encapsulate any of a variety of inner au-
thentication handshakes including challenge-response
schemes, password-based schemes (e.g., Cisco’s
LEAP), Kerberos, and PKI-based methods. The sup-
plicant and authentication server carry out one of these
handshakes.

• The authentication server decides whether the suppli-
cant should be allowed to connect, and notifies the ac-
cess point using anEAP-Successor EAP-Failuremes-
sage.

EAP-TLS. Authenticating a large user space suggests the
use of public-key cryptography, since that avoids the secu-
rity problems of shared secrets and the scalability problems
of ACLs. One public-key authentication technique permit-
ted within EAP isEAP-TLS[AS99, BV98].

TLS(Transport Layer Security) is the standardized version
of SSL (Secure Sockets Layer), the primary means for au-
thentication and session security on the Web. In the Web
setting, the client and server want to protect their session
and possibly authenticate each other. Typically, SSL/TLS

allows a Web server to present an X.509 public key certifi-
cate to the client and prove knowledge of the corresponding
private key. A growing number of institutions (including
Dartmouth) also exploit the ability of SSL/TLS to authen-
ticate the client: here, the client presents an X.509 certifi-
cate to the server and proves ownership of the correspond-
ing private key. The server can use this certificate to decide
whether to grant access, and what Web content to offer. An
SSL/TLS handshake also permits the client and server to ne-
gotiate a cryptographic suite and establish shared secrets for
session encryption and authentication.

The EAP-TLS variant within 802.1x moves this protocol
into the wireless setting. Instead of a Web client, we have
the supplicant; instead of the Web server, we have the access
point, working in conjunction with the authentication server.

Our approach. WPA with EAP-TLS permits us to work
within the existing Wi-Fi standards, but lets the supplicant
and access point evaluate each other based on public key cer-
tificates and keypairs. Rather than inventing new protocols
or cryptography, we plan to use this angle—the expressive
power of PKI—to solve the guest authorization problem.

4 Black Hat

As part of this project, we began exploring just how easy it
is to examine wireless traffic with commodity hardware and
easily-available hacker tools. Right now:

• We can watch colleagues surf the Web and read their
email.

• We can read the “secret” (non-broadcast) SSID for lo-
cal networks.

• We can read the MAC addresses of supplicants permit-
ted to access the network.

• We can tell our machine (Windows or Linux) to use a
MAC address of our own choosing (such as one that we
just sniffed).

The lessons here include the following:

• We can easily demonstrate that security solutions that
depend on secret SSIDs or authenticated MAC ad-
dresses do not work.

• The current Dartmouth wireless network is far more ex-
posed than nearly all our users realize; the paradigm
shift from the wired net has substantially changed the
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security and privacy picture, but social understanding
(and policy) lags behind. We suspect this is true of most
wireless deployments.

We conjecture that any solution that does not use cryptogra-
phy derived from entity-specific keys will be susceptible to
sniffing attacks and session hijacking.

5 The Overall Approach

We have already built a basic prototype of Greenpass, and
are planning a series of pilots in the near future. Our pro-
totype consists of two basic tools. The first automates the
process of issuing credentials to a guest by allowing cer-
tain local users to issueSPKI/SDSI authorization certifi-
cates[EFL+99a, EFL+99b] to guests. The second tool is
a RADIUS (Remote Authentication Dial In User Service)
server [Rig00, RWC00, RWRS00] that carries out a stan-
dard EAP-TLS handshake for authentication, but has been
modified to consult SPKI/SDSI certificates for authorization
of non-local users. Neither tool requires users to have soft-
ware beyond what is typically installed on a Windows lap-
top (covering most of our user space); other platforms need
802.1x supplicant software, which is provided with recent
versions of Mac OS X and is readily available for Linux.

Authorization in real life. In the physical world, a guest
gets access to a physical resource because, according to the
local policy governing that resource, someone who has the
power to do so said it was OK. In a simple scenario, Al-
ice is allowed to enter a lab because she works for Dart-
mouth; guest Gary is allowed to come in because Alice
said it was OK. Gary’s authorization is decentralized (Dart-
mouth’s President Wright doesn’t know about it) and tem-
porary (it vanishes tomorrow). More complex scenarios also
arise in the wild: e.g., Gary may only have access to certain
rooms, and it must be Alice (and not Bob, since he doesn’t
work on that project) who says OK.

For a wireless network in a large institution, the decision
to grant authorization will not always be made by the same
Alice—and may in fact need to reflect policies and decisions
by many parties. PKI can handle this, by enabling verifiable
chains of assertions.

Authorization in EAP-TLS. EAP-TLS specifies a way
for a RADIUS server toauthenticatea client, but leaves
open the specification ofauthorization. Often, a RADIUS
server will allow any supplicant to connect who authenti-
cates successfully—i.e., whose certificate was signed by a

CA the RADIUS server has been configured to trust. This
approach does not adequately reflect real-life authorization
flow as just described. Alice can see to it that Gary, her
guest, obtains access to the wireless network, but she must
do so by asking a central administrator to issue Gary an
X.509 certificate from Dartmouth’s own CA. It is possi-
ble for the RADIUS server to trust multiple CAs, such as
those of certain other universities, but this option remains
inflexible if a guest arrives from an institution not recog-
nized by the existing configuration. (Another option that
merits further investigation, however, is the possibility of
linking RADIUS servers using more advanced trust path
construction and bridging techniques. One such implemen-
tation is the Trans-European Research and Education Net-
working Association’s (TERENA) [TER] top-level Euro-
pean RADIUS server, a hierarchy of RADIUS servers con-
necting the Netherlands, the UK, Portugal, Finland, Ger-
many, and Croatia.)

