
WSKE: Web Server Key Enabled Cookies?

Chris Masone, Kwang-Hyun Baek, and Sean Smith

Department of Computer Science
Dartmouth College
Hanover, NH USA

{cmasone,jbaek,sws}@cs.dartmouth.edu

Abstract. In this paper, we present the design and prototype of a new
approach to cookie management: if a server deposits a cookie only after
authenticating itself via the SSL handshake, the browser will return the
cookie only to a server that can authenticate itself, via SSL, to the same
keypair. This approach can enable usable but secure client authentica-
tion. This approach can improve the usability of server authentication
by clients. This approach is superior to the prior work on Active Cookies
in that it defends against both DNS spoofing and IP spoofing—and does
not require binding a user’s interaction with a server to individual IP
addresses.

1 Introduction

In this paper, we present the design and prototype of a new approach to cookie
management. We developed this approach to address problems preventing cur-
rently usable Web authentication from being secure, and vice-versa.

Initially, we consider the problem of how users can authenticate themselves to
servers (user authentication). How can end users (or their browsers) be protected
from being tricked into releasing their authentication credentials to phishing Web
sites? Juels et al [1] recently proposed Active Cookies as a solution here. This
idea was based on two observations:

– Authentication based on a cookie is more usable and (potentially) more
secure than authentication based on user knowledge, since the user need not
remember anything and so cannot be tricked into revealing secrets to an
adversary.

– In theory, the browser cannot be tricked into revealing a cookie to an ad-
versary, since it is only supposed to send cookies back to the originating
domain.

In practice, browsers can be tricked into sending cookies to a spoofed site, via
DNS and IP attacks. The bulk of the Active Cookies work centers on addressing

? This work was supported in part by the NSF, under grant CNS-0448499, and by
Sun Microsystems. The views and conclusions do not necessarily represent those of
the sponsors.

this work by dispensing with DNS, and instead binding cookies and servers to
specific IP addresses. It does not address the issue of IP-based attacks, such as
attacks on the Border Gateway Protocol (BGP) used by the routers that form
the backbone of the Internet to disseminate routing information. Our approach
does protect against such attacks. It is important to note that cookie-based
authentication schemes are already present in the wild; web sites that offer a
“remember me” option at login are one such example.

In addition to user authentication, we also consider the problem of how a user
can authenticate servers (server authentication). In theory, server-side SSL solves
this problem. Server-side SSL PKI provides a flexible, scalable infrastructure for
binding server identity to public keys. The SSL protocol provides a way for the
user’s browser to verify this binding: if a user initiates an SSL request, only
the correct server should be able to complete the SSL handshake, since only
the correct server should know the private key matching the public key in the
presented certificate. In practice, server-side SSL does not work so well, primarily
because when a server presents a certificate of questionable validity, the last line
of defense is a dialog box that most users will simply click through [2]. Thus,
phishers are able to spoof even SSL-protected websites with some measure of
success.

In our project, we seek to address both issues by binding cookies to domain
names and public keys. Once a user (or his browser) has accepted a server’s
public key, our approach applies Key-Continuity Management (KCM) [3] to
protect any cookies set by the remote site—including cookie-based authentica-
tion credentials. Using KCM in a system means that, once a remote party is
associated with a public key, steps are taken to protect the user in the event
that an unexpected key is presented at a later date. By applying this method-
ology to server-side SSL, we reduce to one the number of times the user has
to perform the SSL-certificate inspection ceremony. This, we believe, increases
SSL PKI usability and helps address the server authentication problem. Perhaps
more importantly, using KCM allows our approach to protect the user against
IP-spoofing attacks—an improvement over Active Cookies—while also allowing
DNS and SSL PKI work as intended.

In this paper, Section 2 explains our problem in more detail. Section 3 dis-
cusses our design. Section 4 presents our prototype. Section 5 presents how we
evaluated it. Related work is presented in Section 6. Section 7 concludes with
some ideas for future work.

