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Abstract

Public-key cryptography can uniquely enable trust within distributed
settings. Employing it usually requires deploying a set of tools and services
collectively known as a public key infrastructure (PKI). PKIs have become
a central asset for many organizations, due to distributed IT and users.
Even though the usage of PKIs in closed and controlled environments is
quite common, interoperability and usability problems arise when shift-
ing to a broader, open environment. To make an effective trust judgment
about a public key certificate, a PKI user needs more than just knowledge
of that certificate: she also needs to be able to locate critical parameters
such as the certificate repositories and certificate validation servers rele-
vant to that certificate—and all the others the trust path she builds for it.
Surprisingly, locating these resources and services remains a largely un-
solved problem in real-world X.509 PKI deployment. This issue impacts
especially on the usability of this technology and the interoperability of
PKIs in open environments such as the Internet.

In this paper, we present the design and prototype of a new and flex-
ible solution for automatic discovery of the services and data repositories
made available by a Certificate Service Provider (CSP). This contribution
will take real-world PKI one step closer to enhancing usability of digital
certificates and interoperability between PKIs.

∗The authors would like to thank Stephen Kent, Frank Pooth, Ashad Noor, Sravan and all
the PKIX WG for several discussions and comments. This work was supported in part by the
NSF (under grant CNS-0448499 ), the U.S. Department of Homeland Security (under Grant
Award Number 2006-CS-001-000001), and Sun Microsystems. The views and conclusions con-
tained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of any of the sponsors.

1



1 Introduction

Public key cryptography enables secure communication and authentication be-
tween parties who do not need to share secrets. The benefits coming from the
deployment of PKIs have convinced companies and universities to enable the use
of digital certificates as an efficient way to manage identities and authenticate
their own users. As reported by OASIS, benefits from deploying PKI-enabled
applications significantly outweigh the costs of PKI implementation [1].

Unfortunately, these costs are still high. Setting up new PKI-enabled ser-
vices is equally painful for administrators as well as final users—all of whom
are often misguided by badly written User Interfaces (UI) and overly detailed
configurations. Every application needs to be properly configured by filling in
complex configuration options whose meaning is mostly unknown to the average
user (and often to the advanced one as well). Enabling applications to auto-
matically find PKI services (such as OCSP servers, timestamping, etc.) and
repositories (e.g. CRLs, certificate pointers, etc.) would relieve users and ad-
ministrators from this burden, and hence lower these barriers to interoperability
and deployment.

Regrettably, Certification Authorities barely publish access details on their
official websites; even data as basic as the URLs for the services and repositories
they provide are usually omitted. As a result, if a CA provides a new service (e.g.
OCSP [2]) or a new data repository (e.g. LDAP [3]), users and administrators
have difficulty learning of these changes. Nor would there be any sign of the new
service on the certificates that have been already issued. Hence, it is unlikely
that users (and applications) will be easily aware of the new services unless
someone directly advises them.

This problem has even bigger impact on users from organizations other than
the one that issued a certificate; these “foreign” users will usually have very
limited knowledge about the specific CA’s practices and service locations.

Thus, a new approach is needed to provide a flexible way for PKI users to
automatically discover which services and data repositories are available from a
CA. This flexibility would also facilitate interoperability across different infras-
tructures in an open environment (e.g. Web, Email, Wireless, etc.). An OASIS
survey [4] on issues in PKI deployment survey points out two important aspects
(Fig. 1):

• Support for PKI is often missing from applications and operating systems;
when present, it is always inconsistent.

• Current PKI standards are inadequate; they are often too complicated,
and implementations from different vendors rarely interoperate.

It is interesting to notice that seven out of ten reported problems in the list are
related to PKI usability and interoperability.