Conceivably, a RADIUS server could perform any of a
number of authorization checks between the time that a
supplicant authenticates successfully and the time that the
RADIUS server transmits an EAP success or failure code.
In other words, we can modify a RADIUS server to base its
decision on some advanced authorization scheme. Policies
could be defined by policy languages such as XACML; or
by signedauthorization certificatesas defined byKeynote
[BFIK99] and its predecessorPolicyMaker [BFL96], by
the X.509 attribute certificate(AC) standard [FH02], or by
SPKI/SDSI.

SPKI/SDSI. For our Greenpass prototype, we settled on
SPKI/SDSI for three main reasons: (1) it focuses specifi-
cally on the problem we are trying to solve (authorization),
(2) its central paradigm ofdelegationgives us precisely the
decentralized approach to guest access we desire, and (3) its
lightweight syntax makes it easy to process and to code for.

SPKI/SDSI differs from a traditional X.509-based PKI in
three important ways:

• SPKI/SDSI uses public keys as unique identifiers: peo-
ple and otherprincipals are referred to as holders of
particular public keys, rather than as entities with par-
ticular names.

• A SPKI/SDSI certificate binds an authorization directly
to a public key, rather than binding a name to a public
key (as an X.509 certificate does) or an authorization
to a name (as an ACL entry or attribute certificate typi-
cally does).

• Any person or entity, not just a dedicated CA, can po-
tentially issue a SPKI/SDSI certificate. In particular,
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the recipient of a SPKI/SDSI authorization can option-
ally be authorized todelegatehis privilege to further
users.

SPKI/SDSI therefore solves some of the problems with
guest authorization. First, even if a guest’s home organi-
zation issued him an X.509 certificate, we cannot use it
to authenticate the guest (i.e., bind the guest to a unique
identifier) if the issuer of the certificate is not trusted. A
SPKI/SDSI authorization certificate, however, binds an au-
thorization to a particular keyholder without an intermediate
naming step: therefore, we can bind credentials to a guest’s
public key. The public key acts as the sole identifying infor-
mation for the guest (“authentication,” then, means proving
ownership of the key).

Additionally, SPKI/SDSI delegation provides a straightfor-
ward way to implement guest access. Dartmouth can issue
Alice, a professor, a SPKI/SDSI certificate granting her the
ability to delegate access to guests.2 If Alice invites Gary to
campus to deliver a guest lecture, he will probably request
access to the network. Alice can simply issue Gary a short-
lived SPKI/SDSI certificate (vouching for the public key in
his X.509 certificate) that grants him access to the network
while he is on campus. No central administrator need be
contacted to fulfill Gary’s request.

Alternative approaches to authorization. Other ap-
proaches to delegated guest access are available, and each
has its own balance of advantages and disadvantages.

An X.509 AC can grant a short-lived authorization to the
holder of a particular X.509 identity certificate, in much the
same way as we use SPKI/SDSI. Attribute certificates ad-
dress the problem of authorization, but are intended to be
issued by small numbers ofattribute authorities(AAs); the
attribute certificate profile [FH02] states that chains of ACs
are complex to process and administer, and therefore recom-
mends against using them for delegation. Doing so would
amount to emulating SPKI/SDSI’s functionality using at-
tribute certificates. If standard WPA clients were able to
transmit attribute certificates along with identity certificates
as part of the EAP-TLS handshake, we might have chosen
ACs instead of SPKI/SDSI certificates, as the former would
have provided a convenient means to transmit authorization
information to a RADIUS server.

Two other authorization certificate systems worth consid-
ering arePERMIS[COB03, PER] and X.509proxy certifi-
cates[TWE+03, WFK+04]. The PERMIS system uses at-

2In our current scheme, Alice uses an X.509 certificate, signed by the lo-
cal CA, to gain access to the network herself; she must obtain a SPKI/SDSI
certificate only if she needs to delegate to a guest without a locally-signed
X.509 certificate.

tribute certificates to specify roles for various users; mem-
bers of some roles are able to delegate their role, or a sub-
ordinate role, to other individuals. PERMIS is worth in-
vestigating as a means of wireless guest access, although it
might require modification to eliminate its reliance on global
names. X.509 proxy certificates provide a different means
of delegation than SPKI/SDSI does, along with a concept of
temporary, relative identities that local users could provide
to their guests. Proxy certificates conform closely enough
to the X.509 name certificate format that they might work
directly in an EAP-TLS handshake.

We also could have implemented guest access by placing
temporary ACL entries in a central database. “Delegation”
could be implemented by allowing authorized delegators to
modify certain portions of the ACL. Ultimately, however,
would like to support a “push” model of delegation where
guests carry any necessary credentials and present them
upon demand, allowing us to further decentralize future ver-
sions of Greenpass (see Section 9). Decentralizing autho-
rization policies using signed certificates also eliminates the
need for a closely-guarded machine on which a central ACL
is stored.