2 The Problem

The Web is the primary medium today for electronic service delivery. Even ser-
vices whose compromise can have serious ramifications for the parties involved—
such as banking, high-value commerce, and access to health care data—now use
the Web as a portal. Thus, service providers are motivated to try to assure that
an alleged end user really is who she purports to be, before providing her with
service. The potential value of these transactions has lead to a community of

adversaries who can find profit in subverting this authentication. Securing the
process has thus become critical.

However, for a secure electronic service to make business sense, it need to
attract a sufficiently large user base. If authenticating to a service is too difficult
or awkward for end users, or too difficult or expensive for the deployer, then it
will fail. Users will either be driven away, or driven to find some way to work
around the service’s security architecture [4, 5]. An unusable user authentication
strategy can weaken the security of an entire system.

In theory, technologies such as client-side SSL can provide a painlesss way for
users to authenticate themselves to servers, without the server learning enough to
impersonate that user somewhere else. This enables a user to use one authentica-
tor at many sites, and insulates him (somewhat) from malicious servers. In prac-
tice, however, client-side SSL requires a PKI for users at large—which appears
to be practical currently only within enterprise populations (such as a corpora-
tion or a university). As a result, deployments gravitate toward knowledge-based
authentication—userid and password. (However, it’s not clear how “usable” pass-
words really are—humans are not too good at remembering such things.)

Server authentication—how users authenticate servers—is a related issue.
The continued problem of Web-based phishing despite a myriad of experimental
anti-phishing toolbars shows that the current technology base does not do a
very good job. Ordinary users still have trouble determining if the server their
browser is interacting with is in fact the bona fide representative of the service
provider they intended to contact.

Besides the application-level issues (can the user figure out what the browser’s
UI is trying to tell them?), system designers need also worry about network-level
attacks. For example, a web user typically identifies their intended destination
server via a host name. The browser and the PC it’s running on then use lo-
cal Domain Name Service (DNS) resources to translate the host name to an
IP address. The browser and its PC then use local routing resources (built up
globally via the Border Gateway Protocol (BGP)) to determine how to send
network communications to the machine with that IP address. These levels of
indirection, and the global protocols that support maintenance of this distributed
information, are a critical part of what makes the Internet robust and scalable.
Unfortunately, these infrastructures are well-known to be vulnerable to attack.
Adversaries can corrupt DNS to fool a host into contact the wrong IP address
(e.g., [6, 7]). Adversaries can also corrupt BGP to fool a host into thinking that
an IP address belongs to an adversary’s machine (e.g., [8, 9]). Spammers are re-
puted to make use of BGP weaknesses in practice [10, 11]. Active Cookies, since
cookies are bound to the IP address of the server that sets them, are vulnerable
to these kinds of IP-based attacks. Our approach, which relies on public keys
and is totally agnostic to IP addresses, is not.

Secure user authentication can enable effective server authentication. A server
can echo back some user-specific personal information should she successfully au-
thenticate. However, this breaks down if a phisher can fool a user into disclosing
her authenticators.

In theory, one way to address these problems would be to use easy client-side
authentication, such as passwords, over server-side SSL. This would require that,
each time the user interacts with this server, she correctly interprets the browser’s
signals regarding whether the server has correctly carried out the handshake,
whether its certificate is valid and from a trustworthy source, and whether the
certificate indicates the keyholder is in fact the intended service provider. In
practice, of course, this is not workable. Users cannot figure this out.

As Section 1 discusses, the recent Active Cookies work takes a different direc-
tion. When a user first establishes a channel with the server, the server deposits
a cookie that embodies his authentication. However, the server binds that cookie
to an IP address, not a host name. Subsequently, the browser will only disclose
that cookie to a server that appears to have that IP address. Unfortunately,
this approach has problems with security and usability. The approach protects
against DNS attacks but is vulnerable to IP-based attacks (such as attacks on
BGP). If the initial channel is to be trusted, we need a way to authenticate
the server. Subsequent communications need to be encrypted, if an eavesdrop-
per is not to learn the cookie. More critically, the approach dispenses with the
flexibility, load balancing and fault tolerance enabled by DNS and multiple IP
addresses; it uses IP addresses for authentication, rather than a technology such
as SSL PKI that was actually designed for it. On the usability side, Active Cook-
ies would require that web pages which use cookies have addresses with numeric
IP addresses in them, as opposed to human-friendly domain names. Phishers
often use such web addresses, and security professionals are trying to educate
users to be suspicious of them. Requiring legitimate web applications to use nu-
meric IP addresses would seem to be counterproductive. Thus, an ideal solution
to the user authentication problem would allow DNS to do its work and map
human-friendly domain names to numeric IP addresses behind the scenes.