We think that some of these problems can be efficiently tackled by facilitat-
ing the location of PKI resources. In this paper, we present a new approach
that provides a flexible way to automatically discover which services and data
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Figure 1: Our summary of the OASIS Survey Results — Interestingly, seven
deployment obstacles out of the first ten are related to PKI usability and inter-
operability.

repositories are related to a specific CA. The core of our solution is based on the
definition and implementation of a new (and simple) PKI Resource Query Pro-
tocol (PRQP) which is aimed to ease PKI management both for administrators
and final users. The flexibility introduced by PRQP would also facilitate in-
teroperability across different infrastructures. By providing such a mechanism,
support for PKI basic operations (e.g. certificates validation) could be easily
implemented also at the operating system level.

The outline of this paper is as follows. Section 2 provides an overview of
the issue. Section 3 reviews other approaches to solving the problem. Section 4
presents the core aspect of our solution: the design and the implementation of
the PKI Resource Query Protocol (PRQP). Section 5 presents our prototype,
AutoPKI. Section 6 evaluates the performance of our prototype and the effec-
tiveness of our solution. Section 7 provides two example scenarios. Section 8
concludes with some directions for future work.

2 Problem Description

The central goal of Public Key Infrastructure (PKI) is to enable trust judgments
between distributed users. At its core, a PKI depends on certificates: signed
bindings of public keys to keyholder properties. Effective use of PKI requires
use of these certificates; however, effective use of certificates requires many addi-
tional services, such as OCSP servers, CRL repositories, timestamping services,
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Figure 2: Profile analysis for certificates embedded in major applications

etc. As a consequence, client-side PKI tools need to be able to discover and use
these services; server-side PKI tools need to be able to provide these services
and enable client tools to discover them.

In order to better understand the limitations of the current practices and to
validate the need for PRQP, we analyzed the profile of a population of widely
deployed CA certificates.

WOur analysis focused on two different set of certificates:

• (a.) the ones embedded into popular browsers (i.e. Firefox, IE and Kon-
queror) and Mail User Agents (i.e., Thunderbird, Outlook and KMail)
and

• the ones used in the main webpages of universities in USA and Europe.

Figure 2 shows the results coming from the study of the certificate profiles
from the first set. Most of the certificates in (a.) do not provide any pointers,
thus making it really difficult for applications to correctly reach PKI related
resources. For instance, in the Firefox/Thunderbird certificate store 66% of
certificates has no pointers to any service or data repository (not even to CRLs),
while for IE7/Outlook this percentage goes up to 82%. This problem is even
worse when taking into account the lifetime of the certificates. Fig. 3 shows that
the majority of the analyzed certificates present a validity period that spans over
twenty or more years. Indeed, most certificates have lifetimes far longer than a
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Figure 3: Validity periods of CA certificates present in today’s browsers.

typical URL—making it risky to solve the resource discovery problem by simply
listing the URL in a certificate. The combination of the two analyses suggests
that updating the contents of embedded CA certificates could be really difficult.
PQRP would solve this problem.

To understand if these results were biased by the requirements imposed by
the application policies, we turned our attention to the second set, university
certificates. The profiles of the collected certificates are depicted in Figure 4.
By contacting all the university websites [5,6] with the HTTPS protocol—where
supported—we were able to dump the list of certificates from the servers. After
having retrieved all the certificates, we analyzed the results. From a pool of 2013
US universities, 1016 support HTTPS. The retrieved certificates were primarily
issued by organizations external to the university (91.4%). In this scenario,
many certificates were pointing to the same providers; only 35 different CAs
provide certificates for 929 different universities. Most of the certificates were
providing pointers to CRLs and OCSP servers which where, most of the time,
the same across different organizations. We think that the university usage of
certificates from commercial vendors, even when the university has an internal
CA, is due to the lack of real solutions to achieve interoperability between PKIs.
(I.e., it’s easier for relying parties to find your root if it’s baked into the browser.)

