
Modeling Aggregate Security with User Agents that
Employ Password Memorization Techniques

Christopher Novak
Department of Computer

Science
Dartmouth College

novak.chris.m@gmail.com

Jim Blythe
Information Sciences Institute

University of Southern
California

blythe@isi.edu

Ross Koppel
Department of Sociology

University of Pennsylvania
rkoppel@sas.penn.edu

Vijay Kothari
Department of Computer

Science
Dartmouth College

vijayk@cs.dartmouth.edu

Sean Smith
Department of Computer

Science
Dartmouth College

sws@cs.dartmouth.edu

ABSTRACT
We discuss our ongoing work with an agent-based pass-
word simulation which models how site-enforced password
requirements affect aggregate security when people interact
with multiple authentication systems. We model two pass-
word memorization techniques: passphrase generation and
spaced repetition. Our simulation suggests system-generated
passphrases lead to lower aggregate security across services
that enforce even moderate password requirements. Fur-
thermore, allowing users to expand their password length
over time via spaced repetition increases aggregate security.

1. INTRODUCTION
Password authentication is often a critical, if not the sole,
authentication mechanism in existing systems. Unfortu-
nately, it places significant burden on users to perform the
often overwhelming task of memorizing and recalling user-
name and password strings. Indeed, the mantra that “prac-
tice makes perfect” affirms that most of us cannot instantly
memorize everything. In the same vein, users of authenti-
cation systems are only willing to expend so much effort to
comply with security and privacy rules (e.g. [2, 11]). When
users circumvent policies, security suffers. In one of many
examples we found, an organization required employees to
change passwords every 90 days, which led some employees
to reset their password to the previous one on the 91st day
[5].

To provide a framework to analyze these effects quanti-
tatively, in both this work and prior work, our team has
been using the agent-based modeling platform DASH (De-
ter Agents Simulating Humans) to build models of how users
create and manage passwords for multiple online accounts.
Cognitive burden can be a useful tool for representing men-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
Symposium on Usable Privacy and Security (SOUPS) 2017, July 12–14,
2017, Santa Clara, California.

tal workload in computational models of human behavior;
in our most recent prior work, we used heavy cognitive bur-
den as a means of explaining why users often engage in risky
behaviors, namely writing down and reusing passwords [19].

Committing unique, strong passwords to memory is gener-
ally a task that involves heavy cognitive burden. However,
some security analysts have recently pointed out that high
password strength and memorability may not be mutually
exclusive [6]. By employing specific password coping and
memorization techniques, users might be able to increase
the number of unique, strong passwords they can remem-
ber.

In this paper, we examine how two techniques for effec-
tively memorizing secure passwords, spaced repetition and
passphrase generation, affect aggregate security, a security
measure that accounts for the fact that people use multiple
authentication systems—and not in isolation.

Spaced repetition refers to a learning technique that involves
exposure to previously learned material over increasing in-
tervals of time. We apply this technique to an existing
password simulation to model how an authentication sys-
tem might allow users to learn a shorter initial password and
lengthen it over time. As has been shown by several security
researchers, committing passwords to memory significantly
increases the user’s cognitive burden [16, 22]. Spaced rep-
etition can be combined with password lengthening, which
refers to the process of extending a base password over time
after successful recalls. By limiting the original password
length to something short, the user can theoretically ex-
pend far less effort than if she had originally attempted to
memorize a longer password with higher initial strength. As
the user strengthens her knowledge of the password, she can
gradually increase its length and/or complexity with com-
paratively little cognitive burden. Joseph Bonneau and Stu-
art Schechter tested this technique with a group of 223 par-
ticipants on Amazon’s Mechanical Turk, finding that 94%
were able to successfully commit a 56-bit password to mem-
ory over the course of two weeks [6]. We note that spaced
repetition can be applied to any scenario that requires mem-
orization; here, we examine spaced repetition as it applies to
the process of lengthening a base password. (Bonneau and

Schechter refer to this process as “spaced repetition” alone.)

Passphrase generation refers to the creation of long pass-
words composed of several valid English words. By concate-
nating words together to form a long password, the strength
of the password is relatively high, but the words might be
easier to memorize than a password of similar strength with
a variety of character types and few full words. In theory,
this technique could be used to generate “secure” passwords
with significantly less cognitive burden to the user.