This leaves us with the challenge: can we do better? Can we develop a usable
way for users to authenticate to servers that:

– like Active Cookies, protects against phishers using Web spoofing and DNS
attacks;

– unlike Active Cookies, resists BGP attacks;
– unlike Active Cookies, uses DNS, IP and server-side SSL for their intended

purposes; and
– unlike passwords with server-side SSL, prevents the user from having to

correctly interpret browser SSL signals each time they connect?

3 Design

To address this challenge, we propose Web Server Key Enabled Cookies (WSKE-
Cookies). We leave DNS and IP as they are, but apply KCM to server-side
SSL PKI, making server authentication easier for users. This, in turn, allows
cookie-based authentication schemes—which are easier to use than passwords—
to be used more safely. We are aware that WSKECookies (pronounced “Whiskey

Cookies”) do not address the registration problem, that is the process of acquir-
ing an authentication cookie in the first place. We consider this issue to be out
of scope, and acknowledge that assuming an attacker is not privy to the initial
contact between a user and a web server is accepting a risk, but it is worth
noting that users of Secure Shell (SSH) have been accepting this risk for years.

The attack model against which WSKECookies defends consists of an at-
tacker acquiring (or generating) an SSL certificate for his web server, and then
using DNS or IP-spoofing attacks to route traffic destined for a target site to
that server. The certificate used by the attacker will either not match the domain
name to which the user is connecting and/or not be from a Certification Au-
thority that the user’s browser is configured to trust. In these cases, the browser
asks the user for input about whether to drop the connection or proceed. A sim-
ple solution to the problem of protecting users’ authentication cookies would be
to refuse to send cookies over any connection in which errors arise during SSL
session negotiation. One reason web browsers do not currently do this is compat-
ibility; the most recent survey of SSL certificates on the web by Security Space
shows that about 60% would cause warnings upon connection [12]. Our solution
should not “break the web” by rendering web applications on all these servers
unusable, and so we choose not to block cookies by default. Moreover, there is
an attack combining DNS or IP spoofing, redirection, and cleverly crafted SSL
certificates that can connect a user over SSL to a spoofed website without any
warnings at all, provided that the user’s initial connection goes to an insecure
site [13, 14]. For instance, if the user types www.gmail.com into his browser, he
will be connected, by default, to http://www.gmail.com, which can easily be DNS
or IP spoofed by an attacker with no warnings. At that point, the attacker can
redirect the user to an SSL site that she controls and for which she has a valid
SSL certificate. If she chooses a plausible name for this site, it is likely that the
user will be fooled.

Ideally, we would like to build WSKECookies as a man-in-the middle that
lives at the client end, watches every https connection, remembers the domain
names and public keys of servers that set cookies, and prevents cookies from
being released to domains that cannot prove knowledge of the correct public
key. Web browsers already ensure that cookies only go to the same domain as
the one that set them, so our job then becomes to guarantee that the public key
associated with a domain name does not change between visits.

The first step is to note when cookies are being set and remember the domain
name and public key of the server which set them. This is not difficult given
the architecture of Mozilla Firefox, our development platform. Conceptually,
protecting cookies is not difficult either. Figure 2(a) outlines the architecture of
the relevant portion of Firefox, and notes the ideal area where our code would
hook in. After the browser has readied the outgoing https request (including the
cookie), it initiates an SSL session with the server. At any point between the
arrival of the server’s SSL certificate in the browser and the browser’s sending
of the request, our code could feasibly jump in and verify that the server’s key
hasn’t changed since the cookie was set. If the key is different, our code would

Local Hostname/
Fingerprint Store

Https Responses

Https Requests
Https Requests

Https Responses

Internet

Fig. 1. WSKECookies is implemented as a Firefox extension that imposes itself be-
tween all outgoing https requests and all incoming https responses. Once a webserver
has set a browser cookie via an https connection, our extension remembers the domain
name and public key of that host in a local database. Every time the browser attempts
to send an https request containing a cookie to a remote site, our code verifies that
the current SSL connection to that site was established using the same key as the first
time the user went there. If not, all cookies are removed from the request.

remove the cookie from the request and perhaps provide some feedback to the
user.