Results for European universities were quite different. In this case out of
2541 universities, 745 support HTTPS. Differently from the US case, the num-
ber of internally1 issued certificates exceeds the number of certificates from
external vendors. We were able to count 414 different providers of which 332
were “internal”. In this environment, where there are many different vendors,
we discovered that more than 54% of certificates did not provided any pointer
to any PKI resources. From this results it is therefore evident that also for

1Issued by the university’s internal CA
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Figure 4: Profile analysis for certificates of European and USA Universities.

EE certificates, such as the ones from university websites, solving the resource
discovery problem by simply listing URLs in the certificate does not provide a
working solution. Also in this case PRQP would solve the problem.

3 Related Work

Our work focuses on the PKI resources look-up problem. This problem involves
not only certificate retieval, but also discovery of new services whenever they are
made available by service providers. In the literature and the art, we see three
primary methods for clients to obtain pointers to PKI data: adopting specific
certificate extensions; looking at easily accessible repositories (e.g. DNS, local
database, etc.); and adapting existing protocols (e.g. Web Services).

3.1 Certificate Extensions

To provide pointers to published data, a CA could use the Authority Information
Access (AIA) and Subject Information Access (SIA) extensions (within X.509
certificates), as detailed in RFC 3280 [7]. The former can provide information
about the issuer of the certificate while the latter carries information (inside CA
certificates) about offered services. The Subject Information Access extension
can carry a URI to point to certificate repositories and timestamping services.
Hence this extension allows to access services by several different protocols (e.g.
HTTP, LDAP or SMTP).

Although encouraged, usage of the AIA and SIA extension is still not widely
deployed. There are two main reasons for this. The first is the lack of support
for such extensions in available clients. The second reason is that extensions are
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AIA Datatype Firefox IE7 Konqueror

OCSP 12 0 1
caIssuers 0 0 0
timeStamping 0 0 0
DVCS 0 0 0

Table 1: Analysis of AIA statistics, for each browser we report the number of
certificates that carry a particular type of Authority Information Access pointer.

static, i.e. not modifiable. Indeed to modify or add new extensions, in order to
have users and applications to be aware of new services or their dismissal, the
certificate must be re-issued.

This would not be feasible for End Entities (EE) certificates, except during
periodic reissuing. This would also not be really feasible for the CA certificate
itself. The CA could retain the same public key and name and just add new
values to the AIA extension in the new certificate. If users fetch the CA certifi-
cate regularly, rather than caching it, this would enable them to become aware
of the new services. Unfortunately, almost every client available does not look
for CA certificates if they are already stored in the client’s local database.

In any case, since URLs tend to change quite often while certificates persist
for longer time frames, experience suggests that these extensions will invariably
point to URLs that no longer function. Moreover, considering the fact that the
entity that issues the certificates and the one who runs the services may not be
the same, it is infeasible that the issuing CA will reissue all of its certificate in
case a server URL’s changes. Therefore, it is not wise to depend on the usage
of AIA or SIA extensions for discovery of available services and repositories.

In Table 1 we report the contents of the AIA extensions in some representa-
tive applications. As expected, only OCSP pointers are present in a very small
number of certificates (i.e., 11% for Firefox/Thunderbird, 0% for IE7/Outlook
and Konqueror/KMail), whilst no pointer to other services are provided.

3.2 DNS Service Records

The SRV record or Service record technique is thought to provide pointers to
servers directly in the DNS [8]. As defined in RFC 2782 [9], the introduction of
this type of record allows administrators to perform operations rather similar
to the ones needed to solve the problem we are addressing in this paper, i.e. an
easily configurable PKI discovery service.

The basic idea is to have the client query the DNS for a specific SRV record.
For example if an SRV-aware LDAP client wants to discover an LDAP server
for a certain domain, it performs a DNS look up for ldap. tcp.example.com (the
“ tcp” means the client requesting a TCP enabled LDAP server). The returned
record contains information on the priority, the weight, the port and the target
for the service in that domain.
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Figure 5: The Certificate Authority from Organization “B” issues a certificate
to the web server from Organization “A”.