Modeling these two techniques with DASH enables us to
quickly approximate real-world behavior and measure ag-
gregate security without incurring the cost of implementing
policy changes in practice. This could benefit security prac-
titioners attempting to design authentication and security
policies to improve aggregate security.

2. RELATED WORK
Many papers have documented strategies that users em-
ploy to cope with cumbersome password policies, including
recording passwords on physical and digital media, shar-
ing passwords with family members, and reusing passwords
across services; estimated the fraction of users who use these
strategies; and studied the security repercussions of non-
compliance, e.g. [14, 17, 25, 10, 5, 7]. Since non-compliance
makes password policies ineffectual, these observations have
spurred interest in understanding the factors that drive users
toward circumvention, e.g. [30, 20].

Both new and existing models have been used to explain
why and when users engage in password coping strategies,
e.g. [2, 11]. Simulations have been created to measure the
efficacy of different password composition policies in light
user circumvention, e.g. [27, 1, 24]. Indeed, this paper,
which is a continuation of earlier work [21, 19], falls un-
der this category. Our ultimate aim is to accurately predict
the aggregate security afforded by a set of password poli-
cies by simulating user agents who create and cope with
passwords and password policies. We believe our simulation
distinguishes itself by the depth of the user agent, which
we hope will allow for greater productive power, but may
require more extensive validation. This paper expands on
our earlier work by comparing two password memorization
techniques in simulation.

3. AGENT MODELS OF PASSWORD
BEHAVIOR
Agent-based simulation can be used as a complement to em-
pirical studies of human behavior in exploring the conse-
quences of password policies and human responses to them.
While empirical studies are essential to understanding the
range of individual behaviors around passwords, they are
costly and have natural limits in scope and size. Simula-
tions cannot replace empirical work but can indicate the
consequences of those behaviors in larger groups and in a
wider range of circumstances. For example, given a distri-
bution of coping strategies such as resetting passwords and
sharing passwords between sites, one can examine how the
prevalence of these strategies changes in response to stricter
policies. Simulations used in this way are subject to the
same issues of generalizability as other methods, and care
must be taken in making decisions based on their results.
This includes (1) making use of recent applicable empirical
work and understanding its generalizability, (2) analyzing

the sensitivity of the predictions to any assumptions that are
made in the simulation and (3) verifying that the emergent
properties of the simulation align with available observed
values.

In our work we build on the DASH model for cognitive
agents [4] and on previous simulations of password behavior
built with DASH [19]. Agents built using DASH have access
to a dual-process model of reasoning, goal-directed behavior
that is responsive to changes in the agent’s world and re-
call affected by spreading activation. These capabilities are
grounded in empirical work in cognitive science and help pro-
vide an account of cognitive burden and password recall for
our agent model of password use. The work described here
builds on a previous password agent model that included
an explicit model of cognitive burden, a finite amount of
memory for passwords, and fixed coping strategies includ-
ing reusing passwords between sites and writing passwords
down. Agents employed these strategies when memorization
of a set of passwords exceeded the agent’s memory limit.
We showed that this simulation provided behavior consis-
tent with observations including those on password reuse
and the proportion of reset attempts from Florencio and
Herley [10]. In this paper we extend this work to consider
passphrase generation and memorizing passwords through
spaced repetition.

4. SYSTEM-GENERATED PASSPHRASES
In 2011, xkcd published its now well-known “Correct Horse
Battery Staple” cartoon [23], prompting public interest and
research about passphrases, which are composed of concate-
nated valid English words. Shay et al. found that users for-
got system-generated passphrases and system-assigned pass-
words at similar rates and that although entropy was similar
for both, users had to spend more time typing in passphrases
[28]. However, these types of studies on password mem-
orability and usability are often problematic in that they
isolate the experiment from the everyday lives of the par-
ticipants. On average, users are tasked with memorizing
approximately 25 passwords [10], and the cognitive bur-
den of doing so drives users to write them down or reuse
them [5]. Agent-based simulations may thus be a more
realistic approximation for how users might actually ben-
efit from system-generated passphrases than typical studies
might suggest.