The use of this framework would be similar to the Active Cookies framework.
When a user initially enrolls at the server, she verifies the channel is trusted, and
the server deposits a cookie that enables her authentication. The server designs
their site to echo some type of personal identifier back to the user upon successful
authentication. On subsequent interactions, the server regards presentation of
this cookie as proof that it’s that user; that user regards presentation of this
information as proof that it’s that server.

Unlike Active Cookies, in our framework, the user would explicitly use server-
side SSL to authenticate the initial channel.

4 Prototype

Active Cookies does not require modifying the browser. Our approach does. So,
we felt that it was necessary to build a proof-of-concept to demonstrate the idea.
We chose the Mozilla Firefox platform (as mentioned above) because of its status
as a mature but open-source framework [15, 16]. Unfortunately, the realities of
the Firefox architecture provided some hurdles.

Firefox provides three notable programmer’s hooks during the process of
sending an https request and handling the associated response:

Browser Server

Http request
ready

SSL handshake initiation

Response, with server certificate

. .
 .

Request sent (with cookies)

Id
ea

l w
in

do
w

 fo
r c

he
ck

in
g

se
rv

er
 k

ey

SSL session established

SSL setup continues

Browser Server

Http request
constructed

SSL handshake initiation

Response, with server certificate

. .
 .

Request sent (with cookies)

N
o

ho
ok

s h
er

e

SSL session established

SSL setup continues

Response returns

http-on-
modify-request

BadCertHandler

http-on-examine-
response

Http request
complete

Fig. 2. (a) A ladder diagram of the relevant interactions in Firefox. The ideal period of
time for our code to take effect is noted. (b) A ladder diagram of Firefox’s preparation
of an outgoing https request and the handling of the associates response. The three
most useful programmer’s hooks that are available to us during this process are also
noted here.

– the http-on-modify-request event,
– the http-on-examine-response event, and
– the BadCertHandler object.

(See Figure 2(b)). The first two are similar to signals that can be caught and
acted upon, while the last is an object that provides event handler functions
which are called in response to various kinds of “bad” server certificates that
may be encountered during SSL negotiation. The BadCertHandler object’s event
handling functions are not provided access to the http request, and thus cannot
alter it to prevent cookies from being leaked. Thus, we are left with the two
events.

The http-on-examine-response event fires after the SSL session is established
(it has to be, as the request and response both had to travel over the secured
channel). The remote server’s certificate is therefore available in the browser.
Thus, this event provides an easy way for WSKECookies to note the initial
setting of a cookie by a remote server via https, and also to remember its domain
name and public key for future reference. This situation is shown in Figure 3(a).
The browser does not yet have any cookies set for the domain it is about to
access, so no action must be taken on the outgoing request. When the response
comes back, our code is notified and can cull through the response’s headers for
the domain name, access the server certificate used to set up the secured channel,
pair this information up and store it to disk for later usage. Our implementation
currently uses an XML-based flat-file database [17, 18].

Browser Server

Http request
constructed

Request sent

Response returns (with cookies)

Our Extension

SSL Negotiation

Http request
ready

If cookies, then store
hostname and key hash

http-on-modify-request

No cookies. Request
returned unmodified.

http-on-examine-response

Return response
unmodified

Browser Server
Http request
constructed

Request sent

Response returns

http-on-modify-request

Our Extension

Cookie-less dummy req.