We chose SPKI/SDSI because it reflects, in our minds, the
most straightforward model of real-world delegation. A
thorough comparison of alternative approaches would pro-
vide a worthwhile direction for future work.

6 Delegation

Assume that a new guest arrives and already holds an X.509
identity certificate containing a public key. In order to obtain
wireless connectivity, the guest must obtain a SPKI certifi-
cate that conveys the privilege of wireless network access
directly to his own public key.

To obtain this certificate, the guest will find a local user who
can delegate to him (e.g., the person who invited him in the
first place). Thisdelegatormust then learn the guest’s public
key. This step requires an information path from the guest’s
machine to the delegator’s. Once the delegator learns the
guest’s key, he can issue a SPKI certificate with the guest as
its subject.

We also need a way to ensure that the key the delegator au-
thorizes to use the wireless network is really the key held
by the guest. Otherwise, an adversary might inject his own
public key into the communication channel between guest
and delegator, tricking the delegator into authorizing the ad-
versary instead of the intended guest. Dohrmann and Ellison
describe a nearly identical problem inintroducingthe mem-
bers of a collaborative group to one another [DE02]. Their
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solution was to display avisual hashof the public key being
transferred on both the keyholder’s device and the recipi-
ent’s device: this allows the recipient to quickly compare
the two visual images, which should appear identical if and
only if the recipient received a public key value identical to
the one stored on the originating device. We adopted this
same approach; further details are given below.

Guest interface. We chose to use a Web interface to al-
low a guest to introduce his public key to a delegator. Web
browsers are ubiquitous: we can safely assume that any user
who wishes to access our network will have a Web browser
installed. This technique gives us an advantage over, e.g.,
infrared transfer, wired tranfer, or passing of some storage
medium, all of which might be incompatible with certain
client devices.

Both our delegation tool and our modified RADIUS server
rely on the observation that standard X.509 certificates, and
standard SSL/TLS handshakes (including EAP-TLS) per-
form three functions that we need:

• An X.509 certificate contains the value of its owner’s
public key.

• An SSL/TLS handshakepresentsan X.509 certificate
(and thus the owner’s public key value).

• An SSL/TLS handshake, if it succeeds, alsoproves
that the authenticating party owns the private key cor-
responding to the subject public key in the presented
X.509 certificate.

With this observation, it becomes clear that, if the guest’s
Web browser supports SSL/TLS client authentication, then
he can present his public key value to a Web site using this
functionality.

When a guest arrives he must connect to our Web applica-
tion to present his existing X.509 certificate. Therefore, he
must obtainsomewireless connectivity even before he is au-
thorized. We are experimenting with various ways to enable
this by creating an “unauthorized” VLAN (for newly-arrived
guests) and an “authorized” VLAN (for local users and au-
thorized guests); we present this approach in more detail in
Section 7.

When a guest connects to our Web application, he will see a
welcome page helping him through the process of present-
ing his certificate. We handle three situations at this point:

• If the guest’s Web browser presents an SSL client cer-
tificate, we allow the option of presenting it immedi-
ately.

• We also allow the guest to upload his certificate from a
PEM-formatted file on his local disk. (Browser and OS
keystore tools usually allow a user to export his X.509
certificate as a PEM file. Since the purpose is to trans-
fer the certificate to another user, a PEM file typically
doesnot contain the user’s private key.)

• If the guest does not already have a keypair and certifi-
cate, he can connect to a “dummy” CA page (separate
from the main Dartmouth CA) that lets him generate a
keypair and obtain a temporary X.509 certificate. (This
should not be a standard approach, because a prolif-
eration of client keypairs impairs usability. Note that
the sole purpose of the dummy CA is to get the guest
a keypair—we are therefore exempt from standard CA
worries such as securing the registration process and
protecting the CA’s private keys.)

We implemented the guest interface using simple CGI
scripts served by an Apache Web server. Our installation
of Apache includesmodssl, which we configure to request
(but not require) SSL client authentication. (We had to set a
seldom-used option inmodssl that forces Apache to accept
the guest’s certificate even if it was signed by an unknown
CA. Our purpose here is to learn a stranger’s public key, not
to authenticate a known user.) Therefore, if the guest has in-
stalled a client certificate in his Web browser, it will present
it to our Web server. Our CGI scripts use OpenSSL to pro-
cess the guest’s X.509 certificates.

The dummy CA uses the standard enrollment functionality
included in Web browsers that support SSL client authen-
tication. The guest visits the CA page and enters (possi-
ble fake) identifying information. The page includes code
that, when he submits the identifying information, causes his
Web browser to generate a keypair, store the private key, and
submit the public key to our Web server. The dummy CA
then issues a new X.509 certificate back to the guest’s Web
browser, which stores it in its keystore. We support both In-
ternet Explorer and Netscape/Mozilla enrollment methods.

After the guest presents his X.509 certificate by one of the
above methods, our Web server generates a visual hash of it
using theVisprint [Gol, Joh] program. (This program tran-
forms the MD5 hash of an object into an image using IFS
fractals.)

After the guest uploads his certificate using one of the above
methods, our Web server stores it in a temporary repository
from which the delegator can retrieve it.