Implementation
To simulate the use of system-generated passphrases over
traditional user-defined passwords, we extended our pass-
word simulation (built on the DASH agent modeling plat-
form [19, 21]). In our original model, we modeled human
cognitive burden as the minimal cost of a tree that spans
the set of known passwords plus the empty string, where
the edge weight is given by Levenshtein distance (i.e. “edit
distance.”). Such a model for cognitive burden is useful in
accounting for small permutations of passwords for different
sites. Take, for example, the passwords apxxqwoinwe$a1

and apxxqwoinwe$a2. Certainly, the cost of remembering
both passwords is only slightly more than remembering one,
and the Levenshtein distance captures this fact. However,
consider too the passwords feltcoldchair1 and feltcold-

chair2. Certainly, the latter two passwords would be easier
to memorize than the former ones, but both password tuples

have the same Levenshtein distance.

To handle system-generated passphrases, we created a new
cognitive burden cost function to examine the composition
of the password rather than the relationships between pass-
words, as the passwords themselves are unlikely to be related
with a sufficiently large dictionary. We model the word count
cost of memorizing a set of passwords P = {p1, p2, . . . , pn} as

WC(P) =
∑
p∈P

WC(p), where WC(p) is the number of valid

English-language words in password p. Special characters
and digits are characterized as individual words, though our
system-generated passphrases do not contain either type of
character. To determine if a substring in a password consti-
tutes an English-language word, we use the NLTK English-
word corpus [3] to validate the longest substrings that com-
pose individual words of the system-generated passphrase.
We use the Viterbi algorithm [13] to search for maximal
length valid word substrings in O(n) time rather than the
O(n2) time of a brute-force search. We tested a new set of
passphrases against our original password set using Leven-
shtein distance, word count, and an average of the two to
examine how passphrases affect aggregate security.

5. SPACED REPETITION OF PASSWORDS
Memorization via spaced repetition involves increasing time
intervals between satisfactory memorization of content. On
the other hand, massed repetition involves repeated memo-
rization of content over a short period of time. There are
many theories surrounding the effectiveness of spaced repe-
tition over massed repetition. One acknowledges the impor-
tance of active knowledge retrieval in strengthening memory,
and another posits that the learner’s contextual surround-
ings are more variable than with massed repetition, increas-
ing the number of opportunities for recall cues [9]. In the
previously cited Bonneau and Schechter study, nearly all
participants were able to remember a 56.4-bit secret after
a median of 36 logins by employing spaced repetition [6].
Much of the research that surrounds passwords and authen-
tication fails to acknowledge the importance of time and
repetition in knowledge recall, and so one of our primary
aims here is to better model these factors.

Implementation
Existing agent-based models for authentication often incor-
porate the effect of repetition on memory. In our previous
password simulation, users who successfully log in to a sys-
tem with a given password increase their belief in the cor-
rectness of that password while also reducing their beliefs
in the correctness of all other passwords [21, 19]. However,
we wanted to model how an authentication system might be
able to combine this technique with password lengthening,
which allows users to memorize an n-length password and
slowly expand its length over time. In the simulation, the
user may lengthen her password only a set number of times
(a parameter whose default is three), and each expansion
involves increasing the length of the password by four.

To account for this type of authentication system, we in-
corporated an early attack risk into our model to account
for the possibility that an attacker can successfully learn a
password before it has reached its longest length—and cor-
respondingly, highest possible strength.

6. EXPERIMENTAL DESIGN
To test the effectiveness of passphrase generation and spaced
repetition in our simulation, we defined a security measure
M to be the probability that a given service is safe from
attack, where an attack can be a brute-force attack (here,
an offline dictionary attack), an attacker’s discovery of a
written password, or an indirect reuse attack wherein an
attacker uses an agent’s username and password from one
site to log in to another site. The probability of a brute-force
attack on a password p is bf(p), where

bf(p) =

{
t×g
k(p)

, if t× g < k(p)

1, otherwise

Here, t denotes the attack time in seconds, g denotes the
number of guesses per second, and k(p) denotes the size of
the keyspace for password p.

We assume that the attacker has the capability to guess 100
million times per second, which is achievable for even a re-
motely knowledgeable attacker without expensive hardware
(e.g. [15]). Further, we assume that the attacker spends no
longer than an hour attempting to crack the password. In
other words, we do not model a strong attack. To approx-
imate the size of the keyspace for a given password p, we
use Passfault, an open-source tool for measuring password
complexity. Passfault computes the smallest search space as
the complexity of the password, using factors like dictionary
matches, misspellings, substitutions, keyboard patterns, and
string repetitions to make its determination [26].