The problem in the adoption of this mechanism is that in PKIs (unlike
DNS) there is usually no fixed requirement for the name space used. Most of
the time, there is no correspondence between DNS structure and data contained
in the certificates. The only exception is when the Domain Component (DC)
attributes are used in the certificate’s Subject.

The DC attributes are used to specify domain components of a DNS name,
for example the domain name “example.com” could be represented by using the

dc=com, dc=example

If the CA’s subject field would make use of such a format, the Issuer field
would allow client applications to perform DNS lookups for the provided domain
where the information about repositories and services could be stored.

However, currently, the practice is very different. In fact it is extremely
difficult for a client to map digital certificates to DNS records because the DC
format is not widely adopted by existing CAs. As shown by our analysis, only
one certificate2 (out of the 105 in the IE7/Outlook store) uses the domain com-
ponents to provide a mapping between the certificate and an Internet Domain.

Recently a new proposal has been presented by the IETF PKIX Working
Group [10] to standardize the usage of DNS records to locate PKI repositories.
It emerged from discussion that, although a client has been implemented that is
capable to locate an LDAP service for a specific e-mail address, the authors of
the proposal were not able to find anyone who announces their directory service
in the DNS according to the specification.

Another example of the infeasibility of this solution is presented in Fig. 5.
The figure depicts a very common scenario where an organization “A” buys
a certificate for its web server from a CA ran by organization “B”. Neither
the contents of the distinguished name nor the contents of other fields in the
certificate (e.g. subjectAltName) provide a pointer to the right domain where
the query for RR records should be made.

Moreover, the issuing organization may not even have control over the DNS
records in case they need to be updated. In our example, if RR records are put

2/DC=com/DC=microsoft/CN=Microsoft Root Certificate Authority
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in the DNS under the domain identified in the Common Name (CN) attribute of
the web server’s certificate, i.e. “my.server”, the management of such records
is not under control of the issuing organization (“B”).

3.3 Web Services

Web Services [11] is a new technology using three different components to al-
low applications to exchange data: SOAP (Simple Object Access Protocol) [12],
WSDL (Web Services Description Language) [13,14] and UDDI (Universal De-
scription Discovery and Integration) [15].

By using UDDI, applications discover available Web Services (described by
using the WSDL language) and interact with them by using SOAP to ex-
change data. Although Web Services provide a good tradeoff between flex-
ibility and complexity (e.g. CORBA [16] offers much more possibilities but
CORBA-oriented applications are difficult to implement), the format of ex-
changed messages is still complex. In fact, communication is handled by using
XML [17] which is quite complex when compared to other binary formats like
DER [18, 19]. These aspects are to be considered with special care when it
comes to mobile devices. XML-formatted messages require a large amount of
computational power to be correctly processed and large bandwidth (messages
are usually bigger in size). From our experience a message encoded by using the
DER format is less than the 30% in size when compared to the corresponding
XML format.

Another important aspect to be considered here is the ease of integration
into existing applications. Every application dealing with digital certificates
already have its own implementation for DER, while it is not true that XML is
widely supported as well.

3.4 Local Network-Oriented Solutions

Another approach to provide reliable information is to use existing protocols
for service location such as Jini [20, 21], Universal Plug and Play protocol
(UPnP) [22,23] or Service Location Protocol (SLP) [24–26].

Jini is used to locate and interact with Java-based services. The main dis-
advantage of Jini is that it is tied to a specific programming language and it
requires a lot of Java-specific mechanisms (e.g. object serialization, RMI [27]
and code downloading) in order to function properly. In addition it provides
many communication services which are quite complex and not really needed in
our environment.

Like Jini, UPnP provides a mechanism to locate and to interact with services
over a network. UPnP is also very complex as it involves the usage of different
techniques like XML (SOAP) over HTTP. The protocol is peer-to-peer and it is
aimed for home environments. There exists a service-discovery subset of UPnP,
the Simple Service Discovery Protocol (SSDP) [28], which operates on HTTP
over UDP. As UPnP, the SSDP is thought to be operated in small environments
and it is possible that administrators block UPnP from leaving the LAN or
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disable it for security reasons, in the same way they currently block/disable
NetBIOS from leaving local networks.