Delegator interface. A delegator first visits the same Web
server as the guest, and searches for the guest’s X.509 cer-
tificate by entering pieces of identifying information such as
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Figure 1: A screenshot of our delegator tool (a trusted Java applet,
shown running under Mac OS 10.3). Before delegation, the del-
egator has to verify the identity of the guest’s public key using a
visual hash comparison. Also notice the inputs for validity interval
and whether or not to allow further delegation.

the guest’s name and organization. After this step, the del-
egator verifies the certificate’s authenticity (by comparing
visual hashes) and constructs and signs a SPKI certificate.

Signing a SPKI certificate is problematic, because it requires
access to the delegator’s private key. A private key must
be well-protected so that adversaries cannot use it to sign
data that did not actually originate from the owner. Soft-
ware usually signs data of a very specific type (email, Word
documents, authentication challenges, certificates) to pre-
vent misuse of the key.

We therefore needed to build a special software tool for sign-
ing SPKI certificates. We considered a number of alterna-
tive ways to implement this, including a custom application
which delegators would have to download, but for the pro-
totype, we settled on using a trusted Java applet (screenshot
shown in Figure 1). Trusted applets are hashed and signed
by an entity that the user of the applet trusts, ensuring that
the applet has not been modified to do anything the signing
entity did not intend. Sun’s Java plugin for Web browsers,
by default, gives trusted applets greater privileges than stan-
dard applets, including the ability to access the local filesys-
tem on the client machine. (It is not unreasonable to have
local users install a trust root certificate for the applet signer
ahead of time.) Our applet can, therefore, load the delega-
tor’s private key from a local file3 and, after prompting for a
password to decrypt the key, use it to sign a SPKI certificate.

Our Web server generates a page with a reference to the del-
egation applet, and provides the guest’s PEM-encoded cer-
tificate as an argument to the applet. The applet uses stan-
dard Java cryptography functionality to extract the public
key from this certificate, and uses a Java SPKI/SDSI library

3The applet prompts the delegator to choose an appropriate keystore file
the first time it is run, and saves its location to a local preferences file for
future signing sessions. We currently support PKCS12 keystore files. In
the future, we would like to support various platforms’ OS keystores.

from MIT [Mor98] to construct and sign a SPKI certificate
that delegates wireless access privileges to the guest. The
applet allows the delegator to specify a validity interval for
the new certificate and choose whether or not the recipient
should be able to delegate further. We have ported the Vis-
print code from C to Java so we can build the visual hash
verification step into the applet as well.

7 Making the Decision

We now consider the process by which our modified
RADIUS decides whether to admit users.

7.1 The decision process

Local users. In the initial case, local users show autho-
rization (via EAP-TLS) by proving knowledge of a private
key matching an X.509 identity certificate issued by the lo-
cal CA. Once the TLS handshake succeeds, the supplicant
is granted access. On most platforms, the supplicant must
choose which certificate to submit only on the first success-
ful attempt; the machine will remember which certificate to
use on subsequent attempts, making the authentication pro-
cess transparent to local users.

Guests. Authorized guests also authenticate via EAP-TLS
using an X.509 certificate. (In this case, “authentication”
consists only of proving knowledge of the private key, since
we cannot trust the certificate’s naming information.) The
RADIUS server uses a different process, however, to de-
cide whether the user is authorized. It must find a valid
SPKI/SDSI certificate chain originating from a principal it
trusts that ultimately grants access privileges to the suppli-
cant’s public key.

In preliminary sketches, we also involved the delegator’s
X.509 certificate, but that does not seem to be necessary.
As a consequence, the delegator doesn’t necessarily need to
have a centrally-issued X.509 identity certificate; we con-
sider this further in Section 9.

The algorithm. Putting it all together, the modified
RADIUS server follows the following procedure, illustrated
by the flowchart in Figure 2:

• The supplicant initiaties an EAP-TLS authentication
handshake.
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Figure 2: Decision flowchart used by the RADIUS server. If the supplicant is a local Dartmouth user (i.e., presents an X.509 certificate
issued by the Dartmouth CA), then the supplicant only needs to prove knowledge of the private key associated with the certificate.
Otherwise, if the supplicant is a guest, the RADIUS server checks for a SPKI certificate chain vouching for the supplicant’s public key.

• If the supplicant cannot present an identity certificate,
we shunt them to a special VLAN on which the sup-
plicant can only connect to our delegation tool’s “wel-
come” page.

• If the supplicantcanpresent an identity certificate, we
then evaluate it as follows:

– If the certificate is valid and issued by the local
CA, then we accept it.

– Otherwise, if we can obtain and verify a valid
SPKI/SDSI chain supporting it, we accept it.

– Otherwise, we reject the certificate and shunt the
supplicant to our “welcome” page.

• If we accept the certificate, and the supplicant proceeds
to prove knowledge of the private key, then we let him
in.

• Otherwise, we shunt the supplicant to our “welcome”
page.

This procedures modifies standard EAP-TLS implementa-
tions only by changing how the server decides to accept a
given supplicant certificate.