Given a specific user and service, the probability of an at-
tacker’s compromise of the user’s written-down password is
set to the stolen attack risk parameter if the password has
been written down, and zero otherwise. We performed sen-
sitivity analysis of this parameter (among others) in [21].
Finally, the probability of a reuse attack on a specific ser-
vice is equal to one minus the probability of the service’s
safety from a reuse attack, where the probability of safety
from a reuse attack for a service S is a product of probabili-
ties, where each probability is the probability that S is safe
from a reuse attack that stems from service S′. The proba-
bility that S is safe from a reuse attack that stems from S′

is equal to the reuse attack risk (also explored in [21]) times
the probability that S′ is safe from a direct attack, where
the direct attack can be a brute force or written password
attack. We then averaged M across all services.

Our last simulation used a set of approximately thirty pass-
words of increasing complexity. These passwords were not
totally realistic but provide useful guides for analysis of ag-
gregate security. As an example, we used P@SsWoRd12 and
MyPaSsW0Rd!234?. The passwords were all in some way re-
lated; we used insertions and substitutions to make pass-
words slightly more complex. These passwords made sense
for our initial iteration of the simulation, as they captured
the fact that people often use slightly permuted forms of
a base password across sites [29], resulting in a lower to-
tal cognitive burden than if they had used totally distinct
passwords for each site. However, we wanted to increase
the diversity of passwords to account for different password
memorization strategies that users might employ.

To test passphrase generation, we used a newer version of the

password simulation built with Python. We tested two dis-
tinct password sets from which the user agents may choose
passwords: the original, permuted password set as described
in the previous paragraph, and a new password set com-
posed of system-generated passphrases. For each password
set used, we tested three different cognitive burden func-
tions: one that uses Levenshtein distance alone, another
that uses word count alone (as described in Section 2), and
a third that uses both Levenshtein distance and word count.

Spaced repetition relies on the fact that as people success-
fully commit concepts or words to memory, they become
easier to recall over time. The previous iteration of our pass-
word simulation did account for the fact that users are more
likely to successfully recall passwords with each successful
login, but the cognitive burden function used did not take
into account the fact that eventually the cognitive cost of re-
membering a relatively well-known password decreases. We
changed our password simulation to allow agents to practice
spaced repetition of passwords as described in a real-word
study [6]. After an agent’s belief in a given password reaches
the expansion threshold (a new model parameter that we de-
fine), she can extend the length of her password by a preset
number of randomly generated characters. To reflect the
fact that the cognitive burden of remembering a password
approaches zero after a long period of successful recalls, we
include only the cost of the new characters in the cogni-
tive burden function. However, the likelihood of a brute-
force attack is higher than if the agent had opted to use the
expanded-length password from the outset, as an attacker
could more easily learn the shorter password; if the user
lengthens the shorter password, it is nearly trivial to com-
pute the new password (given that the lengthening adds
only a few characters, as is the case in our simulation and
Bonneau and Schechter’s study). For the cognitive burden
function, we used the average of Levenshtein distance and
word count. We opted to use the original password set.

7. PRELIMINARY RESULTS
For each experiment run, we tested 9 service hardnesses,
where each each hardness is an additive factor to a base min-
imum password length enforced by the service. Each service
can be either “weak”, “average”, or “strong”, and there is an
equal distribution of service types. (Here, we use three of
each respective type.) “Weak”, “average”, and “strong” ser-
vices enforce minimum password lengths of h+1, h+5, and
h + 8, respectively, where h is the hardness variable. Pass-
word length is defined as the number of characters in the
password.

7.1 System-Generated Passphrases
In this section, we explore the efficacy of system-generated
passphrases over standard passwords, where we define a
system-generated passphrase to be a string composed of con-
catenated valid English words, and a standard password to
be a password drawn from our original password set, which
is composed of passwords like MyS3cUReP@SsW0rd!2345 and
P@SsWord12. Although password length is the only require-
ment that services enforce, our simulation considers pass-
word and passphrase strength in the computation of direct
attack risk.