Dummy request
constructed

SSL negotiation

Response (ignored)
Server key

check

Request returned. No
cookies if key mismatch

SSL negotiation

Http request
ready

Fig. 3. (a) A ladder diagram of the browser’s first interaction with a server that sets
cookies via https. Since no cookies for this domain yet exist, our extension code does
not need to worry about any being sent out. When a cookie is set, our extension logs
the domain name and its public key fingerprint to an XML database on the local disk
for later usage. (b) A ladder diagram of the browser connecting to a domain for which
is has cookies it is willing to give up over https. The http-on-modify-request event
fires, giving control to our code. WSKECookies builds a dummy request to send to the
server in question, making sure no cookies are leaked. The response from this request
is ignored, but the certificate is harvested and used to perform a check on the key. If
it matches the key used when the cookies were set initially, our code leaves the initial
request alone and allows the browser to go ahead and send it. If not, our code removes
the cookies from the initial request and allows the browser to send only this modified
version to the server.

As shown in Figure 2(b), the http-on-modify-request event fires before an
SSL session is established with the server being accessed. This means that, at the
time our code is given control, we cannot access the server’s certificate, because
the browser does not know it yet. This is not necessary behavior; rather, it is
simply the order in which Firefox chooses to do things. Our current proof-of-
concept works around this issue by creating a dummy request and sending that
to the same URI that the original request was attempting to reach (Figure 3(b)).
This dummy request has no cookies, and the response is ignored. We remember
the channel object used by the dummy interaction in a hash table [19], so that we
can safely ignore the proper response. The whole point is to force the browser
to negotiate an SSL session with the desired server so that its certificate can
be harvested. We are aware that this creates a small time-of-check-time-of-use
(TOCTOU) vulnerability in our current implementation (if the attacker strikes
between the time when the response to the dummy request comes back and

the sending of the original request, we will not notice), but the risk here seems
negligible. In future revisions of our code, we hope to come up with a cleaner
way to address this issue, probably by adding hooks into NSS (the code module
that carries out the SSL handshake). In our testing, the use of these dummy
requests did not affect the functionality of web applications that make use of
cookies over secure channels, as long as the responses were not allowed to filter
through to the browser.

5 Evaluation

5.1 Attack Resistance

To evaluate WSKECookies against possible attacks, we set up a small testbed
that consists of two Apache2 Web servers and a Bind9 DNS server:

– The legitimate web server, Bob, holds a valid X.509 certificate that matches
its domain name, www.wske.com.

– The attacker’s web server, Trudy, holds a different X.509 certificate that
matches the domain name, www.wske.com. Trudy’s certificate may or may
not be signed by a trusted root. We tested both cases.

– The DNS server will be used to create the effect of a DNS spoofing attack.
Specifically, we can modify the DNS server so that we can direct the traffic
that was meant for www.wske.com to either Bob or Trudy.

When Alice, a web client, connects to Bob via https, WSKECookies stores
Bob’s domain name, www.wske.com, and the fingerprint of the public key in Bob’s
certificate. We simulated an IP address spoofing attack by simply bringing Bob
down from the network and have Trudy take over Bob’s IP address and domain
name. A BGP attack would have a similar effect, from Alice’s point of view.
Moreover, by changing the domain name www.wske.com to map to Trudy’s IP
address, we simulated a DNS spoofing attack, redirecting all the traffic intended
for Bob to Trudy (see Figure 4). In both cases, WSKECookies correctly detects
that the public key fingerprint in Trudy’s certificate does not match Bob’s public
key fingerprint.

It is worth noting that cookies can also be accessed through a JavaScript
interface. However, our approach is easily adapted to address this threat as well;
when JavaScript code on an SSL-protected page attempts to access a protected
cookie, WSKECookies could verify that the page in question was loaded from a
server that presented the appropriate key.

5.2 Usability

In terms of usably protecting users’ authentication cookies, WSKECookies is
transparent to the user. As long as they are not being spoofed, users will see
no change in their experience. If they are being spoofed, users will be unable to
release their authentication credentials. The issue of effectively communicating

Bob

DNS Server

Alice

Trudy Bob

Compromised
DNS Server

Alice

Trudy

Fig. 4. Our DNS-spoofing attack scenario. (a) Our initial setup, where cookies can and
should be released. (b) The “evil” setup, where DNS cannot be trusted and WSKE-
Cookies protects the client.

to the user in the latter case should be explored, and will be by the final draft of
this paper. Since this paper was accepted during Dartmouth’s interim, subjects
were unavailable for a study prior to the due date of this draft.