The IETF defined the SLP to provide a service location mechanism that is
language and technology independent. Some issues, however, make it not the
right choice to solve our problem. First of all, the protocol is very complex
to implement, although a freely available reference implementation [29] exists.
Moreover there is little deployment of SLP and there is little knowledge of its
existence.

4 The PKI Resource Query Protocol (PRQP)

After considering the available options, we concluded that the definition of a
specific and simple protocol for PKI resources location is needed to ease its
integration into existing and future applications, especially for mobile devices
which have limited computational power and communication bandwidth.

To solve this problem, we define the PKI Resource Query Protocol (PRQP)
for finding any available PKI resource related to a particular CA. In PQRP,
the client and a Resource Query Authority (RQA) exchange a single round of
messages (Fig. 6):

1. the client requests a resource token by sending a request to the server;

2. the server replies back by sending a response to the requesting entity.

The client embeds zero or more resource identifiers (OIDs)—when specifying
exactly the data the client is interested into—in the request token, in order to
specify which subset of CA resources she wants. If the client does not specify
any services by providing an empty list of OIDs in the request, all of the avail-
able data for a particular CA should be returned by the server in the response.
The resources might be items that are (occasionally) embedded in certificates
today—such as URLs for CRLs or OCSP or SCVP—as well as items such as ad-
dresses of the CA homepage address, the subscription service, or the revocation
request.

4.1 Resource Query Authority (RQA)

In our protocol, an RQA can play two roles. First, a CA can directly name a
given RQA as the party who can answer queries about its certificates, by issu-
ing a certificate to the RQA with a unique value set in the extendedKeyUsage
(i.e. prqpSigning). The RQA will provide authoritative responses for requests
regarding the CA that issued the RQA certificate. Alternatively, an RQA can
act as Query Trusted Authority (QTA) (“trusted” in the sense that a client sim-
ply chooses to trust the RQA’s judgment). In this case, the RQA may provide
responses about multiple CAs without the need to have been directly certified
by them. In this case, provided responses are referred to as non-authoritative,
meaning that no explicit trust relationship exists between the RQA and the
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Figure 6: PRQP processing.

CA. To operate as a QTA, a specific extension (prqpTrustedAuthority) should
be present in the RQA’s certificate and its value should be set to TRUE. In this
configuration the RQA may be configured to respond for different CAs which
may or may not belong to the same PKI as the RQA’s one.

4.2 The Message Format

A PRQP request contains several elements. The protocol version is used to
identify whether the client or the RQA is capable to handle the request format.
(Currently, v1 is the only allowable value.) The NONCE (optional) is a random
number long enough to assure that the client will produce it only once. The
ResourceRequestToken identifies the resource (e.g. the CA and the service
itself). The MaxResponse identifier tells the RQA the maximum number of
ResourceResponseToken that may be present in the response.

The ResourceRequestToken contains a CA’s target certificate identifier and
optionally one or more ResourceIdentifier fields. If one or more are provided
in the request, the RQA should report back the location for each of the requested
services. If no ResourceIdentifier is present in the request, the response
should carry all the available service locations for the specified CA (with respect
to the MaxResponse constrain). Extensions can be used for future protocol
enhancement.

The PRQP response also contains several elements. Again, the protocol ver-
sion identifies the response’s version. The NONCE, if present, binds the response
to a specific request. The usage of the NONCE is meaningful only in signed re-
sponses and its value must be copied directly from the corresponding request.
The status data structure (PKIStatusInfo) carries the response status and, in
case of error, a description of the cause. The ResourceResponseToken is used to
provide the pointers to the requested resources (one for each requested service).
Optional Extensions may be added if requested.
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4.3 Considerations about PRQP

When designing the protocol, we paid special attention to several aspects: sim-
plicity, security, message complexity, and RQA address distribution.