Levenshtein Distance Cognitive Burden Function

We first used Levenshtein distance to model the user’s cog-
nitive burden, which is the same metric that we used in
earlier iterations of the simulation. While system-generated
passphrases offer greater aggregate security when password
requirements are relatively lax, their relative utility declines
with stricter password requirements. Figure 1 displays the
relationship.

l

l

l

l

l

l

l
l l

l
l

l

l

l

l
l

l

l

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8
Service Hardness (h)

S
ec

ur
ity

 M
ea

su
re

 (M
) variable

System−Generated Passphrase Set

Original Password Set

Aggregate Security with Levenshtein Distance Cognitive Burden Function

Figure 1: Levenshtein Distance Cognitive Burden
Function vs. Aggregate Security

Word Count Cognitive Burden Function
As a proxy for cognitive burden, Levenshtein distance does
not take into account the fact that words are easier to re-
member than strings of random characters. We modified
our simulation to compute cognitive burden by summing
over the word count for each password across the password
set. Again, we found that system-generated passphrases of-
fer greater aggregate security when password requirements
are relatively lax, but decline in utility as password require-
ments increase. We found this result somewhat surprising,
as the modified cognitive burden function assigns a lower
cost to passwords composed of concatenated words than
those of random characters.

We believe that this result can be explained by the fact that
as password length requirements increase, system-generated
passphrases become exponentially easier to crack than stan-
dard passwords, outweighing the benefit to cognitive burden
that results from using passphrases over standard passwords.
Figure 2 displays the relationship.

l

l

l

l

l

l

l

l ll l

l
l

l

l

l

l

l

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8
Service Hardness (h)

S
ec

ur
ity

 M
ea

su
re

 (M
)

variable

System−Generated Passphrase Set

Original Password Set

Aggregate Security with Word Count Cognitive Burden Function

Figure 2: Word Count Cognitive Burden Function
vs. Aggregate Security

Averaged Levenshtein Distance and Word Count Cog-
nitive Burden Function

For our last experiment on system-generated passphrases,
we modified our cognitive burden function to take both Lev-
enshtein distance and word count into account. Specifically,
we computed cognitive burden to be the average of the two.
Our results show that system-generated passphrases perform
significantly worse than the original password set that we
used. Figure 3 displays the relationship.

l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8
Service Hardness (h)

S
ec

ur
ity

 M
ea

su
re

 (M
) variable

System−Generated Passphrase Set

Original Password Set

Aggregate Security with Averaged L.D. and W.C. Cognitive Burden Function

Figure 3: Averaged Levenshtein Distance and Word
Count Cognitive Burden Function vs. Aggregate Se-
curity

7.2 Spaced Repetition
To model the spaced repetition approach to password mem-
orization that Bonneau and Schechter describe [6], we ran
the simulation using our original password set and a cogni-
tive burden function that averaged Levenshtein distance and
word count of the password set. Figure 4 shows the results
of our trials.

ll
l

l

l

l l

l

l

l

ll

l

l

l

l

l
l

0.0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8
Service Hardness (h)

S
ec

ur
ity

 M
ea

su
re

 (M
)

variable

Spaced Repetition

No Spaced Repetition

Spaced Repetition and Aggregate Security

Figure 4: Spaced Repetition and Aggregate Security

In general, our trials showed that incorporating spaced repe-
tition into the authentication scheme generally improved ag-
gregate security. While it may seem self-evident that length-
ening passwords generally increases their resistance to brute
force attacks, the risk of an early attack must be accounted
for. If a password p is discovered by an attacker before the
user lengthens it to p′ (where p′ = p plus a short string of
random characters), then it is nearly trivial for the attacker
to crack p′ with knowledge of p.

8. FUTURE WORK
While computing direct attack risk, we assumed that the at-
tacker in question was unskilled and did not have expensive
hardware. We believe that it would be useful to further ex-
tend the simulation to account for the greater computational
power of organizations and governments. Furthermore, we

did not take the cognitive burden of memorizing usernames
into account; different services have varying username re-
quirements, and often times a user’s first choice has already
been taken. Finally, we assumed that users would be willing
to comply with these memorization techniques. It would be
useful to account for the possibility that users may simply
be unwilling to comply with either technique in a real-world
scenario. (However, even if we can’t achieve full compliance
in practice, running simulations that assume full compliance
can still be useful. If running a reliable simulation tells us
that even if users fully comply with a policy, we’ll achieve
bad security, then we shouldn’t adopt that policy. That
is, we can weed out hopeless policies.) Modeling cognitive
burden accurately remains a challenge, but it is essential to
simulating how users interact with authentication systems.

