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Abstract

In Public Key Infrastructure (PKI), the simple, mo-
nopolistic organizational model of certificate issu-
ing entities works fine until we consider real-world
issues. Then, issues such as scalability and mutu-
ally suspicious organizations create the need for a
multiplicity of certificate issuing entities, which in-
troduces the problem of how to organize them to
balance resilience to compromise against efficiency
of path discovery. Many solutions involve organiz-
ing the infrastructure to follow a natural organiza-
tional hierarchy, but in some cases, such a natural
organizational hierarchy may not exist.

However, systems research has given us secure
coprocessing for securely carrying out computa-
tions among multiple trust domains. Cryptography
has produced a number of methods for distributing
cryptographic computations, such as secret splitting
and threshold cryptography. Last, distributed com-
puting has given us peer-to-peer networking, for
creating self-organizing distributed systems.

In this paper, we use these latter tools to address the
former problem by overlaying a virtual hierarchy on
a mesh architecture of peer certificate issuing enti-
ties, and achieving both resilience and efficiency.

∗This work was supported in part by Internet2/AT&T, by
IBM Research, and by the U.S. Department of Justice, contract
2000-DT-CX-K001. However, the views and conclusions do
not necessarily represent those of the sponsors. A preliminary
version appears as TR2002-416.

1 Introduction

1.1 The Problem

Background By separating the privilege to de-
crypt or sign a message from the privilege to encrypt
or verify, public-key cryptography enables forms of
trusted communication between parties who do not
share secrets a priori. Eliminating the need for
shared secrets has multiple advantages. On a global
level, it potentially enables extending trusted com-
munication across organizational boundaries, be-
tween parties who have never met. But it can also
reduce overhead in managing communication be-
tween parties even on a local level, within one or-
ganization: the number of needed keys goes from
Ω(n2) to O(n).

PKI has many definitions; the most commonly ac-
cepted definition refers to how one participating
party learns what the public key is for another party.
Typically, approaches to PKI begin by condensing
trust: rather than a priori knowing the public key
of each party in the population, the relying party
instead knows the public key of a designated spe-
cial party, who in turn issues signed statements (e.g.,
certificates and CRLs) about members of the popu-
lation.

This designated party is typically called the certifi-
cate authority (CA). Some approaches separate the
process of issuing certificates from the process of
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identifying and authorizing keyholders to receive
the certificates; in these approaches, the latter tasks
become the responsibility of the registration author-
ity (RA). Since the CA must hold and wield a private
key of considerable value, implementations apply
various protections to that private key, such as hous-
ing it in a hardened cryptographic module that is
kept offline. Some ambiguity thus results regarding
what the term “CA” refers to: the entity (typically
online) that issues and manages certificates; this en-
tity, minus the RA duties; or this entity’s specific
machine that houses the private key. In this paper,
we use the former implication.

More than One This simple PKI model of one
CA servicing a user population suffers from some
inherent limitations. For one thing, for certification
to be meaningful, the CA must be in some posi-
tion to certify the identity of keyholders according
to some uniform policy. This can limit those whom
a CA certifies to sets where such a social or busi-
ness relationship is plausible (such as employees of
a small enterprise). For another thing, the relying
party must be able to identify and trust the CA for
the keyholder—which again limits the a CA’s set of
relying parties to sets where such a social or busi-
ness relationship exists.

These limitations create the need for multiple
CA/keyholder sets, which in turn creates the need
to organize these PKIs so that public key operations
can take place across these sets. PKIs within an
organization are becoming a common occurrence.
Such systems have been well studied, and are of-
ten built from commercially available components.
Within an organization which has a PKI, the certifi-
cates generated by the organization’s CA are mean-
ingful. Outside of such an organization, however,
those same certificates are meaningless unless some
agreement between a number of organizations is in
place.

The question thus arises of how to organize mul-
tiple CAs. The basic literature (e.g., [10]) gives a
serious examination of this question. Readers un-
familiar with this literature may be tempted to as-

sert that the only natural solution here is to use a
name-constraint hierarchy: group CAs into sets that
have some natural social peer relationship; for each
group, establish a new CA that certifies the CAs in
that group; and continue this process upward, so that
the we result in a tree with a single trust root. For
example, one might follow the DNS hierarchy, and
assume that a global root certifies a edu CA, which
certifies a dartmouth.edu CA, which certifies
a cs.dartmouth.edu CA, which certifies each
member of our department.

Although apparently natural, this approach has
many drawbacks.

• Hierarchies are not always scalable, in that
they cannot permit the participating fraction of
the population to grow gradually. Suppose the
natural social hierarchy has four levels, and
two unrelated leaves want to establish a trust
relationship. They can only do this if all the in-
terior CAs—from the first leaf, up to the root,
then down to the second leaf—are already par-
ticipating in the PKI.

• Hierarchies are not always usable. The glob-
ally unique names determined by the natural
hierarchy may not necessarily be usable by
the humans who need to use them to make
trust judgments. A colleague reports that his
foo.com domain has 100K machines whose
names are of the form bar.foo.com. Not
only is this namespace crowded—a typo will
likely give the user the wrong machine—but it
also changes dynamically: a sysadmin the user
never meets changes machine names without
notification.

• Hierarchies do not always exist. The relation-
ship between users and their immediate CAs
is usually (but not always) natural. However,
the upper regions get murky. With mobile
devices [11, 21] or collections of universities
or government departments, one typically en-
counters federations of peers with no clear nat-
ural organization. Indeed, except for DNS and
perhaps the Roman Catholic church, it is hard
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to find a naturally hierarchy whose upper re-
gions are well-defined. Which U.S. military
service1 should be the root? Which DOE lab-
oratory?2 Why should CREN or USPS or NIH
be the root over academia or citizens at large?

PKI as a system Consequently, we’re going to
take the unorthodox view of looking at “PKI” as a
system that has various properties, instead of an au-
tomatic mirror of a social arrangement that may not
necessarily be appropriate, even if it exists.