Getting the certificates (“pull” approach). To carry out
the guest user case, the RADIUS server needs to know the
X.509 identity certificate, the public key of whatever source-
of-authority SPKI/SDSI chains will originate from, and the
SPKI/SDSI certificate chain itself. EAP-TLS gives us the
first, and we can build in the second. But how do we find
the relevant SPKI/SDSI certificates?

One solution would be to have the delegation process leave
the authorization certificates in a reliable, available direc-
tory where servers can access them; since the data is self-
validating, maintenance of this directory should be auto-
matic. When the RADIUS server needs to verify a guest’s
SPKI/SDSI credentials, it can “pull” up the credentials it re-
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quires from the directory. We can organize these certificates
as a forest: guest authorization certificates are children of
the delegation certificates that signed them.

• The source-of-authority tool needs to write new dele-
gator certificates to this directory.

• The delegator tool needs to read delegator certificates
from this directory, and write new guest authorization
certificates back.

• The RADIUS server needs to be able to ask for
delegator-authorization chains whose leaves speak
about a given public key.

The directory itself can perform time-driven checks for ex-
piration.

Our initial implementation used the “pull” approach just de-
scribed: SPKI/SDSI certificates were maintained in a cache
that the RADIUS server can query via XML-RPC. The
RADIUS server queries the cache about a particular pub-
lic key; the cache itself finds a chain, if it exists, verifies
it, and returns it. (To make our prototype more secure, we
need to use authenticated XML-RPC messages or move the
decision procedure onto the same machine as the RADIUS
server.)

Getting the certificates (“push” approach). The central-
ized solution above is somewhat unsatisfying, because it in-
troduces a centralized component (even if this component
does not have significant security requirements). It would
be slicker to find a way for the delegator and guest them-
selves to carry around the necessary certificates, since the
necessary information paths will exist. When necessary, the
guest can “push” the necessary credentials to the RADIUS
server for validation.

We note that HTTP cookies provide most of the functional-
ity we need. (We will add a message to the guest welcome
page notifying users of what browser features will need to
be enabled, including cookies and Java, in order to use our
services.)

• The delegator will be interacting with the source-of-
authority signing tool when their delegation certificate
is created; the delegation certificate could be saved at
the delegator machine as a cookie.

• At delegation time, both the delegator and the guest
will be interacting with the delegation tool. The tool
can read the delegator’s certificate chain as a cookie,
concatenate it with the new authorizatiion certificate,
and then store the resulting chain as a cookie in the
guest’s Web browser.

The only remaining question would be how to get this
cookie from the guest machine to the RADIUS server, when
an authorized guest connects. One approach would be to
add a short-term SPKI/SDSI store to the RADIUS server.
When deciding whether to accept an X.509 certificate not
issued by the Dartmouth CA, the server looks in this store
for a SPKI/SDSI certificate chain for the public key in this
X.509 cert. If none can be found, the supplicant is routed to
a special Web page, that will pick up the guest’s certificate
chain from an HTTP cookie (this step requires that the guest
have a browser running) and save it in the store.4

In this decentralized approach, it also might make sense
to have the delegation tool save newly created SPKI/SDSI
chains in the short-term store at the RADIUS server, since
the guest will likely want to use the network immediately
after being delegated to.

Changing VLANs. We now have two scenarios—when
first receiving delegation, and in the above decentral-
ized store approach—where a supplicant will be connected
through the access point to the special VLAN, but will want
to then get re-connected to the standard network. In both
scenarios, the guest will be interacting with the Web server
we have set up on the special VLAN.

One way to handle this would be for our server to display
a page telling the guest how to cause their machine to drop
the network and re-associate. However, this is not satisfying,
from a usability perspective.

Instead, it would be nice to have our server (and back-
end system) cause this action automatically. One approach
would be to use the administrative interface provided by the
access point. For example, the Cisco 350 access point (that
we’re experimenting with) permits an administrator, by a
password-authenticated Web connection, to dis-associate a
specific supplicant (after which the supplicant re-initializes
the network connection, and tries EAP-TLS again). We
could write a daemon to perform this task, when it receives
an authenticated request from our backend server. The
server needs to knowwhich access point the supplicant is
associated with; however, in both scenarios, the RADIUS
server has recently seen the supplicant MAC and access
point IP address, since it told the access point to route this
supplicant down the special VLAN. If nothing else, we can
cache this information in a short-term store that the daemon
can query.

We plan to explore other approaches here as well.

4As this paper goes to press, we have successfully implemented the
cookie-based approach suggested here.
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7.2 Executing the decision

On the server side, we are currently using FreeRadius ver-
sion 0.9.2, running on a Dell P4 workstation running Red
Hat 9, and an Apache Web server running on another Dell
P4 workstation running Red Hat 9. We’re testing with a
Cisco 350 access point, with a Cisco Catalyst 2900 series
XL switch and a hub to connect the two machines running
the RADIUS server and Web server.

Setup. In our prototype, we have the access point config-
ured to provide two different SSIDs. The broadcast SSID is
called “Guest user” and authentication is not needed. It as-
sociates all users onto VLAN 2, the guest VLAN. The SSID
“Dartmouth user” is not broadcast, and requires EAP au-
thentication. Supplicants who pass EAP authentication are
associated to this SSID on VLAN 1, the native VLAN that
has access to the whole network. (We will abbreviate these
designations asV1 andV2 in the following discussion.)