9. CONCLUSIONS
Complying with password requirements is a burdensome task
that leads users to write down passwords and reuse them
across services. As a result, accurately modeling cognitive
burden is critical to agent-based simulations of password use.
Although strategies for creating memorable passwords have
been proposed many times (e.g. [8, 12, 31, 18]), it is criti-
cal to evaluate their effectiveness on more than just risk of
brute-force cracking.

In our agent-based model of aggregate security, we found
that system-generated passphrases generally led to lower
aggregate security than standard passwords when sites en-
force even moderate password length requirements. How-
ever, passphrases performed relatively well when sites en-
forced lax password length requirements. As mentioned
earlier, we believe that this result can be explained by the
fact that as password length requirements increase, system-
generated passphrases become exponentially easier to crack
than standard passwords, outweighing the benefit to cogni-
tive burden that results from using passphrases over stan-
dard passwords. Further, system-generated passphrases of-
fer users less flexibility than user-defined passwords, and
our model assumed that users cannot generate their own
passphrases. When users are allowed to create their own
passphrases, they often choose ones that are considerably
easier to guess than system-generated ones. Our initial sim-
ulation has not shown clear benefits from system-generated
passphrases. We suspect that new types of service-enforced
constraints on passphrases might increase aggregate security
(e.g. rejecting passphrases that parse as sentence fragments,
since that greatly reduces strength). More modeling work is
needed to understand the consequences of this approach.

Spaced repetition is a memorization technique that can be
applied across nearly any domain of knowledge, and our
simulation supports its effectiveness. Shorter passwords are
generally less secure but far easier to memorize initially. By
allowing users to memorize a short password initially and
expand its length and complexity over time, the initial pass-
word memorization task becomes easier. In our simulation,
spaced repetition of passwords increases aggregate security,
even while taking into account the fact that an attacker can
crack the initial password far more easily. However, it is
important for the time interval between lengthenings to be
unknown to the attacker. In theory, an authentication sys-
tem could use a combination of entropy and the user’s login
success rate to ensure this assumption holds.

10. REFERENCES
[1] S. Arnell, A. Beautement, P. Inglesant, B. Monahan,

D. Pym, and A. Sasse. Systematic decision making in
security management modelling password usage and
support. In International Workshop on Quantitative
Aspects in Security Assurance. Pisa, Italy, 2012.

[2] A. Beautement, M. A. Sasse, and M. Wonham. The
Compliance Budget: Managing Security Behaviour in
Organisations. In Proc. New Security Paradigms
Workshop, NSPW ’08. ACM, 2008.

[3] S. Bird. NLTK: The Natural Language Toolkit. In
Proc. COLING/ACL, COLING-ACL ’06. Association
for Computational Linguistics, 2006.

[4] J. Blythe. A dual-process cognitive model for testing
resilient control systems. In International Symposium
on Resilient Control Systems (ISRCS). IEEE, 2012.

[5] J. Blythe, R. Koppel, and S. W. Smith.
Circumvention of security: Good users do bad things.
IEEE Security & Privacy, 11(5):80–83, 2013.

[6] J. Bonneau and S. Schechter. Towards reliable storage
of 56-bit secrets in human memory. In Proc. 23rd
USENIX Security Symposium, SEC’14, 2014.

[7] A. Das, J. Bonneau, M. Caesar, N. Borisov, and
X. Wang. The tangled web of password reuse. In
NDSS, volume 14, pages 23–26, 2014.

[8] V. Fiorentini, M. Shao, and J. Medero. Generating
Memorable Mnemonic Encodings of Numbers.
arXiv:1705.02700 [cs], May 2017. arXiv: 1705.02700.

[9] S. T. Fiske and S. H. Kang. Spaced repetition
promotes efficient and effective learning: Policy
implications for instruction. Policy Insights from the
Behavioral and Brain Sciences, 3(1):12–19, 2016.

[10] D. Florêncio and C. Herley. A large-scale study of web
password habits. In Proc. International Conference on
World Wide Web, WWW ’07. ACM, 2007.