We might start by thinking of conventional CAs
(from the simple model above) as nodes, and try-
ing to decide how to link them together—perhaps
by creating new CAs—in a directed graph, where
edges go from a CA to each entity that it certifies.

Two desirable properties of any PKI are resilience
and efficiency.

• By resilience, we mean the ability of the sys-
tem to tolerate the discovery that any given key
pair has been compromised. What trust judg-
ments become impossible? How many key
pairs must be revoked and reissued?

• To verify a certificate, a relying party needs to
find a path from a trust root (a node it a priori
trusts) to the certificate in question. By effi-
ciency, we mean the running time of the stan-
dard algorithm to discover this path.

Resilience and efficiency are typically competing
goals.

Structured Centralization. Many current ar-
chitectures impose a rigid structure on the orga-
nization of CAs, which means that path construc-
tion and validation can be deterministic and effi-

1The first author would assert that it’s the branch to which
he belonged.

2The second author would assert that it’s the DOE labora-
tory for which he used to work.

cient. Although this structure permits path algo-
rithms to traverse the topology within some efficient
time constraints, it also results in a large amount of
authority residing in a single place (e.g. the root
CA). This centralization of authority directly de-
creases resilience in that if the root CA is compro-
mised, the entire PKI is unusable until it can re-
cover.

Hierarchies are the canonical example of this struc-
tured approach. Traditionally, hierarchies achieve
O(logV ) (where V is the number of CAs) verifica-
tion time, because paths in a tree are well-defined
and easy to find (Figure 1). We noted many draw-
backs above; another drawback is that hierarchies
place increasing amounts of value on the private
keys of interior nodes. If the adversary were to com-
promise an upper-level CA or even the root CA, the
entire PKI must suspend operation until a recovery
can occur (i.e. all certificates issued by that CA are
revoked, and new ones are reissued with the CA’s
new private key) (Figure 2).

Thus, hierarchies obtain efficiency at the cost of re-
silience.

Unstructured Decentralization. In opposi-
tion to this view is the method of organizing CAs
in a more decentralized way, in an effort to increase
resilience by not placing so much authority in one
centralized place. However, decentralization im-
plies that path validation algorithms must now do
more work and must often use non-determinism to
decide if a received trust chain is valid. These prop-
erties translate into a decrease in efficiency and an
increase in complexity on the part of the verifier.

Meshes are the canonical example of the unstruc-
tured approaches. Mesh PKI architectures have
been developed in part to avoid this single point of
failure (Figure 3). However, the non-deterministic
nature of peer-to-peer organization increases the
path verification algorithm significantly (Figure 4).
Due to the fact that not all possible choices lead
to a trusted CA, coupled with trial-and-error con-
struction of the trust path (a path to a trusted CA),
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PSfrag replacements
Weak Spot

Root CA

Dart CA Wisc CA

Alex Cam Will Zoe

Figure 1 When Zoe receives a certifi-
cate chain from Alex, she verifies that the
Dartmouth CA certificate is signed by the
Root CA. She then verifies that Alex’s cer-
tificate is signed by the Dartmouth CA. As
the number of CAs grows, it takes O(logV )
time to verify the path from the Root CA to
the user which needs to be verified.

. . .. . .

PSfrag replacements

Weak Spot Root CA

Dart CA Wisc CA

Alex Cam Will Zoe

Figure 2 If the Root CA is compromised,
the system goes down until all certificates
are revoked and new certificates are issued.

PSfrag replacements Dart CA Wisc CA

Ucsd CA

Alex

Mary

Zoe

Figure 3 Meshes offer increased re-
silience. If the Wisconsin CA’s private key
is disclosed, the other CAs can continue to
operate. Only Wisconsin is affected. When
Wisconsin gets back online, it may rejoin
the CA network.

verification time in these schemes is usually high.
Further, mesh architectures make no guarantee to
avoid cycles, leading to choices in the path construc-
tion algorithm which may never terminate.

Thus, meshes obtain resilience at the cost of effi-
ciency.

Other Approaches Finding algorithms which
increase the efficiency of path construction in de-
centralized organizations is an emerging area of re-
search. Algorithms which use certificate extensions
(such as name constraints and policy extensions),
as well as loop elimination techniques have been
developed to enhance efficiency [8]. Our concern
however, is the underlying organization of CAs, and
how they may be arranged to achieve efficiency and
resilience.

Other common architecture schemes are more hy-
brid.

Extended Trust Lists are used to allow users the
ability to maintain lists of CAs which they choose
to trust. Each entry in this list may represent a
single CA or an entire PKI, which itself could be
a Hierarchy or a Mesh. This scheme poses new
challenges for validation algorithms, as the starting
point for these algorithms could be any node in the
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Figure 4 Meshes offer decreased effi-
ciency. When Zoe receives a certificate
chain from Alex, she verifies that that a trust
path exists from Alex’s CA to a point which
she trusts. In this example, the Dartmouth
CA and Wisconsin CA are cross-certified,
so she believes Alex’s certificate is good.
As the number of CAs grows, it takes O(V )
time to verify a certificate chain.

list. The implication is that a path may have be to be
constructed using every entry in the list as a starting
point.

Bridge CAs provide another alternative to the
common approach of cross-certifying enterprise
PKIs through peer-to-peer relationships. Cross-
certification without a Bridge CA results in (n2 −
n)/2 relationships for n enterprises (in graph the-
ory, this graph is known as a complete graph on n
vertices, and is named Kn [20]).

The Bridge allows each of the enterprise PKIs to
cross-certify to it, resulting in a star topology be-
tween enterprises and reducing the number of rela-
tionships to n. Bridges are also used for bridging
different policy domains. In these situations, the
PKIs themselves are usually complex.

While this is an attractive solution if all of the enter-
prises are hierarchies, the Bridge architecture does
not solve path validation issues in general as each of
the enterprises themselves may be Meshes [10, 14].

The Bottom Up With Name Constraints model [12]
is one which shares our goal of allowing organiza-
tions to construct their own PKI and then connect

it to other organizations’ PKIs. The model assumes
a hierarchical namespace and that CAs are certified
in both directions, down (from parent to child) and
up (from child to parent). The model also allows for
CAs to cross certify directly.