Our VLAN configuration is illustrated in Figure 3. The
RADIUS server is connected toV1 on the switch and the
Web server is connected toV2. The access point, connected
to V1, is configured to query the RADIUS server for user au-
thentication. The hub connects the two machines and allows
them to communicate to one another through the resulting
private connection. In the future, we will obtain a router ca-
pable of VLAN trunking, which will allow the Web server
to exist on both VLANs; this will eliminate the need for the
private connection through a hub.5

Configuration. The EAP-TLS module of FreeRADIUS
uses OpenSSL to execute the SSL/TLS handshake between
the supplicant and the RADIUS server. After we changed
the appropriate FreeRADIUS configuration files to enable
EAP-TLS authentication and linked it with the OpenSSL
libraries [Sul02], the RADIUS server was ready to ac-
cept EAP-TLS authentication attempts. The client file was
configured to only accept requests sent from an access
point (called anetwork authentication server, NAS, in the
RADIUS protocol) with a Dartmouth IP address and the user
file was set to only allow EAP (in our case EAP-TLS) au-
thentication for all users, placing the user onV1 if success-
fully authenticated. A shared secret between the RADIUS
server and the NAS secures communication between these
two components.

In order to use EAP-TLS authentication, the RADIUS server
needs a trusted root CA so that it knows which certificates
to accept. The RADIUS server also needs its own server

5We recently revised our setup to include a Cisco 2600 series router to
handle VLAN trunking. The revised setup also uses newer models of the
switch (Cisco 3550 series) and access point (Cisco 1100 series).

certificate and key pair issued by the trusted root CA for au-
thenticating itself to the supplicant in the handshake process.
Local users are given a key pair and issued client certificates
signed by the trusted root CA. OpenSSL can be used to gen-
erate key pairs, create a root certificate, and issue server and
client certificates [Ros03]. Once the RADIUS server has a
trusted root CA to refer to, it can handle authentication re-
quests from the access point.

We modified the RADIUS server code to link with XML-
RPC libraries we installed on the same machine. These li-
braries allow the RADIUS server to commmunicate with the
cache, mentioned above, that stores SPKI/SDSI certificates
and searches for chains authorizing a given principal to con-
nect.

The decision process. The RADIUS server idles and
waits for packets. When it receives an EAP Access-Request
packet, it checks to see if the NAS that sent the packet is rec-
ognized and the shared secret is correct. If so, then it looks
at the packet and sees what type of authentication is used.
Since the SSID is configured to require EAP authentication,
the RADIUS server should only receive EAP authentication
requests from the NAS.

Once the EAP-TLS module is done executing, the decision
to accept or reject the supplicant has already been made and
is packed into the response packet. Thus it is necessary to
intercept the EAP-TLS module before a reject decision is
made to accomodate any modifications to the decision pro-
cess.

Our modification determines if there is an error code re-
turned by reading the supplicant’s certificate. For exam-
ple, the most common case would be the certificate is is-
sued by an unrecognized CA. Once the validity checks are
finished, we read the resulting error code to see if the val-
idation passed or failed. If it passed, then the certificate
presumably was issued by the known CA and the suppli-
cant has provided knowledge of the corresponding private
key. If the handshake failed due to an unrecognized CA,
however, we use XML-RPC to query the Java SDSI library
code about the public key of the X.509 certificate provided.
The library uses the SPKI/SDSI certificate chain discovery
algorithm proposed by Clark et al. [CEE+01]. If the Java
code finds a valid SPKI certificate chain vouching for the
supplicant, then we accept the supplicant and the EAP-TLS
module returns an accept code. If such a SPKI/SDSI certifi-
cate chain cannot be found, then the user is rejected. Once
graceful VLAN switching is implemented, the unauthorized
guest will be placed onV2 and see a Web browser window
with instructions for obtaining guest access.
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Figure 3: The setup of the Greenpass prototype. The switch is configured to associate VLANs with physical port numbers. The Web
server is the only element currently housed on VLAN 2. Eventually, VLAN trunking will be used to communicate between the RADIUS
server and the web server, eliminating the need for the private connection that exists between the two.

8 Related Work

Balfanz et al. [BDS+03] propose using secret keys to let
wireless parties authenticate. We’ve already noted related
work [DE02] in the “introduction” problem between two de-
vices.

In the SPKI/SDSI space, the Geronimo project at
MIT [Cla01, May00] uses SPKI/SDSI to control objects on
an Apache Web server. The project uses a custom authoriza-
tion protocol, with an Apache module handling the server
side of the protocol and a Netscape plug-in handling the
client side. The protocol can be tunneled inside an SSL
channel for further protection; the authors also considered
replacing X.509 with SPKI/SDSI within SSL. Howell and
Kotz [HK00] describe a similar SPKI/SDSI-based access-
control system for Web content as part of theirSnowflakeau-
thorization architecture. Koponen et al. [KNRP00] propose
having an Internet cafe operator interact with a customer via
infrared, and then having that customer authenticate to the
local access point via a SPKI/SDSI certificate; however, this
work does not use standard tools and institution-scale au-
thentication servers. Eronen and Nikander [EN01] describe

several SPKI/SDSI-based enhancements to both authoriza-
tion and authentication in Jini, a Java-based distributed com-
puting environment.