[11] D. Florêncio, C. Herley, and P. C. Van Oorschot.
Password Portfolios and the Finite-Effort User:
Sustainably Managing Large Numbers of Accounts. In
Usenix Security, pages 575–590, 2014.

[12] A. Forget, S. Chiasson, P. C. van Oorschot, and
R. Biddle. Improving Text Passwords Through
Persuasion. In Proc. Symposium on Usable Privacy
and Security, SOUPS ’08. ACM, 2008.

[13] G. D. Forney. The viterbi algorithm. Proceedings of
the IEEE, 61(3):268–278, Mar. 1973.

[14] S. Gaw and E. W. Felten. Password management
strategies for online accounts. In Proceedings of the
second symposium on Usable privacy and security,
pages 44–55. ACM, 2006.

[15] D. Goodin. 25-GPU cluster cracks every standard
Windows password in <6 hours, Dec. 2012.

[16] A.-M. Horcher and G. P. Tejay. Building a better
password: The role of cognitive load in information
security training. In Proc. IEEE Int. Conference on
Intelligence and Security Informatics, ISI’09, 2009.

[17] B. Ives, K. R. Walsh, and H. Schneider. The domino
effect of password reuse. Communications of the ACM,
47(4):75–78, 2004.

[18] K. A. Juang, S. Ranganayakulu, and J. S. Greenstein.
Using System-Generated Mnemonics to Improve the
Usability and Security of Password Authentication.

Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 56(1):506–510, Sept. 2012.

[19] B. Korbar, J. Blythe, R. Koppel, V. Kothari, and
S. W. Smith. Validating an agent-based model of
human password behavior. In Workshops at the AAAI
Conference on Artificial Intelligence, 2016.

[20] V. Kothari, J. Blythe, R. Koppel, and S. Smith.
Password logbooks and what their amazon reviews
reveal about their users’ motivations, beliefs, and
behaviors. 2017.

[21] V. Kothari, J. Blythe, S. W. Smith, and R. Koppel.
Measuring the security impacts of password policies
using cognitive behavioral agent-based modeling. In
Proc. Symposium and Bootcamp on the Science of
Security, HotSoS ’15. ACM, 2015.

[22] S. Mujeye and Y. Levy. Complex passwords: How far
is too far? the role of cognitive load on employee
productivity. Online Journal of Applied Knowledge
Management, 1(1):122–132, 2013.

[23] R. Munroe. Password Strength, 2012.

[24] K. Renaud and L. Mackenzie. Simpass: Quantifying
the impact of password behaviours and policy
directives on an organisation’s systems. Journal of
Artificial Societies and Social Simulation, 16(3):3,
2013.

[25] S. Riley. Password security: What users know and
what they actually do. Usability News,
8(1):2833–2836, 2006.

[26] B. A. Rodrigues, J. R. B. Paiva, V. M. Gomes,
C. Morris, and W. P. Calixto. Passfault: an Open
Source Tool for Measuring Password Complexity and
Strength. Orlando, Florida, Mar. 2017.

[27] R. Shay, A. Bhargav-Spantzel, and E. Bertino.
Password policy simulation and analysis. In
Proceedings of the 2007 ACM workshop on Digital
identity management, pages 1–10. ACM, 2007.

[28] R. Shay, P. G. Kelley, S. Komanduri, M. L. Mazurek,
B. Ur, T. Vidas, L. Bauer, N. Christin, and L. F.
Cranor. Correct horse battery staple: Exploring the
usability of system-assigned passphrases. In Proc.
Eighth Symposium on Usable Privacy and Security,
SOUPS ’12. ACM, 2012.

[29] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon,
M. L. Mazurek, L. Bauer, N. Christin, and L. F.
Cranor. Encountering Stronger Password
Requirements: User Attitudes and Behaviors. In Proc.
Symposium on Usable Privacy and Security, SOUPS
’10. ACM, 2010.

[30] E. Stobert and R. Biddle. The password life cycle:
user behaviour in managing passwords. In Proc.
SOUPS, 2014.

[31] U. Topkara, M. J. Atallah, and M. Topkara. Passwords
Decay, Words Endure: Secure and Re-usable Multiple
Password Mnemonics. In Proc. ACM Symposium on
Applied Computing, SAC ’07. ACM, 2007.

