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Abstract In Private Information Retrieval (PIR), a user obtains one of N records from a
server, without the server learning what record was requested.

Recent research in “practical PIR” has limited the players to the user and
server and limited the user’s work to negotiating a session key (eg. as in SSL)—
but then added a secure coprocessor to the server and required the secure co-
processor to encrypt/permute the dataset (and often gone ahead and built real
systems).

Practical PIR (PPIR) thus consists of trying to solve a privacy problem for a
large dataset using the small internal space of the coprocessor. This task is very
similar to the one undertaken by the older Oblivious RAMs work, and indeed
the latest PPIR work uses techniques developed for Oblivious RAMs. Previous
PPIR work had two limitations: the internal space required was still O(N lg N)
bits, and records could only be read privately, not written.

In this paper, we present a design and experimental results that overcome
these limitations. We reduce the internal memory to O(lg N) by basing the
pseudorandom permutation on a Luby-Rackoff style block cipher, and by re-
designing the oblivious shuffle to reduce space requirements and avoid unneces-
sary work. This redesign yields both a time and a space savings. These changes
expand the system’s applicability to larger datasets and domains such as private
file storage.

These results have been implemented for the IBM 4758 secure coprocessor
platform, and are available for download.

Keywords: Private information retrieval and storage, oblivious RAM, permutation network,
sorting network, luby-rackoff cipher
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1. Introduction

Private Information Retrieval (PIR) is a privacy-enhancing technique which
has been receiving considerable research exploration, both theoretical and prac-
tical. The technique allows a user to retrieve data from a server without the
server being able to tell what data the user obtained. It is of interest as a coun-
terbalance to the increasing ease of collecting and storing information about
a person’s online activities, especially as these activities become a significant
part of the person’s life.

Examples of where PIR can be useful abound, usually where traffic analysis
of encrypted data can yield useful information. A medical doctor retrieving
medical records (even if encrypted) from a database may reveal that the owner
of the record has a disease in which the doctor specializes. A company retriev-
ing a patent from a patent database may reveal that they are pursuing a similar
idea. Clients of both databases would benefit from the ability to retrieve their
data without the database being able to know what they are interested in.

Two rather separate tracks exist in the PIR research record—one focuses
on designing cryptographic protocols which achieve PIR by either making use
of having the dataset on multiple non-communicating servers [3], or by using
techniques based on intractability assumptions without multiple servers [2, 9].

The other track attempts to produce Practical PIR schemes [1, 7, 18] that
can be integrated into existing infrastructure, by limiting the scheme to the
server, and only requiring the client to negotiate a secure session to the server,
as is typical in SSL sessions. This is made possible by using a physically
protected space at the server—a Secure Coprocessor (SCOP) [17].

1.1 Existing Prototype

Our previous work on Practical PIR (PPIR) [7] produced a PPIR prototype
running on the IBM 4758 secure coprocessor with Linux [17], and offering an
LDAP1 interface to the outside. We will first describe the background items
related to this prototype.

Secure Coprocessors. A secure coprocessor is a small general purpose
computer armored to be secure against physical attack, such that code running
on it has some assurance of running unmolested and unobserved [22]. It also
includes mechanisms to prove that some given output came from a genuine
instance of some given code running in an untampered coprocessor [16]. The
coprocessor is attached to a host computer. The SCOP is assumed to be trusted
by clients (by virtue of all the above provisions), but the host is not trusted (not

1Lightweight Directory Access Protocol—the protocol of choice for interfacing to online directories.
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even its root user). The strongest adversary against the schemes presented here
is the superuser on the host.

IBM 4758 Secure Coprocessor. The 4758 is a commercially avail-
able device, validated to the highest level of software and physical security
scrutiny currently offered—FIPS 140-1 level 4 [19]. It has an Intel 486 pro-
cessor at 99 MHz, 4MB of RAM and 4MB of FLASH memory. It also has
cryptographic acceleration hardware. It connects to its host via PCI (hence we
often refer to it as a card). Our host runs Debian Linux, with kernel version
2.4.2-2 from Redhat 7.1 as needed by the 4758/Linux device driver.

