
such as user interfaces, business prac-
tices, and public policy. However, to
mangle an analogy from physics, the
observer is also part of the system.
When reasoning about or designing
(or breaking into) secure systems, it’s
important to remember the tools,
mindset, and background we bring
to the table.

Computer security’s primary
background fields are computer
science and computer engineering
(although some might make a case
for mathematical logic). These
fields sometimes bring very differ-
ent approaches to the same basic se-
curity problems. In this install-
ment, we take a lighthearted look
at these differences.

Within universities, distinguish-
ing the computer science depart-
ment from the computer engineer-
ing department can be tricky. At my
undergraduate institution, the two
programs came from the same an-
cestor, electrical engineering and
computer science. At Dartmouth
College, however, computer sci-
ence emerged from the mathemat-
ics department. Engineering is in a
completely different school. As a
consequence, although computer

science and computer engineering
are natural partners for computer se-
curity courses and grants, we must
move up several levels in the hierar-
chy of deans before we find one in
common, thus complicating coop-
eration. Nevertheless, most courses
are cross-listed, leading many un-
dergraduates starting my operating
systems class to think they’re taking
an engineering course. (In fact, a
“computer science” major is often a
liberal arts program that lets students
take courses in less technical subjects
such as literature and history. Each
camp seems to regard this difference
as a weakness of the other camp.)

However murky the organiza-
tional roots, each discipline takes its
own distinctive approach to com-
puter and computation problems. At
a very coarse (and, hence, wrong)
granularity, computer science looks
at computation as an abstract, almost
mathematical process, drawing from
thinkers such as Alan Turing on the
fundamental nature of computation;
computer engineering considers the
physical systems that realize this
process, holding up Claude Shan-
non’s work on the fundamental na-
ture of information. These roots can

lead to different perspectives on se-
curity problems.

Computability
theory
First, we might ask the basic ques-
tion: what does computation do?

Computer scientists, drawing on
Turing, think of a function as a map
that takes each element of an input
set to some output value. Because
we’re talking about computers, we
can assume that the input set consists
of strings of bits, and that the output
values are 1 or 0. (Although this as-
sumption might sound limiting, it’s
not—we can still express any reason-
able problem this way.) The
Church-Turing thesis characterizes
computing as running a program on a
device such as a modern computer,
with the minor difference that the
thesis assumes the computer might
have unbounded memory. For some
simple functions (such as “print a 1 if
the input has an odd number of
ones, and 0 otherwise”), it’s pretty
clear how we can write a program to
compute them. We might naturally
assume that we can write a program
to compute any function.

A classic (and surprising) result of
theoretical computer science is that
this assumption is wrong! Functions
exist that aren’t computable. The way
to construct troublesome examples is
to realize that programs themselves
can be represented as bitstrings—and
then to start asking about programs
that compute functions about pro-
grams. The standard example is the
halting problem—that is, will a given
program on a given input actually

S.W. SMITH

Dartmouth
College

T
he aim of this department is to look at security issues

in the context of larger systems. When thinking

about systems, it’s tempting to only envision compu-

tational elements such as machines, operating sys-

tems (OSs), and programming languages, or human elements

Turing is from Mars,
Shannon is from Venus:

66 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Computer Science and Computer Engineering

Secure Systems
Editor: S.W. Smith, sws@cs.dartmouth.edu

Secure Systems

halt, or will it run forever? Funda-
mental work in computational the-
ory shows that we can’t write a pro-
gram that will get this problem right
on every possible input.

Freshly armed with a PhD in
computer science (and looking at the
world through Turing-colored
lenses) I set out as a post-doc doing se-
curity consulting at Los Alamos Na-
tional Laboratory, in the early days of
the World Wide Web. A large gov-
ernment agency approached us with
a problem. They planned to con-
struct what they called a subweb; users
would enter the agency’s site via an
official entrance page, but would then
wander through a large collection of
pages, hosted by many different third
parties (typically universities), but
branded with the agency’s name. The
agency was worried that bored sys-
tem administrators might install
“Easter egg” functionality that would
entertain them and their friends, but
would embarrass the agency and
damage its reputation. For example,
suppose a Web form asked for a zip
code and fed this back to a complex
server-side program that produced
some response to send back to the
user. The agency worried that a user
entering a certain zip code (say,
12345) would get a response that
took the user to someplace embar-
rassing (say, playboy.com).

The agency asked us if we could
write a Web spider that would crawl
through their subweb and deter-
mine if such functionality existed.
We could have certainly written a
basic crawler, but these sites might
have had arbitrary programs on the
back end that would take Web form
requests and such as input and return
HTML as output.