An important target of the protocol design was simplicity. By keeping the
protocol very simple, its adoption would not add a big additional burden to PKI
management, nor to applications and developers.

Security was another major concern. The PRQP provides URLs to PKI
resources, therefore it only provides locators to data and services, not the real
data. It still remains client’s job to access the provided URLs to gather the
needed data, and validate the data (e.g., via signatures or SSL). Because of
this consideration, both the NONCE and the signature are optional in order to
provide flexibility in how requests and responses are generated. Also, it is then
possible to provide pre-computed responses in case the NONCE is not provided
by the client. If an authenticated secure channel is used at the transport level
between the client and the RQA (e.g. HTTPS or SFTP) signatures in requests
and responses can be safely omitted.

We also analyzed the level of complexity of messages. Some type of services,
e.g. delta CRLs, can be directly detected upon data downloading. However, if
a client is looking for a specific version of a protocol or data type, a fine-grained
query system can reduce server load by only permitting data download when
the requesting client actually supports that version.

We considered two different candidates for the PRQP message format: eX-
tensible Markup Language (XML) and Distinguished Encoding Rules (DER).
The adoption of the Abstract Syntax Notation (ASN.1) to describe the data
structures would let the software developer to provide either DER or XML-
based implementations of the protocol. However we think that a DER-based
implementation of PRQP is the best choice because of compatibility consid-
erations with existing applications and APIs. Moreover signed DER encoded
messages are smaller in size and easier to process then XML encoded ones [30]
and almost all PKI aware applications already support it.

Last but not least considered issue was the distribution of the RQA’s address.
We envisage two different approaches. A first option would be to use the AIA
and SIA extensions to provide pointers to RQAs. Although this approach seems
to be in contrast with considerations provided in 3.1, we believe that by using
only one extension to locate the RQA would provide an easy way to distribute
the RQA’s URL. The size of issued certificates would be smaller, thus providing
a more space efficient solution. A second option is applicable mostly in LANs
and consists in providing the RQA’s address by means of DHCP. This method
would be mostly used when a trusted RQA is locally available. These two
techniques can then be combined together.

4.4 Extending Querying Capabilities

PRQP was designed in order to enhance interoperability between PKIs. Thanks
to the extensibility of the PRQP format, the definition of a common set of OIDs
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OID Text Description

P
K

IX
3

id-ad 1 ocsp OCSP Service
id-ad 2 caIssuers CA Information
id-ad 3 timeStamping TimeStamping Service
id-ad 10 dvcs DVCS Service
id-ad 11 scvp SCVP Service

N
ew

D
efi

ne
d

O
ID

s id-ad 50 certPolicy Certificate Policy(CP) URL
id-ad 51 certPracticesStatement Certification Practices Statement (CPS) URL
id-ad 60 httpRevokeCertificate HTTP Based (Browsers) Certificate Revocation Service
id-ad 61 httpRequestCertificate HTTP Based (Browsers) Certificate Request Service
id-ad 61 httpRenewCertificate HTTP Based (Browsers) Certificate Renewal Service
id-ad 62 httpSuspendCertificate Certificate Suspension Service
id-ad 40 cmsGateway CMS Gateway
id-ad 41 scepGateway SCEP Gateway
id-ad 42 xkmsGateway XKMS Gateway

eng-ltd 3344810 10 2 webdavCert Webdav Certificate Validation Service
eng-ltd 3344810 10 3 webdavRev Webdav Certificate Revocation Service

Table 2: Newly Identified OIDs for PKI Operations

is what was required to provide grid specific pointers. Table 2 summarizes the
results.