In production, the 4758 runs the CP/Q++ embedded OS; however, experi-
mental research devices can run a version of Linux (as does the follow-on prod-
uct from IBM). Linux has considerable advantages in terms of code portability
and ease of development—our prototype is written in C++, making extensive
use of its language features and the Standard Template Library, and it runs fine
on the 4758 with Linux.

PIR using Secure Coprocessors. The model which we follow is
that we have available a physically protected computing space at the server. If
this space was large enough to hold the whole dataset, the problem would be
solved, as clients could negotiate a secure session with it, and then retrieve their
data. Since it is physically protected, no one should be able to observe what
item the client obtained. Unfortunately practical considerations result in real
protected environments being quite small, much too small to hold the entire
dataset. Thus, the problem becomes that we want to provide private access
to a large dataset while using only a small amount of protected space. This
is almost isomorphic to the Oblivious RAM problem [6], which we discuss
further in Section 2.

Model. In Figure 1 we show the more concrete setup: we have a dataset
of N named items each of size M. The items may be visible to the host; they
may also be encrypted (for the SCOP’s private key), though why and how
they may be encrypted ahead of time is orthogonal to our topic here. A client
connects to the SCOP (tunneling via the host) and delivers a request for one of
the items. The SCOP is very limited in memory—it is allowed O(lg N + M)
memory, which is the minimum needed to store pointers into the dataset, as
well as a constant number of actual data items. Any larger storage, like the
actual dataset or pre-processed versions of it, is provided by the host. Thus the
SCOP has to make I/O requests to the host in order to service a client request.

Appeared at I-NetSec04: 3rd Working Conference on Privacy and Anonymity in Networked and Distributed Systems.



4

To be a correct PIR scheme, it must be the case that the host cannot learn
anything2 about client requests from observing the I/O from the SCOP.
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Figure 1. The setup of hardware assisted PIR

Simply encrypting the records does not solve the problem; the server can
still learn the identity of requested items, and (if the server colludes with a user)
can learn what any given record decrypts to. It is also insufficient to only hide
the identity of single retrievals, as then an attacker could learn the popularity
of individual items, and correspondence between requests, eg. “Aphrodite and
Boris both retrieved the same data item today”.

The Initial PIR with secure coprocessors algorithm. In their
initial proposal of using secure hardware for PIR, Smith and Safford kept the
dataset unprocessed on the host [18]. Given a request for item i, the SCOP
reads every item in the dataset, internally keeps item i and returns it to the
client at the end. The host only observes that the SCOP touched every record,
so it does not learn anything about i. The clear problem is that every retrieval
takes O(N) time. (Careful data structures can permit the work to be divided
evenly across several devices, but this time bound is still problematic.)

Latest PIR Algorithm. The structure of the algorithm we use was
originally developed by Goldreich and Ostrovsky for the Oblivious RAM prob-
lem [6]. We note first that it relies on having a dataset of numbered items, from
1 to N. It proceeds in retrieval sessions, where a session S consists of:

2We are assuming that cryptography works; strictly speaking, this scheme is not secure in the information-
theoretic sense, since the host can still see ciphertext.
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Randomly permuting the contents of records 1 through N. First, the
SCOP encrypts each record in the dataset. Then, the SCOP (pseudo)randomly
selects a permutation π of [1..N], and relocates the contents of each record r,
1 ≤ r ≤ N, to record location π(r), changing the encryption along the way. This
produces the shuffled3 dataset of encrypted items Dπ. The relocations must
be done so that the host cannot learn which permuted record corresponds to
which input record, after having observed the pattern of record accesses during
the permutation. Using the terminology of Goldreich et al., the permutation
algorithm must be oblivious: have the same I/O access pattern regardless of
the input (ie. the permutation)4 . [6].

Servicing k � N retrievals. By now, the permuted dataset Dπ is available
on the host, and the SCOP knows π. The SCOP uses this knowledge to hide
the identities of retrieved records. In order to retrieve record r, the SCOP reads
in π(r) from Dπ, and the host does not learn what r can be.