Suppose we could write an ana-
lyzer program A that would take such
a program P, determine whether
there was some input to P that would
return a link to playboy.com, and an-
swer “yes” or “no.” For any arbitrary
program Q and input I, we could au-
tomatically translate it to a program
Q´ that runs Q on I and outputs

“playboy.com” whenever it halts. If
Q halts on I, our program A will flag
Q´ as unacceptable; if Q doesn’t halt,
our program A will approve Q´. We
could thus use our analyzer program
A to solve the halting problem. Be-
cause that’s impossible, such an A
(that works correctly for every pro-
gram) can’t exist.

Chuckling, I cited Turing’s 1937
paper1 on the halting problem in
my report for this agency. (I’m not
sure if they renewed their contract
with us; they probably wished I had
given a practical answer instead of a
correct one.)

Information theory
I had another, more recent, experi-
ence with computer science under-
mining a security project. When
trying to attack an Internet system, it
helps an adversary to know the
details of the system’s OS and under-
lying architecture because the
adversary can then pick appropriate
attack strategies. A student suggested
defending systems by keeping adver-
saries from obtaining this knowl-
edge, and (as an engineer) proposed
measuring these techniques’ effec-
tiveness via entropy.

Entropy, in Shannon’s informa-

tion theory, measures how much
information a message carries.
(Some scientists characterize infor-
mation content as how surprising a
message is.) Although information
theory is a beautiful way to reason
about things such as transmission
over noisy channels, it neglects to
take into account the difficulty of
actually extracting information.
Consequently, in many practical
scenarios, trying to minimize what
the adversary might learn by min-
imizing entropy gives exactly the
wrong answer because a substantial
gap might exist between how much
information a message contains and
what the receiver can extract. (Uni-
versity lecturers certainly appreciate
this phenomenon.)

For example, think about en-
cryption with standard symmetric
block ciphers such as the Triple-
mode Data Encryption Standard
(TDES) or the Advanced Encryp-
tion Standard (AES). An eavesdrop-
ping adversary can see the
ciphertext, but knows neither the
plaintext nor the key; to get this in-
formation, the adversary might try
to guess the key and then use this
guess to decrypt the ciphertext to a
potential plaintext. If the plaintext

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 67

Secure Systems

might be any possible bitstring, the
adversary can never know if he or
she guessed the right key. However,
if the plaintext space is sufficiently

sparse (for example, English text in
ASCII characters instead of arbi-
trary binary) and if the ciphertext
decrypts to valid plaintext, the ad-
versary can be more confident that
he or she guessed correctly. Shan-
non formalized this relation: the
longer the ciphertext gets, the more
confident the adversary can be that a
guess is correct, if the ciphertext de-
crypts to sensible plaintext. Once
the ciphertext is sufficiently long,
it uniquely determines the plain-
text. For encrypt–decrypt–encrypt
TDES and English ASCII plaintext,
as few as 18 characters are enough.

Suppose then that we want to
keep the adversary from learning
some data, such as machine config-
uration, that we express as 18 or
more characters of English text, and
we wanted to choose between two
strategies. Should we delete every
other character and send the re-
mainder to the adversary? Or
should we encrypt the entire string
with TDES and a secret random
key, and send the ciphertext to the
adversary? If we use entropy to de-
cide, the former is a better strategy.
If we use common sense, the latter is
better. Yes, we might have given the
adversary sufficient information to
compute the plaintext, but (by cur-
rent intractability assumptions) the
computation isn’t feasible. Com-
puter science and computer engi-
neering give apparently contradic-
tory answers—Turing is from Mars,
Shannon is from Venus.

On the other hand, Shannon’s
information theory can also enable
security projects. For example,
consider trying to build a system

that decrypts a ciphertext, en-
crypted under an unknown key, by
systematically trying every key.
The typical computer science stu-
dent could build a decryption
module and determine how to co-
ordinate the activity of a vast col-
lection of modules in parallel.
Skilled in complexity theory, a
computer science student might
also be able to estimate the ex-
pected time and space complexity
necessary for this search. However,
a computer science education
where Turing eclipsed Shannon
wouldn’t help the student tell, au-
tomatically, whether a guessed key
is right.

For this problem, information
theory gives the right answer. The
point where the information in the
ciphertext dominates the adver-
sary’s uncertainty about the key (for
example, the approximately 18
characters in the previous case) is
called the unicity distance. In the late
1990s, the Electronic Frontier
Foundation (EFF) made a technical
(and political) statement by build-
ing Deep Crack, a machine that
used a massive number of such de-
cryption modules in parallel to
break DES by brute force.2 It takes
information theory to appreciate
the technical slickness of the EFF
design: essentially, each decryption
module uses unicity distance to
limit how much ciphertext it has to
deal with, and a bit-vector to test
for plaintext such as ASCII.

A dangerous
fondness for
clean abstractions
Computer science educations can
also leave students ill-equipped in
other ways. My colleague Michael
Caloyannides (who has also written
for S&P) has an entire list. One that
stayed with me is the tendency of
nonengineers to believe physical
specifications (that is, I suppose, if
they read them at all). For example,
students tend to believe that if the
spec for the wireless card says that the
signal goes 50 meters, it can’t be de-
tected at 51 meters, and it can be de-
tected perfectly at 49 meters.