Path validation in this Bottom Up model is quite ef-
ficient due to the presence of certification in both di-
rections. The validation algorithm begins by start-
ing at a trust anchor and looking first for a cross-
certified CA which is either an ancestor of the target
or the target itself. If this fails, the algorithm pro-
ceeds up to the parent CA and searches through its
cross-certified CAs. This terminates when a cross
certificate is found or when a common ancestor is
found.

This model also has impressive resilience proper-
ties. If a key is compromised, the compromised CA
can issue new certificates to all of the CAs which
are certified (up, down, and cross). The communi-
ties belonging to each certified CA will automati-
cally be bound to the new key, without having to
make any changes.

The major difference between this model and ours
is that we relax the assumption of a hierarchical
namespace. As mentioned earlier, hierarchies are
not always usable, scalable, or present.

1.2 Our Solution

We believe that both properties—efficiency and
resilience—are important to most PKI systems. We
thus propose an architecture and are developing a
prototype which aims to bridge the gap between
these seemingly competing goals. We feel this is
novel as most current architectures fail to provide
both.

Our objective is to devise an architecture which
allows for CAs to organize themselves in such a way
as to maintain the following two invariants:
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1. Efficiency. Trust chains produced by any of
the entities may be verified in an efficient man-
ner, meaning that trust chains are loop-free.
This is common in hierarchy schemes.

2. Resilience. The secrets (private keys) do not
exist in any one place or can not carry out cryp-
tographic computations without collaboration.
The fragments/parties are fairly randomly dis-
tributed throughout the topology.

This would be useful when the authority of the CAs
in the real world is not easily represented by a strict
hierarchy or when certificates need to be used fre-
quently outside of the issuing namespace.

For example, a visiting professor from the
University of Wisconsin who comes to Dartmouth
should be able to use his or her private key even
though the institutions’ PKIs are not cross-certified.
If both institutions were participating in a virtual
hierarchy, no cross-certification would be required
to verify statements signed by the professor’s pri-
vate key, which was issued by the University of
Wisconsin CA, and is being used at Dartmouth.

Overview The mechanism we propose which ac-
complishes this task is a virtual hierarchy, a logical
hierarchy formed in a peer-to-peer network. As with
a standard hierarchy, we can model a virtual hierar-
chy as a tree with nodes and directed edges. Leaves
can represent bottom-level users; their parents rep-
resent their natural CA.

However, the remaining nodes are virtual CAs.
Although each such node is a logical entity in
the virtual hierarchy, it is represents the collective
action of a set of conventional CAs. Consequently,
we use the term collective for this set. (See
Figure 5.)

Figure 5 and Figure 6 sketches this arrangement.

We obtain this collective action via cryptography.
There are a number of cryptographic schemes which
require collaboration in order to perform crypto-

A B

Figure 5 A single collective. All of the
nodes are CAs. The nodes inside the oval
are maintaining a portion of the private key
privilege (e.g. via threshold cryptography),
which is acting as the Root CA key. The
other nodes are directly connected to one
of the nodes which collaborate in crypto-
graphic computations for the collective and
may “use” the key (i.e. make a broadcast
to have a message signed by the nodes in
the oval). It should be noted that it is pos-
sible to put all of the nodes inside the oval,
meaning that each member of the collective
would maintain a potion of the private key
privilege.

graphic computations. The broad category for these
methods is known as threshold cryptography. Some
examples of threshold schemes are: secret shar-
ing [15] and multi-party signature schemes [7].
One particularly attractive scheme is Multi-Party
RSA [4], which we will discuss in 3.4.2.

For ease of implementation only, in our initial pro-
totype we chose secret splitting, where each party
holds a fragment of the private key. A subset of
entities in the collective actually possess the key
fragments which, when assembled, acts as the par-
ent CA for all of the members of the collective.
Section 3.1 discusses these issues further.

We have developed (and prototyped) algorithms that
allow natural CAs to form collectives in and ad hoc
manner, and then form collectives into a hierarchy
(where a virtual node can itself become certified by
another collective) in order to maintain a good tree
structure. (See Figure 6.)

This approach thus obtains the goals we desired:
6

Appeared in the Proceedings of the 7th Nordic Workshop on Secure IT Systems---NORDSEC 2002.



A B

C D

Figure 6 A hierarchy is emerging. Here
there are two collectives, linked by the CA
denoted as “C”. C is a member of the
original collective shown in Figure 5, and
is a member collaborating in cryptographic
computations (along with D) of the second
level collective.

1. Efficiency. By maintaining the structure of a
hierarchy, we retain an expected O(logV ) trust
chain verification cost, with no loops.

2. Resilience. By distributing the higher-level
CA private key privileges among multiple par-
ties, we retain the resilience of decentralized
approaches.

Physical Layer The physical layer is a peer-to-
peer network of secure coprocessors [17] (we use
IBM 4758s 3). The secure coprocessor is not strictly
necessary to make the virtual hierarchy layer work.
However, since nodes in this layer are CAs, they
must all have a cryptographic module, and using
trusted hardware adds to the security of the scheme
in that if the machine which houses the module
is compromised, the module itself is still secure.
Practically speaking, part of our decision to use se-
cure coprocessors came from the fact that we al-
ready had some devices, we had some familiarity
with the programming environment, and the mod-
ules we had are validated to FIPS 140-1 Level 4.

3Recently, a security vulnerability [3] has been demon-
strated in an application (IBM’s CCA) which runs on the 4758.
It should be noted that this vulnerability belongs to the appli-
cation, and not the 4758 platform. At the time of writing, the
4758 has no known vulnerabilities.

TCP/IP Protocol Stack

Trusted Peer Access Layer (TPA)

Application Layer

Virtual Hierarchy Layer (VHL) Logical hierarchy layer.

CAs reside here. 

Peer-to-peer layer.

The TPA uses TCP.

Figure 7 The protocol stack.