What is left is to hide the relationships between retrieved items, so the host
(for example) cannot tell how many times a given item was retrieved. The
approach is to copy records which have been accessed into a working pool PS

of maximum size k, which is scanned in its entirety for every retrieval. On
each retrieval for record r, one record from Dπ is added to PS : either r if it is
not already there, or a random untouched record if it is. Thus, records in Dπ
are accessed at most once.

The implementer can set a a maximum value of k, to put a maximum value
on the response time for any given query. However, the shuffling step needs to
be fast enough to have a new shuffle ready when PS reaches that maximum k.

The private shuffle implementation has varied in the literature, and in
our prototype we had added a new approach: using Beneš permutation net-
works [21]. A Beneš network can perform any permutation π of N input items
by passing them through O(N lg N) crossbar switches which operate on two
items, either crossing them or passing them straight. The connections between
the switches are fixed for a given N, only the cross-bar settings differ for dif-
ferent π.

This network is useful for our problem because (1) the SCOP can use cryp-
tography to perform a cross-bar switch on two items resident on the host with-
out the host learning which way the switch went, and (2) by doing this for
all the switches in a Beneš network, the SCOP can permute the whole dataset
without the host learning anything about the permutation, even though he ob-
serves all the record I/O. More specifically, to execute a switch the SCOP reads

3We use permute and shuffle interchangeably, but shuffle always refers to permuting the whole dataset, as
opposed to computing π(i) for some i
4The access pattern, ie. the sequence and values of I/O operations, will not be identical for all π, but must
look identical to a computationally bound observer.
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in the two records involved, internally crosses them or not, and writes them out
encrypted under a new key so the host cannot tell if it was a cross or not. Since
the network consists of 2 lg N columns of switches with N/2 switches each,
and the SCOP can execute the switches column by column, he can use one key
per column, thus never needing to store more than two keys at a time during
the operation.

Networks similar to the Beneš are capable of performing other tasks obliv-
iously, again making use of the fact that the SCOP can hide which way a unit
operation (on two inputs) went, and by virtue of the fixed structure of the net-
work, the ability to hide the setting of each unit extends to being able to hide
the setting of the whole network. We later make use of sorting and merging
networks in this manner.

1.2 Improvements to the Prototype

There are two areas where we saw the potential to improve our prototype:
memory usage inside the SCOP, and the ability to update items privately.

Memory usage. Our prototype used two techniques which required
O(N lg N) bits of storage inside the SCOP5. One was the storage of a per-
mutation π selected uniformly at random from the set of all N! permutations.
The other was the execution of a Beneš network on the data items; in particular
computing the switch settings of the network required O(N lg N) bits6.

These “memory-hungry” techniques were not a problem for the kind of
datasets we were treating, with N < 213 or so, and the memory available in
the 4758. However even for N = 218, two objects of N lg N bits each would
need more than 1MB, which begins to strain the 4758’s memory. In any case,
the memory requirements were, strictly speaking, inconsistent with the desire
to have a small protected space.

Updates. Our prototype was really a Private Information Retrieval server,
and did not have the option for clients to update the contents of data items. This
ability could be of interest though, in more interactive applications of the PIR
technique, for example if one wanted to build a private filesystem, which could
be housed in a remote location but assure a user that nothing about his activities
on the filesystem could be gleaned by the remote site.

5Note that this is less than the O(NM) storage which would be needed to hold the whole database: the size
of data items we were working with was at least 1KB.
6It is not useful to store the settings on the host, as they are computed in an order dependent on the input,
so an adversary could learn about π by observing this order
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2. Related Work

Throughout this paper one notices references to Oblivious RAM
(ORAM) [6]. This is because that problem has a very similar structure to
hardware-assisted PIR, and the mechanisms developed there are for the most
applicable here too. The ORAM problem is for a physically shielded but space-
limited CPU to execute an (encrypted) program such that untrusted external
RAM cannot learn anything about the program by observing the memory ac-
cess pattern. The CPU corresponds to the SCOP (acting on behalf of clients),
and untrusted RAM corresponds to the host. The asymptotically slower so-
lution presented there (square-root algorithm) is what we base our algorithm
on.