Canovas and Gomez [CG02] describe a distributed manage-
ment system for SPKI/SDSI name certificates and autho-
rization certificates. The system contains name authorities
(NAs) and authorization authorities (AAs) from which enti-
ties can request name and authorization certificates, includ-
ing certificates which permit the entity to make requests of
further NAs and RAs. The system takes advantage of both
name certificates that define groups (i.e., roles) and autho-
rization certificates that grant permissions to either groups
or individual entities.

9 Future Directions

Initially, we plan to “take the duct tape” off of our current
prototype, and try it in a more extensive pilot. Beyond this
initial work, we also hope to expand in several directions.
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No PKI. We note that our approach could also accom-
modate the scenario whereall users are “guests” with no
keypairs—in theory, obviating the need for an X.509 iden-
tity PKI for the local population. For example, if an insti-
tution already has a way of authenticating users, then they
could use a modified delegator tool that:

• authenticates the delegator (via the legacy method)

• sees that the delegator has a self-signed certificate (like
our guest tool does)

• then signs a SPKI/SDSI delegator certificate for this
public key (like our delegator tool does).

In some sense, the division between the X.509 PKI and the
delegated users is arbitrary. It would be interesting to ex-
plore the implications of dividing the population in other
ways than users versus guests (perhaps “permanent Dart-
mouth staff” versus “students likely to lose their expensive
smart-card dongles while skiing”).

Not just the network. Many types of digital services use
X.509 identity certificates as the basis for authentication
and authorization. For example, at Dartmouth, we’re mi-
grating many current Web-based information services to
use X.509 and client-side SSL/TLS. In the Greenpass pi-
lot, we’re adding flexibility to wireless access by extending
X.509/TLS with SPKI/SDSI. This same PKI approach can
work for networked applications that expect X.509, such as
our Web-based services.

In the second phase, we will extend the Greenpass infras-
tructure to construct a single tool that allows delegation of
authorization to networked applications as well as to the net-
work itself.

Not just EAP-TLS. Some colleagues insist thatvirtual
private networks(VPNs) with client-side keypairs are the
proper way to secure wireless networks. In theory, our
scheme should work just as well there. In the second phase,
we plan to try this.6

Alternative approaches to hash verification. An at-
tacker could potentially abuse our delegator applet if the del-
egator chooses to skip the fingerprint-verification step. Vi-
sual fingerprints are designed to discourage users from skip-
ping crucial verification steps: it is faster and less painful
to compare two visual fingerprints than to compare hashes

6As this paper goes to press, we have successfully completed an initial
test of VPN guest access using our existing client tools and RADIUS server;
see Goffee [Gof04] for further details.

represented as hexadecimal strings. We must devise either a
method that ensures the delegator cannot skip this step,7 or
a method that takes humans out of the loop entirely. Balfanz
et al. [BSSW02] suggest an introduction phase based on a
location-limited channel; this approach might allow us to
eliminate human interaction from the introduction phase in
the future. We are also considering alternative models of fin-
gerprint verification: for example, using PGPfone’s [PGP]
mapping of hash values to word lists would allow introduc-
tion to take place over the phone as well as in person.

Other threats. We designed our prototype around the
concept that a user’s public key is his or her online identity;
as a result, delegators authenticate to Web servers and the
RADIUS server using the same keypair (identity) as they
use to sign SPKI/SDSDI certificates for guests. A weakly
designed authentication protocol—one that requires a user
to sign an unstructured random challenge using his private
key—could be exploited by a malicious server. Specifically,
the server might present a “random” challenge that actu-
ally contains a SPKI/SDSI certificate or its hash: a dele-
gator could then be tricked into signing that certificate by
authenticating to the malicious server, whose owner might
use the resulting signature to obtain unauthorized access to
the wireless LAN or some other resource. We therefore need
to consider whether the TLS and SSL client authentication
handshakes are vulnerable to such an attack.

The TLS 1.0 [AD99] and SSL version 3.0 [FKK96]8 hand-
shakes appear to be immune to this attack due to the format
of the MAC that the client signs in order to authenticate (at
least when using an RSA keypair: see below). In both pro-
tocols, the MAC that is signed is aconcatenationof both
the MD5 and SHA-1 hashes of the values in question. The
SPKI/SDSI certificate format [EFL+99a] defines signatures
usingeitheran MD5 or a SHA-1 hash.

When authentication using a DSA keypair or using SSL ver-
sion 2.0 [Hic95], on the other hand, the client signsonly
a SHA-1 or an MD5 hash, respectively. In both these lat-
ter cases, however, the signed MAC is function of previ-
ous handshake values, including random values generated
by the client and structured values such as complete hand-
shake messages (in TLS or SSLv3) or the server’s certificate
(in SSLv2; note that the client will already have verified this
certificate before sending its own authentication materials).
As a result, it is not possible for the server to get the client to
sign a value that is a valid SPKI/SDSI certificate structure.
A malicious server would need to engineer its own hand-
shake values in such a way that the entire sequence signed
by the client has the same MAC value as the server’s desired

7An in-progress revision of our delegator tool requires the user to select
the correct visual hash from among several choices.

8Also see Rescorla [Res01] for further discussion of both these proto-
cols.