5.3 Deployability

In most cases, WSKECookies can be deployed transparently to the providers
of web services, as no server-side changes are required. One caveat arises if a
site uses a load-balancing solution with its secure web servers in which each
machine has a certificate with a different public key. It is difficult for us to
verify how common this situation is in the wild, but this risk exists nonetheless.
We mention a possible workaround in Section 7. Another concern surrounds
server certificate renewal, which commonly happens once every few years. Many
websites simply purchase a new server certificate when an old one is about to
expire. This certificate usually has a different public key than the old one. Thus,
WSKECookies set when the old certificate was in use would all be useless when
the new one comes into effect. However, given that users clear their cookies or
reinstall their web browser not infrequently, web sites cannot count on long-lived
authentication cookies and must structure their web applications accordingly.
Thus, users may need to re-register with a web site when the certificate changes.
As this happens only once every year or more, it does not seem to be that great
a risk. Indeed, if a WKSECookies-like scheme came into common usage, web
sites could avail themselves of certificate renewal, which allows the same key

to be rolled into the new server certificate. This is available today, though its
frequency of use is unknown.

6 Related Work

Active Cookies [1] is obviously the most directly related work, and we have dis-
cussed it extensively above. There is also a plethora of work in anti-phishing,
using blacklists [20], browser extensions to help users understand security indica-
tors [21, 22], or trusted paths from the server to the user [23] to try to arm users
against attackers. However, these methods all require some level of diligence and
understanding on the part of the user. Our approach imposes less of a burden,
and also protects against a range of DNS and IP-based spoofing attacks.

Some have suggested that websites encrypt authentication cookies with a
secret key before placing them on a user’s machine. In fact, this is already com-
mon practice. However, if an attacker can steal this encrypted cookie, he does not
need to decrypt it all. He simply has to present it to the target website as it is,
and he will be successfully authenticated. Thus, solutions such as WSKECookies
are still required.

7 Conclusions and Future Work

At the end of Section 2, we laid out a challenge. The WSKECookie approach we
then presented meets these criteria. Like Active Cookies, WSKECookies protects
against phishers using Web spoofing and DNS attacks. Unlike Active Cookies,
WSKECookies also resists BGP (and other IP-related) attacks, and uses DNS, IP
and server-side SSL for their intended purposes. Unlike passwords with server-
side SSL, WSKECookies prevents the user from having to correctly interpret
browser SSL signals each time they connect. As such, its greater usability seems
clear. WSKECookies requires no user interaction during the browsing process.

A disadvantage, of course, is that WSKECookies requires changes to the
browser software. Our current proof-of-concept makes these changes via the stan-
dard extensions framework.

The work reported in this paper leaves several directions for future research.
On a basic implementation level, we want to revise our proof-of-concept code

to eliminate the (admittedly small) TOCTOU vulnerability we discussed in Sec-
tion 4. It would of course be possible to edit the source of Firefox and create a
new binary that enables WSKECookies. However, we would prefer to keep our
implementation in the form of an extension, if possible. Despite the fact that we
would need to overwrite some object code in the Firefox binary at runtime to
clean up our approach, we believe this should be possible [24]. A similar approach
would allow us to close the JavaScript hole as well. Regardless, the fact that the
existing architecture forced us into our current situation suggests some deeper
philosophical questions: namely, if the SSL handshake is intended to provide the
client a chance to authenticate the server, why is it that we have to hack into
the SSL code to allow the client a chance to examine the certificate information

before proceeding with the request? (For that matter, the apparently standard
practice of having a browser renegotiate with each https request is surprising.)

On a deeper level, we also want to empirically validate the design assumptions
that underlie this framework. Can users be trusted to use the SSL signals to
authenticate the server before initial enrollment? Does involving the user exactly
once in the SSL ceremony make it more usable than involving the user each
time? Do users really find cookie-based authentication more usable than the
alternatives?