The asymptotically superior solution (polylog algorithm), has a O(lg4 N) per
memory access overhead. An actual operation count reveals that it has a larger
actual overhead that the square-root algorithm for about N < 220. Such large
dataset sizes are practically infeasible for both algorithms on the hardware we
currently have, so we have not experimented with the polylog algorithm.

The ORAM work has covered some of the aims we address in this paper,
namely private reading and writing of memory words using a protected CPU
with logarithmic in N memory size.

The new contributions over ORAM in this paper are:

an asymptotically and practically more efficient method of re-shuffling
the dataset between sessions (Section 3.2),
a practically efficient session-transition scheme (Section 4.2),
permutation using the Luby-Rackoff scheme (which has advantages, for
example enabling us to compose and invert pseudo-random permuta-
tions) (Section 3.1),
an actual implementation on commodity secure hardware.

Ostrovsky and Shoup introduced communication-efficient private informa-
tion storage, the computationally secure version of which is based on the Obliv-
ious RAM algorithm [14].

3. Memory usage

In this section we present solutions to the high memory needs of the pre-
vious prototype. As mentioned before, we had two distinct sources of super-
logarithmic memory usage, both of which are addressed.

3.1 Permutation

We need a permutation on the set of integers {1, . . . ,N}. It should be storable
in O(lg N) space, which rules out the use of a truly random permutation: it re-
quires O(N lg N) bits of storage. It should also be invertible, which is required
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by our re-shuffling algorithm (Section 3.2). Because of the storage restriction,
we have to settle for a pseudorandom permutation, and the one we chose is the
Luby-Rackoff-style cipher on lg N-bit blocks, with 7 rounds (LR7

n) [11].
An L-R cipher (on 2n-bit blocks) is a Feistel network with independent

pseudo-random round functions. A Feistel network consists of several iterated
rounds Ri(L,R) = (R, L ⊕ fi(R)), where

L,R ∈ {0, 1}n are initialized such that LR = x, x being the plaintext,
fi are round functions, fi ∈ {0, 1}n → {0, 1}n. Note that they do not have
to be permutations for the whole network to be a permutation—this is
part of the point in fact, that non-invertible functions are used to produce
a permutation.
⊕ is the bitwise XOR operation.

Luby and Rackoff initially proved chosen-plaintext security with 3 rounds, and
chosen-ciphertext security with 4 rounds, in both cases with only a limited
number of queries against the cipher oracle.

Recent results have improved the security bounds for higher-round L-R
ciphers to state that LR7

2n is indistinguishable from a truly random permu-
tation by an unbounded adversary given m chosen-plaintext queries, where
m � 2n(1−ε) [15]. The potential weakness to chosen plaintext attacks (CPA)
is significant in our case because the host can mount such an attack by issu-
ing requests to the SCOP (posing as a client), and observing which items in the
shuffled dataset the SCOP accesses. In fact the host can harvest up to k chosen-
plaintext pairs from the permutation π, where k is the number of retrievals in
the session.

A variation on the basic L-R scheme has been conjectured to give a much
higher resistance to CPA—unbalanced Feistel schemes which have round func-
tions fi ∈ {0, 1}r → {0, 1}2n−r, where r , n. In particular Patarin conjectures
that an unbalanced L-R scheme (as described, among others, by Naor and
Reingold [13, Sect. 6]) on 2n bits, using round functions fi ∈ {0, 1}2n−1 → {0, 1}
(ie. boolean functions on 2n − 1 bits), are secure against CPA given m chosen-
plaintext queries, where m � 22n(1−ε) [15].

For the pseudo-random functions inside the cipher, we use TDES (which is
hardware accelerated on the 4758) with expansion and compression to give a
function on the required domain.