2 Overall Structure

We approached the problem in two stages, the first
being to implement a peer access layer which allows
secure coprocessor to communicate securely, and
the second was to implement the virtual hierarchy
algorithms on top of that layer. The resulting proto-
col stack is depicted in Figure 7.

Our prototype implements the VHL and the TPA.
The prototype version of the VHL contains a com-
mand line interface so that we don’t need to inte-
grate with a CA at this stage in development. The
peer access layer running inside of the IBM 4758s
is depicted as the TPA layer, and the algorithms
which construct and maintain the logical hierarchy
are shown as the VHL. The two layers are imple-
mented as separate processes, with the output of
the VHL being piped into the TPAL using standard
UNIX pipes.

Before we discuss the layers in detail, a simple ex-
ample will be useful in understanding the high level
operation and what we are trying to achieve. In the
example shown in Figures 8 through 12, two ma-
chines A and B will connect, negotiate a secret, and
store on half of the secret. This operation forms the
root collective. Four more machines will join the
collective, and are able to use the secret maintained
by A and B. Then a new collective will be formed
by C and D, and the hierarchy will grow. This is
a simple example, but will serve to familiarize the
reader with the basic concept.
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A B

TPA VHL

Figure 8 Neither of the two machines
share the private key privilege for a virtual
CA.

N1A B

TPA VHL

Figure 9 A connects to B and they estab-
lish a virtual CA, and the two parties now
share a portion of the private key privilege
(as denoted by the oval). A collective is
formed and a node is established in the vir-
tual hierarchy.

N1BA

VHLTPA

Figure 10 More nodes have joined the
collective, although none are required to ne-
gotiate keys, as the maximum size of a col-
lective for this example is six. Since the
four new CAs are just using the key held
by A and B, the virtual hierarchy remains
unchanged.

N1

N2

C D

A B

TPA VHL

Figure 11 Machine D makes a connec-
tion to machine C, causing them to estab-
lish a new virtual CA and share a portion
of the private key privilege. This operation
forms a new collective and a new node N2
in the virtual hierarchy. Machine C is now
in both collectives.

3 Virtual Hierarchy Layer

From the highest level, the virtual hierarchy (i.e.
the logical hierarchy in the peer-to-peer network) is
constructed by an algorithm that allows peer CAs
to establish a secure connection and negotiate a se-
cret which each of their communities may use as an
end-point in their trust chain. Pieces of the trust root
(negotiated secret) are then stored among the peers
who negotiate it.

This leads us to make the following two claims:

Increased Resilience The result of this nego-
tiation produces a root “entity” whose privilege is
distributed among the n parties who are at a dis-
tance 1 (i.e. directly connected) to one of the actors
in the negotiation. This group of n parties is a col-
lective and all act as though the “entity” is their root
CA. The result of spreading pieces of the secret (in
our scheme) or requiring collaboration to perform
cryptographic computation (in threshold schemes)
among a group of peers alleviates the single point
of failure problem.
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N1

N2

C D

BA

TPA VHL

Figure 12 Three CAs make connections
to C and D, joining the new collective.
Since a private key has already been estab-
lished for that collective (held by C and D),
the new members do not need to negotiate
one, and the virtual hierarchy remains un-
changed.

Increased Efficiency The result of this negoti-
ation produces a root “entity” whose role is to act as
a trust point for the n parties who are at a distance 1
to one of the actors in the negotiation. We will show
that this maintains a hierarchical trust structure sim-
ilar to one which would be found in a physical hi-
erarchy of CAs. Maintaining this hierarchy allows
trust calculations to be performed at an average of
O(logV ) time (again where V is the number of CAs
participating in the network).

It is important to realize that our solution, like other
current schemes, would require each community to
perform some amount of work to reflect the new
topology.

3.1 Simplifying Constraints

Our algorithm follows several rules that constrain
(and simplify) the problem.

In order to maintain the property that verification
may be done in O(logV ), we design our algorithm
to maintain the invariant that there are no cycles
in the connection graph produced by the connec-

tion network of CAs. These connections are accom-
plished using the protocol TPA Layer.

We maintain this invariant because if we were to
allow cycles at this layer, we would break the hi-
erarchical structure by transforming it from a tree
into a less-structured graph. Breaking the hierarchi-
cal structure would have the following two implica-
tions:

First, to perform an efficient path verification algo-
rithm in this graph, the algorithm would need to lo-
cate the shortest correct (i.e. matching the certificate
chain) path. This would take longer than O(logV )
in the average case.

Second, any such algorithm would require state
to be maintained so that the shortest correct path
may be calculated without having to account for
the time it takes to discover the topology in real
time. This could be accomplished by implement-
ing a “smarter” routing algorithm in the TPA Layer
(e.g. reverse path forwarding [18]). Because we
maintain our no-cycle invariant, we can instead use
simple broadcasting. Alternative schemes that relax
this invariant are an area for future work.

In addition, our algorithm maintains simplifying
restrictions on the communication that occurs be-
tween two collectives. First, at least one collective
must be a root collective (the root node in some
virtual hierarchy). Without this restriction, intra-
collective connections would break the tree topol-
ogy. Second, nodes which collaborate in crypto-
graphic computations for one collective may not
collaborate for another. Allowing nodes to collab-
orate for two collectives simultaneously forces that
node to hold two separate trust chains and breaks
the hierarchical constraints.

We considered having the algorithm maintain a bal-
ance invariant on the hierarchy (e.g., each opera-
tion would maintain some balance property in the
tree). However, this approach could result in large
changes in the topology when a single node joins
the network. We do make an assumption, however,
that the nodes join and leave the network in a ran-
dom fashion, resulting in a randomly built tree. It
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can be shown that randomly built trees have a height
of O(logV ), and a worse case height of V . (We
flag the possibilities of enforcing balance as future
work.)

Cryptography In order to meet our claim of in-
creased resilience, it is necessary for our scheme
to require collaboration in order to perform cryp-
tographic computations.