We also want to explore alternatives to our design. For example, rather than
binding the cookie to the server public key, we could bind it to the server’s
distinguished name and the public key of the trust root; this approach would
allow for more of PKI—such as revocation, renewal, and perhaps even proxy
certificates—to play a role in the scheme. This approach would continue in our
philosophy of, building on, rather than discarding, current network and trust
infrastructure.

Code Availability

Our Firefox extension is available for download at http://www.cs.dartmouth.
edu/∼pkilab/cookies/

References

1. Juels, A., Jakobsson, M., Stamm, S.: Active cookies for browser authentica-
tion. http://www.ravenwhite.com/files/activecookies--28 Apr 06.pdf Vis-
ited Nov. 12, 2006. Revised version to appear in NDSS 2007.

2. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: Proceedings of
SIGCHI Conference on Human Factors in Computing Systems. (2006) 581–590

3. Garfinkel, S.: Design Principles and Patterns for Computer Systems That Are
Simultaneously Secure and Usable. PhD thesis, Massachusetts Institute of Tech-
nology (2005)

4. Good, N., Dhamija, R., Grossklags, J., Thaw, D., Aronowitz, S., Mulligan, D.,
Konstan, J.: Stopping spyware at the gate: a user study of notice, privacy and spy-
ware. In: Proceedings of the Symposium on Usable Privacy and Security (SOUPS).
(July 2005) 43–52

5. Yee, K.P.: Chapter 13. In: Security and Usability: Designing Secure Systems That
People Can Use. O’Reilly (2005) 247–273

6. DNSSEC.NET: DNS Threats and DNS Weaknesses. http://www.dnssec.net/

dns-threats.php

7. ISC: BIND Vulnerabilities. http://www.isc.org/index.pl?/sw/bind/

bind-security.php

8. Murphy, S.: BGP Security Vulnerabilities Analysis. Internet Draft draft-murphy-
bgp-vuln-01.txt (October 2004)

9. Nordstrom, O., Dovrolis, C.: Beware of BGP Attacks. SIGCOMM Computer
Communication Review 34 (April 2004) 1–8

10. Housley, R.: Personal commmunication (April 2006)

11. Ramachandran, A., Feamster, N.: Understanding the Network-Level Behavior of
Spammers. In: Proceedings of ACM SIGCOMM. (September 2006)

12. Space, S.: Secure server survey by security space and E-Soft. http:

//www.securityspace.com/s survey/sdata/200608/certca.html (September
2006) Visited on Jan. 10, 2007.

13. Smith, S.W., Martini, J.C.: The Guidebook for Security Craftsmen (working title).
Addison-Wesley (2007) forthcoming book material from AWL 0321434838.

14. Sirer, G. Personal Communication (2006)
15. XULPlanet.com: XULPlanet.com. http://www.xulplanet.com Visited on Nov.

12, 2006.
16. Foundation, M.: Mozilla Cross-Reference. http://lxr.mozilla.org/seamonkey/

Visited on Nov. 12, 2006.
17. Wilgus, K.: Cookie store firefox 1.5 extension. http://wigginz.com/cookiestore/

Visited on Nov. 12, 2006.
18. MonkeeSage: Basic javascript file and directory IO module v0.1. available at

http://kb.mozillazine.org/Io.js Visited on Nov. 12, 2006.
19. Synovic, M.: Dev Notes : Implementing HashTable in JavaScript. http:

//weblogs.asp.net/ssadasivuni/archive/2003/09/17/27902.aspx Visited on
Nov. 12, 2006.

20. Netcraft: Netcraft anti-phishing toolbar. http://toolbar.netcraft.com Visited
Jan. 14, 2007.

21. SpoofStick: Spoofstick home. http://www.spoofstick.com/ Visited Jan. 14, 2007.
22. Close, T.: mozdev.org - petname: index. http://petname.mozdev.org Petname

tool, visited Jan. 14, 2007.
23. Ye, E., Smith, S.: Trusted Paths for Browsers. In: 11th USENIX Security Sym-

posium. (August 2002) http://www.cs.dartmouth.edu/∼sws/papers/usenix02.

pdf.
24. Santos, N.J.: Limited delegation (without sharing secrets) in web applications.

Technical Report TR2006-574, Dartmouth College (2006)