3.2 Shuffling the Dataset

Once we have established a random or pseudo-random permutation, we
need to actually permute the records such that the server cannot learn any-
thing about the permutation. As mentioned before, the Beneš network is not
applicable if we are to use only logarithmic space. The algorithm to set its
switches for a given permutation has resisted many simplification attempts.
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The solution which we came up with takes advantage of the fact that only a
small fraction of the dataset is touched during a query session. The untouched
items do not need to be reshuffled, only the touched ones do. Informally, the
procedure for reshuffling is as follows.

Let the current permutation be π1. Let T be the touched items at the end
of a session, and T be the remaining items, untouched. Let the size of T be
k (which is constant in our prototype, so as to limit the query response time).
For the next session we generate a new permutation π2. Also we assume that
the indices of the items in T are available in a list LT in the SCOP. Then we
follow the following algorithm:

Reshuffling algorithm.

(i) Re-order the items in T so they are sorted by π2(i). We do not need to
do this obliviously. We just need to hide what are the indices of T under
π2 (but not under π1—this is already known).

(ii) Obliviously re-order the items in T so they are sorted by π2(i).

(iii) Obliviously merge the re-ordered T and T , to give a dataset shuffled
under π2.

This yields savings both in time and space over using a Beneš network to do
a full reshuffle. We will first describe in more detail the algorithms used, and
then present the resources needed. We assume that we can compute inverse
permutations, which is true with Luby-Rackoff style permutations. Step (i)
is shown in Algorithm 1. Step (ii) can be directly performed using a sorting
network, eg. one of Batcher’s networks. However a more efficient approach
is to use the Beneš network, after computing the permutation vector for the
reordering needed. This can be accomplished using the list LT , with one sorting
step to obtain a sorted list of the indices in T under π2

7. Step (iii) can be
performed using a merging network.

A good reference for sorting and merging networks is found in “Introduction
to Algorithms” [4, chap. 27], and at the end of Section 1.1 we explain how such
networks can be used to perform operations on a large dataset obliviously.

Notes. Step 6 in Algorithm 1 must take the same amount of time at every
execution8 , but this is easy given the sorted array LT,π2 , and takes constant time.

7Note that we had to perform this sorting at the start of Algorithm 1 too, so the output of that can be reused.
8Or an adversary could use timing attacks to deduce information about the indices of T under π2.
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Algorithm 1 Step (i) of the re-shuffle algorithm: Reordering the items in T
from π1 to π2

Require: T is the set of touched records, T are the remaining records.
Require: Dπ1 : the whole dataset under π1, on the host.
Require: LT : list of the indices of T , in the SCOP.

1: LT,π2 ← indices of T under π2, sorted . Using LT

2: T π2 ← ∅ . The destination array (on the host) for the records in T
3: j← 0 . j is an index under π2

4: while j < N do
5: j← next index in T in order of π2 . guided by LT,π2

6: r ← π1(π−1
2 ( j)) . r is an index under π1

7: R← read from host Dπ1[r]
8: Tag R with destination j . But this tag is hidden from the host
9: Append encrypted R to T π2 . Recall T π2 is on the host

10: end while

Step Time cost Space cost (in bits)
(i) O(k lg k) for sorting, O(N − k) for the loop O(k lg N) for the indices of T
(ii) O(k lg k) for the Beneš network O(k lg N) for building and storing

the permutation vector,
O(k lg k) for the Beneš network

(iii) O(N lg N) for the merging network O(lg N) for indices

Table 1. Cost of the reshuffle algorithm. k is the number of queries in a session, same as the
size of a touched set. Note that the cost of the merging network in the last step is the dominant
one, and that is half the cost of a Beneš network on the same input size. Also the storage needed
is O(k lg N), which is O(lg N) for constant k (which is how we set k). Even if k =

√
N as in the

ORAM square-root algorithm, the storage required is considerably sublinear.

The initial shuffle. For the initial shuffle, which has to re-order all the
items obliviously, we resort to the use of Batcher’s bitonic sorting network.
This method was used in the ORAM work for all shuffles of memory.

Sorting networks sort N items by passing them through a series of compara-
tors, which are 2-input units that sort the two inputs. The connections between
the comparators are fixed for a given N.