For ease of implementation, we take the approach
that pieces of the negotiated secret are scattered
throughout the collective (as noted earlier). Many
cryptographic techniques can enable this behavior.
For simplicity, we considered secret splitting [9].
When a request is made to sign something, the key
is discovered by the host which received the request
by broadcasting to the collective and ordering the
pieces of the key. This is a transient operation in
that the key is not stored at the host. Once the oper-
ation has been performed, the host forgets the key.

There are other cryptographic methods for accom-
plishing the same functionality, such as secret shar-
ing and cooperative signature schemes [16]. These
schemes are better, but more complex to implement,
so for purposes of this analysis and prototype, we
assume that the secret splitting is sufficiently repre-
sentative. We discuss implications of some of these
other techniques in Section 3.4.2, and discuss Multi-
Party RSA, as we plan to eventually implement it.

3.2 The Algorithms

The pseudocode procedures in the Pseudocode ap-
pendix at the end of this paper maintain the invari-
ants put forth in Section 1.2. The client and server
actions (Figure 15 and Figure 16) guarantee the first
invariant by eliminating cycles in the topology. We
will show that the elimination of cycles is key to
allow for efficient validation. They maintain the
second invariant by enforcing that parties which ne-
gotiate a secret only store a fraction of it. This im-
plies that the secrets are distributed among members
of the collective.

The server action is responsible for accepting con-
nection requests, authenticating them, and deciding
whether the two parties need to negotiate a secret.
This decision is based on whether one of the parties
has a key fragment. The presence of such a frag-
ment in either party implies that at least one of the
parties belongs to an collective and the other one is
joining. The absence of a fragment implies that a
new secret must be negotiated, which in turn, im-
plies that a new collective is being formed.

The client action is called from an outside entity (i.e.
user code), and is essentially making the same de-
cision as above. The added burdens of avoiding cy-
cles and enforcing assumptions about communica-
tion between collectives belongs to this action.

The validation procedure’s sole responsibility is to
determine whether some trust chain it receives is
valid. This is done by traversing the list from the
front (trust point) to the rear, and validating each
node. The validation for any node is done by the
Verify call. If Verify is successful for every node in
the chain, then the validation procedure will return
true.

3.3 Explanation

The VHL enforces structural correctness and is re-
sponsible for verification. This was implemented as
a simple command line server which supports con-
necting to another node, viewing and exchanging
trust chains, and validating them. When the pro-
gram starts, it calls the AcceptConnections proce-
dure and the starts the interface. The output of the
commands are piped to the program which imple-
ments the TPA layer.

It should be noted that the viewing of trust chains is
not a feature of this layer, as these operations would
normally be located higher in the stack (i.e. in the
actual CA). Since we wanted a stand-alone applica-
tion instead of trying to merge our code with a CA
(for now) and having to build an entire PKI for test-
ing, we put this functionality in the prototype.
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The following is a brief description of the major
sections of the piece of the prototype which imple-
ments the VHL.

The Logic. The pseudocode functions
AcceptConnections, JoinNetwork, and Validate
are in the VHL. Logically, the VHL is responsible
for maintaining the tree topology as well as the
other restrictions mentioned above. In order to
accomplish this, it must facilitate some commu-
nication facilities other than those available via
the TPA. These facilities are used for sending data
such as roots, chains, and other variables, back
and forth. We did this with simple sockets for the
prototype, although something more secure (such
as SSL) could be used. What we wanted to avoid
was placing this traffic in the TPA, due to the lack
of an intelligent routing protocol (this simplicity is
what makes Gnutella attractive, however).

The Interface. The interface is quite simple,
supporting only three commands:

1. Connect ipaddress attempts to establish a con-
nection with the machine at ipaddress. The
TPA layer attempts connection first, ensur-
ing mutual authentication and secure key ex-
change. If successful, a socket is established to
send and receive chains. Again, this socket is
implemented for our prototype only.

2. View prints the current chain variable to stdout.

3. Validate walks the chain and attempts to vali-
date it.

The Algorithms. Pseudocode implementations
of the algorithms are found in an appendix at the
end of this paper.

3.4 Analysis

In order to meet our claims of increased resilience
and efficiency, we need to show the following:

Structural Correctness The client and server
actions maintain the negotiated secrets in a hier-
archical, acyclic fashion. This is necessary to get
O(logV ) average running times for the Validate
procedure. (We discuss this more in Section 3.4.1
below.)

Secret Distribution The functions maintain the
property that the secrets or collaborating parties fr
each collective are distributed throughout the col-
lective. (We discuss this more in Section 3.4.2 be-
low.)

3.4.1 Structural Correctness

The notion of structural correctness is used to show
that the client and server actions maintain the secrets
in a hierarchical, acyclic topology.

The hierarchy is maintained in two ways. First, note
that the original two parties to connect form the root
collective. This is the code path on lines 28-35 in
Figure 15, and lines 27-33 in Figure 16. As addi-
tional nodes join one of these two nodes, they are
integrated into the collective as they are at a distance
of one from one of the key-holders for the collective.

As nodes make connections with collective mem-
bers which are not key holders, new collectives are
formed. Lines 34-40 in Figure 15 and 28-35 in
Figure 16 represent the case where a caller is re-
questing to start a new collective with a party which
does not belong to an already established collective.
Lines 41-47 in Figure 15 and 36-42 in Figure 16 de-
fine the case where the caller is requesting to start
a new collective. It is worth mentioning that a node
which does not belong to an collective is the root of
an collective which contains only itself.
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Second, if there is a connection established between
collectives, at least one of the collectives must be a
root collective. If this were not the case, it would be
possible for two leaf collectives to join, resulting in
every node in both trees to be reachable from two
different trust roots. This is exactly what we are try-
ing to avoid, as this is the type of situation which
leads to validation algorithms having to try multiple
paths from an end point to a trust point.

Lines 41-47 in Figure 15 and 36-42 in Figure 16 are
executed when the caller is a member of a root col-
lective and Lines 48-58 in Figure 15 and 43-50 in
Figure 16 are executed when the caller is attempt-
ing to join a root collective.