Appeared in the 3rd Annual PKI Research and Development Workshop Proceedings, 2004. 12



SPKI/SDSI certificate. This would require finding a colli-
sion in the hash function used; if a particular hash function
is proven to be vulnerable to such attacks, we could begin
accepting only those authorization certificates signed using
stronger hash function.

Location-aware authorization and services. By defini-
tion, the RADIUS server making the access-control decision
knows the supplicant’s current access point. In some scenar-
ios, we may want users to access the network only from cer-
tain access points; in some scenarios, users should be able
to access some applications only from certain access points;
potentially, the nature of the application content itself may
change depending on access location.

In the second phase, we plan to extend the Greenpass infras-
tructure to enable authorization certs to specify the set of
allowable access points. We will also enable the RADIUS
back-end to sign short-term certificates testifying to the lo-
cation of the supplicant (which requires an authorization cert
for the server public key), and to enable applications to use
these certificates for their own location-aware behavior. For
example, we might put different classes of users (professors,
students, guests, etc.) on different VLANs according to the
resources we would like them to access. It might also be
interesting to allow certain users to access the WLAN only
from certain locations—e.g., conference rooms and lecture
halls.

Who is being authorized? Campus environments are
not monolithic. At Dartmouth, we already have multiple
schools, departments, and categories of users within depart-
ments. Managing authorization of such internal users is a
vexing problem. Centralized approaches are awkward and
inflexible: a colleague at one university ended up develop-
ing over 100 different user profiles; a colleague at another
noted she has to share her password to team-teach a security
course, because the IT department has no other way to let
her share access to the course materials.

In the second phase, we plan to extend the Greenpass infras-
tructure to support authorization delegation for “local users”
as well as guests, and to permit local users to easily manage
authorization for information resources they own or create.

Devices. Currently, laptops are probably the most com-
mon platform for access to wireless networks. Other plat-
forms are emerging, however. At Dartmouth, students and
staff already carry around an RFID tag embedded in their ID
cards, a research team is developing experimental wireless
PDAs for student use, and we are beta-testing Cisco’s new
VoIP handset device; we’re also testing Vocera’s device for

Wi-Fi voice communication.

In the second phase, we plan to explore using these alter-
nate devices in conjunction with Greenpass. For example,
a department’s administrative assistant might be able to cre-
ate a SPKI/SDSI cert and enter it in a directory simply by
pointing a “delegation stick” (RFID tag reader) at the stu-
dent (detecting the student’s ID card). In another example,
when a physician at the Dartmouth-Hitchcock Medical Cen-
ter collars a passing colleague for advice on a difficult case,
he might be able to delegate permission to read that file sim-
ply by pointing his PDA at the colleague’s PDA.

Distributed authorization. The PKI community has long
debated the reason for PKI’s failure to achieve its full poten-
tial. The technology exists and has clear benefits; adoption
and deployment has been a challenge.

One compelling hypothesis is that the centralized,
organizational-specific hierarchy inherent in traditional
approaches to PKI, compounded by a dependence on
usable, globally unique names and awkward certificate
structure, does not match the way that authorization really
flows in human activities. By permitting authorization to
start at the end-users (rather than requiring that it start at
centralized places), and by using a system (SPKI/SDSI)
designed to address the namespace and structure issues,
Greenpass may overcome these obstacles.

In the second phase, we plan to extend Greenpass to repro-
duce real-world policies more complex than just “Prof. Kotz
said it was OK,” to examine (with our colleagues in the Dept
of Sociology) how readily this authorization system matches
the norms of human activity, and to examine whether hu-
mans are able to manage the user interfaces our Greenpass
tools provide.

We also plan to take a closer look at how other autho-
rization schemes might fit in this setting, in comparison to
SPKI/SDSI. Some candidates that might work in this setting
include the X.509-based PERMIS attribute certificate sys-
tem [COB03, PER] and X.509 proxy certificates [TWE+03,
WFK+04], as well as KeyNote [BFIK99, Key]. Theses by
Nazareth [Naz03] and Goffee [Gof04] give overviews of
many such systems.

10 Conclusion

In this paper we described a method of securing a wire-
less network while providing meaningful guest access. We
added a step to EAP-TLS authentication that performs an
additional authorization check based on SPKI/SDSI certifi-
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cates. By using SPKI/SDSI, we eliminate the need for a
cumbersome central authority; by grafting it on top of the
existing X.509-based PKI, we do not require our users to
install any additional client software.

The two major components of the Greenpass project are the
delegation tools and the modified RADIUS server. The del-
egation tools automate the process of creating temporary
SPKI/SDSI certificates for a guest, allowing an authorized
(but not necessarily computer-savvy) delegator to grant an
invited guest permission to use the network. The modified
RADIUS server takes into account that guests will want to
access the network and checks for guest credentials before
making a decision to accept or reject a supplicant’s request
for network access.

The goal of our project is to create a solution that imple-
ments delegation in a way that reflects real-world authoriza-
tion flow that does not rely too heavily on a centralized au-
thority; SPKI/SDSI allows us to accomplish this goal. Our
future work will allow us to investigate how our solution
fits with other existing ideas, hopefully resulting in a solu-
tion that is secure, completely decentralized, and capable of
adapting to new technology and delegation policies.
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