Batcher’s sorters have depth lg2 N
2 , which is appreciably larger than the Beneš

network which we have so far used, by a factor of lg N
4 , but since we only need

to use it once, before the database can be used, this is not a big problem.
Our usage of the bitonic sorting network is very similar to how we used the

Beneš network. First we tag each record r with its destination tag dr = π(r), and
pass the records through the sorting network, with dr as the key. We implement
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a comparator inside the SCOP such that the host cannot tell whether the two
records were crossed or not.

4. Updates

The problem of evolving our previous design to support private updates of
data items reduced to two main tasks: ensuring integrity of data, even against
replay attacks9; and dealing with the fact that incoming updates render the data
in any long-lived preprocessing steps stale: for example a shuffled dataset will
be out-of-date by the time the shuffle is done (assuming that shuffles run in
parallel to queries, which is necessary to avoid downtime between sessions).

The easy part was modifying the retrieval session to deal with (1) hiding
whether a client request is an update or a retrieval, and (2) hiding which item
in the working pool is being updated. The approach is to update all records
in the working pool (but not all records in the dataset) with every request.
In particular, for every record r in the pool, the SCOP writes either {r}K , or
{rnew}K if a new value rnew is provided by the client. The variable K is a new
key generated for this encryption of the working pool only. Given this change
of key, the host cannot tell if and where a new record was written. Note that
the SCOP does not need to keep the keys for previous versions of the pool.

4.1 Integrity

The integrity of any object stored on the host is assured by first tagging it
with a value t which specifies both the physical and temporal 10 location of
the object, and then applying a keyed message authentication code (MAC) to
the object and the tag. The location code and MAC are stored with the object
on the host. For example, during the last step of a re-shuffle operation (the
merging network) we have t = 〈s, d, i〉, where s is the current shuffle number,
d is the depth within the network11 (both temporal), and i is the item’s current
actual location in the dataset (physical). Thus, an adversary obviously cannot
modify the item’s contents undetected, but it also cannot substitute an item
from an earlier time (ie. cannot perform a replay attack).

Of more interest is how to compute the temporal location of an object up-
dated during a query session. Within the sth query session, at the end of the ith

client request, the query SCOP has built up a working pool of touched records
Ps = 〈r1, r1, . . . , ri〉. The temporal tag for each record in Ps would then be
t = 〈s, i〉. The notable aspect here is that the SCOP can compute the temporal

9Replay attacks are where the adversary replaces an item with another one which has a correct check-
sum/MAC, but comes from a previous execution of the algorithm.
10“Temporal” in the sense of where in the timeline of the algorithm the object is located.
11The merging network has 1

2 lg N levels of N/2 independent comparators each, and the depth is the current
level number during an execution of the network.
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tag for each object which needs it while maintaining only a fixed small amount
of state—s and i in this case. This temporal tagging with small state is the
same notion as the “time-labelled” property expounded for some of the Obliv-
ious RAM simulations, and also used to protect against tampering and replay
attacks [6].

4.2 Session Continuity

The problem of transitioning between query sessions is trivial in the case of
read-only PIR: since the database contents are assumed static, several shuffled
copies can be produced in advance and used immediately whenever needed—
the shuffle data does not go stale. If updates are supported though, pre-shuffling
is not an option as the shuffled datasets will be stale soon. Even worse, updates
will occur between the start and end of a shuffle, requiring them to be incorpo-
rated into the output of that shuffle before it can be used. Here we describe our
scheme for transitioning between sessions.

Given that we run a shuffle concurrently with a query session, the output of
the shuffle will not contain the updates received during that session. We deal
with this problem by incorporating the records T i touched during session i into
the working pool of session i + 1 from the beginning. This means that session
i + 1 will touch each record in Ti at every operation, in addition to its own
accumulating Ti+1. At the end of session i + 1, its working pool will contain
both Ti and Ti+1.

Overview of the algorithm. In Figure 2 we show a diagrammatic
representation of the actions of all the components during one full session.

We first note that the working pool of the query session consists of two
parts—the set of records touched during that session (which is empty at first),
and the ones touched during the last session.