The algorithms maintain a topology which avoids
cycles. Each node in every collective maintains
a my root variable which is set to the root collec-
tive. This variable is managed to always contain
the node’s root collective. As nodes attempt to
make connections, they check this so as ensure that
they do not attempt to make connections with nodes
which already belong to the same tree (Line 7 in
Figure 16).

3.4.2 Secret Distribution

Secret distribution is the principle means by which
we meet our claim of increased resilience. As noted
earlier, threshold cryptography provides many tools.
We discuss two.

Secret Splitting The scheme we implemented
in our initial prototype is perhaps the simplest. The
client and server actions distribute the keys across
the collective in such a way that they can be cor-
rectly reassembled, and used to sign statements
from the collective.

Splitting the private key into x pieces and re-
assembling them when the collective needs to sign
a statement does not invalidate the key. This tech-
nique is referred to as Secret Splitting [9], and for
our prototype, we let x = 2. There are formal algo-

rithms for this type of cryptosystem (e.g. Mediated
RSA), and emerging architectures which employ it
(e.g. Semi-trusted Mediators) [6].

One problem with this scheme is that we do not
mandate redundancy of the key fragments. If Alice
and Bob each hold a fragment and Alice has a power
outage, the collective can no longer sign statements,
at least until a new key can be established (which in-
validates all the outstanding signed statements), or
Alice powers up again.

The second problem with this scheme is that the key
must be reassembled to be used. The only justifica-
tion for this (albeit a weak one) is the fact that we
have secure hardware. Without such machinery, this
would totally expose the private key for a short time.

Secret sharing [15] would eliminate the first prob-
lem but not the second. Multi-Party RSA would
eliminate both, which is why we plan to implement
it in our next prototype.

Multi-Party RSA In opposition to a transient re-
assembling of the key and letting the result sign
some statement, we envision a scheme which sends
the statement around to each node holding a key
fragment, and a portion of the signature being ap-
plied at that node. We plan to eventually use some
instance of Multi-Party RSA to employ this tech-
nique in our system [16, 4].

Due to the algebraic properties of RSA, the algo-
rithm lends itself to collaborative signature schemes
quite naturally (an idea first proposed by Boyd [7]).
Since then, the cryptographic community has gen-
erated a number of methods and protocols which
utilize these properties. Samples of some such pro-
tocols and proofs of their security can be found in
Bellare and Sandhu [4] (this is not meant to be a
complete list).

Practically, using Multi-Party RSA in our system
would allow a subset of members in the collective to
possess key fragments, but would relax the assump-
tion that they key is reassembled. The message is
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instead broadcast to the collective and comes back
signed by the keyholders.

4 The Trusted Peer Access
Layer

The TPA implements a protocol for trusted peers
which allows them to communicate in a secure fash-
ion. By secure, we mean that all parties mutually
authenticate one another, and that all traffic is en-
crypted by the secure coprocessor in such a way
that an intruder could not discover the plain-text of
the message — not even if the intruder is host (i.e.,
the computer which houses the coprocessor). The
protocol need only provide a decentralized means
to locate items stored among those participating in
the network (e.g. Gnutella) [13].

Loosely, the TPA Layer is a peer access layer run-
ning in secure hardware (the IBM 4758 Secure
Coprocessor). The protocol is implemented across
two communicating programs, one running on the
host and the other residing in the card.

The host code is responsible for 1) implementing a
command line interface which allows users (or other
programs) to issue commands, 2) connection man-
agement between nodes over standard sockets, and
3) handing the TCP payloads to the card for pro-
cessing and putting response packets from the card
onto a socket.

The card code is where the protocol’s packet pro-
cessing logic resides, as well as the routing tables
and secrets. The idea is that the card manufactures
outgoing packets, encrypts them using secrets nego-
tiated by it and another coprocessor in the network,
and sends a chunk of ciphertext along with a socket
number to the host so that it may place the cipher-
text into a TCP payload and fire it to the intended
recipient. When a packet arrives, the host program
pulls the ciphertext out of the TCP packet and sends
it to the card for processing.

The following is a brief discussion of the four ma-
jor phases of development that drove our prototype
implementation.

Peer-to-Peer. Our first task was to evaluate ex-
isting true peer-to-peer protocols that allowed for
distributed location without the aid of a central
server (like Napster). Gnutella was immediately ap-
pealing due to its simplicity, community, and avail-
ability of documentation and open source imple-
mentations.

It is important to understand what exactly Gnutella
is and what it is not. Gnutella is a protocol and noth-
ing more. In v0.4 (the base specification), Gnutella
defines five packet types (called descriptors), a for-
mat for headers, and six rules for routing. Gnutella
is only used to locate files across a network, trans-
fers are done out of band (usually over HTTP).

However, Gnutella is not an implementation of this
protocol. There are several implementations in ex-
istence, some of which add to the basic protocol,
but they implement at least the core functionality
described above [2].

We chose to use the core protocol as well as it
seemed to fit our needs (actually, the “Push” de-
scriptor type exceeds our needs, so we eliminated
it), and could help reduce our time to prototype.

Secure Hardware. The next task was to find a
fairly mature code base that implemented an open
source Gnutella servent (SERVer + cliENT). Our
constraints was that it should run on Linux, and
be command line driven in order that we may pipe
commands to it (something GUI based schemes
lack).

We chose Gnut v0.4.25 because it met our con-
straints, was well documented, and professionally
coded [1].

We then undertook the task of finding which pieces
of Gnut stayed on the host and which went to the
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4758. As stated above, the socket management code
remained on the host, and the packet logic and rout-
ing tables were ported to CP/Q++ (the native OS of
the 4758).

At the end of this phase, we were able to observe
4758-enabled machines store strings and using the
command line interface, were able to let other nodes
locate them.

Adding Armor. In order to meet our definition
of resilience, we had to implement a protocol for au-
thentication and encryption, using the native crypto-
graphic services provided by the 4758.