This becomes a problem when
such students use these assumptions
to guide subsequent operational and
policy decisions. The system they’re
securing isn’t an abstraction follow-
ing clean rules, but a mess of physi-
cal devices interconnected in the
real world.

Overemphasis on clean abstrac-
tions hampers computer science stu-
dents’ security education in other
ways. A continuing debate exists in
computer science departments about
what programming languages to use
in the curriculum. Usually, this debate
centers around which high-level lan-
guage provides the cleanest abstrac-
tion to let new students learn basic
good design principles and algo-
rithms. Maybe I’m just being a mid-
dle-aged fogey here (having come of
age in an era when the only way you
could get a computer as a teenager was
to design and build one yourself).
However, by the time these students
arrive in my operating systems class, I
have to undo the clean abstractions
they learned in their introductory
courses, and instead teach them C and
explain that their high-level languages
reduce to compilers, OSs, syscalls,
machine code, and transistors.

Students need to understand
how these abstract functions, meth-
ods, variables, and so on—which
have always magically appeared for
them—are actual bytes living in ac-
tual memory. The abstraction of

68 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2005

A computer science education where
Turing eclipsed Shannon wouldn’t help
the student tell, automatically, whether a
guessed key is right.

Secure Systems

high-level object-oriented lan-
guages might be necessary for learn-
ing good design principles, but
stripping the abstraction away is
necessary for understanding many
important issues in performance,
efficiency, implementation, and se-
curity. Students need both levels of
understanding to be effective com-
puter professionals.

For example, buffer overflow is
still a major source of security prob-
lems in the information infrastruc-
ture. The “return-to-libc” variant
(which caused a compromise at
Dartmouth recently) is particularly
nasty; the attacker doesn’t even need
to inject code, so marking the stack
as nonexecutable doesn’t help. Stu-
dents suffer from these attacks today;
when they graduate into the real
world as computer professionals,
their employers and customers will
face these attacks. Without under-
standing how it all comes down to
bytes in memory, students won’t be
equipped to handle these challenges.

Light bulbs needed
Moving from stack-smashing to ab-
straction-smashing, a few years ago,
Princeton’s Sudhakar Govindava-
jhala and Andrew Appel developed
a wonderful example of the inter-
play between perspectives of under-
standing and security issues.3 At an
Internet level, a fundamental secu-
rity challenge in the infrastructure is
that many parties want to run code
on your computer. How do you
permit this functionality without
also letting malicious or merely
clumsy programmers trash your ma-
chine? One way to make it easier for
programmers to do the right
thing—and to assure the end user
that these programs won’t do the
wrong thing—is to work in a pro-
gramming language designed to
make it (hopefully) impossible to
write code that damages the rest of
the system. This idea was behind
Java Virtual Machines, but the
Princeton researchers defeated this
language-based security mechanism

by filling memory with devious data
structures that broke the protection
if any one bit in a large fraction of
memory spontaneously flipped.
They then induced such sponta-
neous bit flips using a light bulb—
the heat gently induced memory er-
rors. For other examples of the real
world breaking clean abstractions
we need only consider the continu-
ing effectiveness of side-channel at-
tacks on cryptographic systems,
such as a smart card on a lab table—
or a Secure Sockets Layer server on
the other end of the Internet.

C urmudgeons might observe
that we could defeat the light

bulb attacks on Java using error-
correcting memory. Still, too few
students see the whole picture—that
is, the problem that type-safety can
solve, the ways it can solve that prob-
lem, and the fact that light bulbs
might be a risk. Turing is from Mars,
Shannon is from Venus, and never
the twain shall meet. We need to
change that.

References
1. A. Turing, “On Computable

Numbers, With an Application to
the Entscheidungsproblem,” Proc.
London Mathematical Society, ser. 2,
vol. 42, 1937.

2. Electronic Frontier Foundation,
Cracking DES, O’Reilly, 1998.

3. S. Govindavajhala and A. Appel,
“Using Memory Errors to Attack a
Virtual Machine,” Proc. IEEE
Symp. Security and Privacy, IEEE CS
Press, 2003, p. 154.

S.W. Smith is an assistant professor of
computer science at Dartmouth College.
Previously, he was a research staff mem-
ber at IBM Watson, working on secure
coprocessor design and validation, and a
staff member at Los Alamos National Lab-
oratory, doing security reviews and
designs for public-sector clients. He
received a BA in mathematics from Prince-
ton University and an MSc and a PhD in
computer science from Carnegie Mellon
University. Contact him at sws@
cs.dartmouth.edu; www.cs.dartmouth.
edu/~sws/.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 69