At the end of session i − 1, the query SCOP has produced a new touched
set Ti−1, and the shuffler has produced a new shuffled dataset Dπi . The new
session i starts by writing the items in T i−1 into Dπi (directly, one by one), and
also adding them to its working pool.

The shuffler begins to re-shuffle the dataset Dπi , with touched set Ti−1, for
use in session i + 1 (recall from Section 3.2 that we only need to obliviously
reorder the items in a shuffled dataset which have been touched since the last
shuffle—these items are now Ti−1).

5. Experimental Results

Here we present some performance results from our prototype, whose con-
stitution is described in Section 1.1.
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Dπ

Dπi Dπi+1

π

πi → πi+1 πi+1 → πi+2

π1 → π2

Partially full working pool, con-
taining the touched set Ti from
session i

Dataset shuffled under π

Servicing queries

Reshuffle from π1 to π2

π

Figure 2. A snapshot of the overall algorithm across one session. At the end of session i− 1
the shuffler has prepared Dπi , and the query SCOP has a working pool containing the touched
sets Ti−1 and Ti−2 (see Section 3.2). Then, the shuffler begins a reshuffle with permutation πi+1

and with touched set Ti−1. The query SCOP begins a new session i with Ti−1 in its working pool,
and filling in its own Ti.

In Figure 3 is shown the running time for the reshuffle operation described in
Section 3.2. In Figure 4 we show how long it takes the query SCOP to process
queries. Putting these two measurements together gives an idea of what kind
of service this prototype can offer. In Table 2 we show the query processing
time possible for different N, with two limiting factors: the query processor
speed, and the re-shuffle speed (keeping in mind that the query processor can
only service k = 128 queries before needing a new shuffled dataset from the
shuffler).

6. Future Work and Conclusions

We have presented the evolution of our previous work on a hardware-assisted
private information retrieval prototype—improved performance in terms of
both running time and space, and the ability to update items privately. The
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Figure 3. Duration of re-shuffling, for varying dataset sizes. The record size was 850 bytes
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Figure 4. How long does the query SCOP take to service a request? Here are the times
during one query session. Recall that the working pool starts with all the items touched during
the previous session, in this case 128. The pool accumulates 128 more during the session.

prototype gives reasonable performance on dataset sizes up to about 10, 000,
and can benefit easily from parallelism via extra hardware units.

There are several avenues of interesting and useful further investigations.
We did our prototype work on the IBM 4758, but alternate trusted hardware

is emerging. We are particularly interested in exploring the hardened-CPU
variations (e.g., [10, 12, 20]), since these devices may provide higher perfor-
mance, as well as being cheaper and more ubiquitous.

Experiments with the poly-logarithmic oblivious RAM scheme by Ostro-
vsky [6] could be interesting, for both PIR on larger datasets, and oblivious
program execution. Especially now that hardened CPU’s, similar to the model
used for ORAM, are coming into the picture, the tool of running arbitrary pro-
grams obliviously may be practically useful.
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N Query processor limit Shuffler limit Response Time
1024 5.5 2.0 5.5
2048 5.5 4.1 5.5
4096 5.5 8.7 8.7
8192 5.5 18.5 18.5

Table 2. Query response times (in seconds) attainable with different sizes of datasets. The two
limit columns show how the respective operations limit the response—the query processor with
its average latency (from Figure 4), and the shuffler by virtue of having to complete a whole re-
shuffle before the next session can begin. In the N ≥ 4096 cases, the query SCOP could handle
more hits, but a single shuffler is not producing shuffled datasets quickly enough. An easy way
out here is to do the merge step of the re-shuffle in parallel, using two or more SCOPs, and
gaining linear speedup with the number of SCOPs, as the merging network is actually intended
for parallel use. For N = 1024, the query SCOP can be always busy and the shuffler will keep
up.

As mentioned earlier, private information storage could be a useful primi-
tive for a strongly privacy-protected remote filesystem, providing the “block
device” on top of which a filesystem could be built. Relevant here is work an-
alyzing the applicability of block-PIR protocols such as we have described to
retrieval of linked structures, eg. web pages [8].
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