First, we consider authentication. The first element
of our definition of resilience is that nodes must
have a way to mutually authenticate one another.
Bird et al. explain that nonce based protocols are
most secure, and since the 4758 provides a random
number generator, we decided to go this way. We
ended up implementing FIPS 196, which is essen-
tially the core of most authentication schemes used
in practice (e.g. Secure Sockets Layer) [19, 5].

Second, we consider encryption. Once nodes have
authenticated, the initiator sends four 3DES keys
generated by its 4758 to be used for further en-
cryption of all traffic between the two parties. Two
of the keys are for encrypting messages and the
other two are used for constructing a keyed Message
Authentication Code for each message. We chose
DES because it is fast.

The API. Lastly, in order to implement the algo-
rithm above, we made the TPA layer provides the
following primitives to higher layers:

1. The ability to place strings into secure storage
in the card. For our purposes, these strings will
be portions of cryptographic keys.

2. The ability to locate such strings on any ma-
chine which is participating in the network.

3. The ability to connect to other machines, au-
thenticate (to) them, and exchange crypto-
graphic secrets which will be used to encrypt
all further transmissions.

4. The ability to negotiate a shared secret with an-
other machine.

5 Current Status

We are currently in the process of implementing
the prototype. The TPA is lacking encryption sup-
port for all traffic. However, we do currently sup-
port authentication and are able to locate strings
(which would represent cryptographic keys) across
machines in the lab.

The design of the VHL is complete, and we are in
the process of writing the code. We have a large
amount of pseudocode that needs to be implemented
and tested. Once these tasks are complete, we plan
to make the code available for public download.

6 Summary and Future Work

As it turns out, the result of this work has led to
many more questions. In its current state, we plan
to show proof of concept. As future work on this
project progresses, we plan to address some of the
questions that have been raised in order to evolve
the system past being just a proof of concept.

We are considering many ways to enhance the ar-
chitecture.

One direction is to examine data structures other
than trees. Balanced trees (e.g. AVL or Red-Black
trees), and directed acyclic graphs could possibly
lead to better solutions.

Another direction is to examine different routing
protocols in the TPA. Specifically, reverse path for-
warding or some other protocol which is a little
smarter than just broadcasting could be interesting.
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Our current architecture uses secret splitting, but
(as mentioned) cryptography offers more advanced
tools. We plan to extend the prototype to use Multi-
Party RSA, allowing the message to travel around
the collective to be operated on instead of the key
being reassembled at one machine.

We plan to make much use of the virtual hierarchy
technique in our current Marianas project, which
explores using peer-to-peer techniques and secure
hardware to build survivable trusted third parties
(and which which recently earned an NSF Trusted
Computing research grant).
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Pseudocode

Each entity maintains the global variables listed in
Figure 13.

my root is used to store the root of this node’s trust
chain, represented as a signed statement issued from
the collective owning the “root” key.

my signature is used to hold the signature of col-
lective. This is useful in constructing and maintain-
ing the chain variable, as well as for determining if
parties belong to the same collective.

chain is a list of statements signed by the collec-
tives, which represent certificates in our prototype.
Each node in this list is a triple of the form

< root, signature n, public key n + 1 >

such that the public key contained in the nth cer-
tificate can be used to verify the next certificate in
the list. In the case where the node is the first in the
list, the public key may be used to verify the sig-
nature directly (i.e. the first node is a self signed
certificate), as well as the next one. The important
fact to note is that the order of this list maintains the
property that Validate can traverse the topology sug-
gested by this list efficiently. This is done by care-
fully controlling how and where entries are added to
the list.

num connections is used to track the number of
current connections, which is vital in keeping the
number of nodes n in the collective below some
constant maximum. Otherwise, if n would get too
large, it will take longer than O(1) to reconstitute
the private key, as the broadcast to the collective
would get expensive. This implies that issuing a cer-
tificate would be quite costly.

This was of little concern in our prototype, as we
did not have enough cards to test the boundaries of
Gnutella’s scalability. Furthermore, our prototype
did not issue actual certificates, it only maintained
the chain variable, which is only a representation of
a certificate chain.

have key is a boolean that determines whether the
node owns a key fragment.

Explanation of Auxiliary Functions

The functions described in this section are used by
the client and server actions, as well as the valida-
tion procedure. The boolean evaluation functions
were added in an effort to make the pseudocode as
mnemonic as possible.

SendConnectionRequest(ipaddress) sends a re-
quest to the TPA to establish a connection with the
machine residing at ipaddress. The TPA layer sends
the string “GNUTELLA CONNECT/0.4” per the
protocol specification. The 0.4 is the protocol ver-
sion number. If the servent is accepting connec-
tions, it responds with a random number generated
by the 4758, which then begins the FIPS 196 au-
thentication process.

Authenticate() polls the TPA layer to determine
whether the connection was completed. Successful
connection of two nodes in the TPA layer enforces
successful authentication.

SendMyHaveKeyWhenRequested() sets the layer
into a loop until 1) it receives a request for the value
of the have key boolean value, or 2) timeout occurs.

SendMyRootWhenRequested() sets the layer into
a loop until 1) it receives a request for the node’s
my root, or 2) timeout occurs.

SendMySignatureWhenRequested() sets the
layer into a loop until 1) a request for the
my signature variable is received, or 2) timeout
occurs.

SendMyChainWhenRequested() sets the layer
into a loop until 1) a request for the chain variable
is received, or 2) timeout occurs.

RequestHeHasKey() generates a request for the
value of the have key variable and sends it to the
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machine on the other side of the connection estab-
lished in the client or server action.

RequestHisTrustRoot() generates a request for the
value of the my root variable and sends it to the con-
nected machine.

RequestHisSignature() generates a request for
value of the my signature variable and sends it to
the connected machine.

RequestHisChain() generates a request for the
chain variable and sends it to the connected ma-
chine.

NegotiateSecret(new root, public key) calls a
function in the TPA layer which initiates a key ne-
gotiation between the two parties. Once the key is
agreed upon, each party stores one half of this key
inside of the 4758. In actuality, a pair of the form:

< tag, key fragment >

pair is stored so that the key may be found by know-
ing only the tag. This function returns a message
signed by the negotiated key that may be used as
the value my root variable, as well as a public key.

MakeNewChainNode(root, signature, pub-
lic key) constructs the triple:

< root, signature n, public key n + 1 >

AppendChain(c) inserts the chain c into the back
of the local chain variable.

PrependChain(c) inserts the chain c into the front
of the local chain variable.

UpdateRootAndPrependChain(r, c) sends the
root r, and the chain c to all the connections except
the most recent one. This function is called in the
case when collectives are merging and the members
(as well as any subtrees) need to be informed of the
new root and chain information.

Verify(c) is the core of the validation algorithm.
It takes one entry in the chain variable (c), and

attempts to verify the signature using the public
key contained in the node c-1. In the case where
Verifying is working with the first certificate in the
list, the public key may be used to directly verify
the signature, as well as the signature of the next
certificate.

NoOneHasKey() returns

(have key == false&&he has key == false)

DifferentColl() returns

(my signature! = his signature)

HeIsRootCollective() returns

(his root == his signature)

IAmRootCollective() returns

(my root == my signature)

1. my_root = 0
2. my_signature = 0
3. my_chain = 0
4. num_connections = 0
5. have_key = false

Figure 13 The global variables used in
the following procedures. (Note that we use
value 0 as NULL: the lack of an instance of
this data type.)

Procedure Validate( Chain *c )
1. current = NULL;
2. if (c->first != NULL)
3. current = c->first
4. while (current != NULL)
5. {
6. success = Verify( current )
7. if (success == false)
8. return false
9. current = c->next
10. }
11. return true

Figure 14 Validation pseudocode.
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Appeared in the Proceedings of the 7th Nordic Workshop on Secure IT Systems---NORDSEC 2002.



Procedure AcceptConnections()
1. for(;;)
2. {
3. if (received_request && num_connections < MAX_CONNECTIONS)
4. {
6. SendMyRootWhenRequested( my_root )
7. SendMyHaveKeyWhenRequested( have_key )
8. SendMySignatureWhenRequester( my_signature )
9. he_has_key = RequestHeHasKey()
10. his_signature = RequestHisSignature()
11. if (have_key == false && he_has_key == true && my_root == 0)
12. {
13. his_root = RequestHisTrustRoot()
14. my_root = his_root
15. my_signature = his_signature
16. his_chain = RequestHisChain()
17. PrependChain( his_chain )
18. if (num_connections > 1)
19. UpdateRootAndPrependChain( my_root, my_signature, my_chain )
20. continue
21. }
22. else if (NoOneHasKey() || (DifferentColl() && his_signature != 0))
23. {
24. his_root = RequestHisTrustRoot()
25. NegotiateSecret( new_root, public_key )
26. have_key = true
27. if (his_root == 0 && my_root == 0)
28. {
29. my_root = new_root
30. my_signature = new_root
31. node = MakeNewChainNode( new_root, my_signature, public_key )
32. AppendChain( node )
33. }
34. else if (his_root != 0 && my_root == 0)
35. {
36. my_root = his_root
37. my_signature = new_root
38. his_chain = RequestHisChain()
39. AppendChain( his_chain )
40. }
41. else if (!IAmRootCollective() || HeIsRootCollective())
42. {
43. temp_signature = my_signature
44. my_signature = new_root
45. node = MakeNewChainNode( my_root, temp_signature, public_key )
46. AppendChain( node )
47. }
48. else
49. {
50. my_root = his_root
51. my_signature = new_root
52. his_chain = RequestHisChain()
53. DeleteChain( my_chain )
54. AppendChain( his_chain )
55. if (num_connections > 1)
56. UpdateRootAndPrependChain( my_root, my_signature, my_chain )
57. continue
58. }
59. }
60. SendMyChainWhenRequested()
61. }
62. }

Figure 15 Server Action pseudocode.
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Procedure JoinNetwork( ipaddress )
1. SendConnectionRequest( ipaddress )
2. his_root = RequestHisTrustRoot()
3. he_has_key = RequestHeHasKey()
4. his_signature = RequestHisSignature()
5. SendMyHaveKeyWhenRequested( have_key )
6. SendMySignatureWhenRequested( my_signature )
7. if ((my_root != his_root || his_root == 0) &&
8. (!DifferentColl() || ( NoOneHasKey() &&
9. (HeIsRootCollective() || IAmRootCollective())))
10. {
11. if (have_key == true && he_has_key == false && his_root == 0)
12. {
13. SendMyRootWhenRequested( my_root )
14. SendMyChainWhenRequested()
15. }
16. else if (NoOneHasKey() || (DifferenttColl() && my_signature != 0))
17. {
18. SendMyTrustRootWhenRequested( my_root )
19. NegotiateSecret( new_root, public_key )
20. have_key = true
21. if (his_root == 0 && my_root == 0)
22. {
23. my_root = new_root
24. my_signature = new_root
25. his_chain = RequestHisChain()
26. AppendChain( his_chain )
27. }
28. else if (his_root == 0 && my_root != 0)
29. {
30. temp_signature = my_signature
31. my_signature = new_root
32. node = MakeNewChainNode( my_root, temp_signature, public_key )
33. AppendChain( node )
34. SendMyChainWhenRequested()
35. }
36. else if (IAmRootCollective())
37. {
38. my_signature = new_root
39. his_chain = RequestHisChain()
40. DeleteChain( my_chain )
41. AppendChain( his_chain )
42. }
43. else if (HeIsRootCollective())
44. {
45. temp_signature = my_signature
46. my_signature = new_root
47. node = MakeNewChainNode( my_root, temp_signature, public_key )
48. AppendChain( node )
49. SendMyChainWhenRequested()
50. }
51. }
52. else
53. {
54. my_root = his_root
55. my_signature = his_signature
56. his_chain = RequestHisChain()
57. PrependChain( his_chain )
58. }
59. if (num_connections > 1)
60. UpdateRootAndPrependChain( my_root, my_signature, my_chain )
61. }
62. return

Figure 16 Client Action pseudocode.
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