Some of the newly proposed pointers (OIDs) deserve further description.
Today several standardized protocols can be used to interact with a CA. In
order to allow users and applications to discover these Points of Interactions,
we provide a set of pointers that specify these “Communication Gateways”. In
particular we identified three protocols that are mature enough to be deployed
in applications. The first one is the Certificate Management over CMS (CMC)
Transport Protocol [31] by IETF. The second one, the Simple Certificate Status
Protocol (SCEP) [32] was designed by CISCO. Although this protocol is not
officially a IETF standard4, it is one of the most widely supported protocols
both by commercial and open source software. We also defined a pointer for
the XML Key Management System (XKMS) [33], which was defined by W3C.
Although the XKMS specifications have been available for quite a while now,
not many software implementations support it yet.

We also identified two pointers that may be used for Certificate Policy (cert-
Policy) and Certification Practices Statement (certPracticesStatement) speci-
fication. CP and CPS provide the relying parties with the information upon
which the trust in the certificate is built. By providing the pointers to this
information in a standardized way, automatic auditing tools could be used to
download this information and verify it is made publicly available.

As PKIs change and new protocols are defined, PRQP can provide the CA
management with a dynamic model capable of providing information about new
services or, if needed, to allow clients to switch to newer and more efficient ones.
In the IETF PKIX WG, a new use of the WebDav protocol has been proposed
in order to provide an efficient certificate publication and revocation [34] mecha-
nism. To support this proposal we identified the WebDav Certificate Validation
Service (webdavCert) and the WebDav Certificate Revocation Service (web-

4During the 70th IETF Meeting the PKIX Working Group decided to dismiss the proposal
to move SCEP on standard track.
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Figure 7: General Design of AutoPKI, our PRQP prototype. The address of
the RQA server is retrieved via (a) an enhanced DHCP server/client when the
user system is started. When a PKI resource is to be found, the application
communicates to the (c) RQA server by using the functions provided by (b)
libPKI. The application can then (d) retrieve the needed data by contacting the
discovered PKI resource URL.

davRev) pointers. A simple change in the configuration of the RQA enables a
CA to specify the URLs where access to the new services (e.g. the WebDav
revocation information) is located.

5 Prototype Design and Implementation

To bring our solution into practice, we built AutoPKI, a prototype implemen-
tation of the libraries and software support to carry out PQRP in real PKI ap-
plications. The basic idea behind AutoPKI is to automatically provide clients
with addresses of PKI resources and to ease administrators and users from PKI
configuration issues.

Our system differs from previous work in that it is aimed to provide an easy-
to-use and simple-to-deploy location service without the complexity of providing
third party validation or proxying services (e.g. does not provide services as
SCVP [35]). The availability of PKI resource addresses enables applications to
automatically look for different type of data:

• Certification Services — where the client could automatically submit a
certification request to get a new certificate or where to submit a revoca-
tion request for an already issued certificate

• Data Repositories — where to look for certificates and revocation data
(e.g. an LDAP server or an FTP repository)
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• Extra Services — URLs of additional services, this would include all ser-
vices currently available from a CA, e.g. OCSP, SCVP, TimeStamping,
etc. . .

The AutoPKI system is mostly built on the integration of the PRQP into PKI
applications and it makes use of the three principal components (Fig. 7): an
Extended DHCP client and server, a Resource Query Authority server, and a
PRQP library. We describe each of them separately.

5.1 The Extended DHCP client and server

To bring PRQP into the real world, we need to distribute the addresses of
available RQAs. A naive option is to include the AIA and SIA extensions to
carry the pointer to the RQA directly in digital certificates. This approach
would actually work only if the CA of the target certificate provides an RQA.
The extension contents would point to the available RQA and the client could
directly discover services provided by the CA by querying the RQA.

However, we cannot rely on the presence of RQA pointers in certificates,
since they are not generally present in today’s infrastructure. Therefore we
needed a way to provide clients with a pointer to a local RQA to query for
resources provided by CAs that do not have RQAs. In fact if no RQA address
is present in the certificate, a client application could use a default configured
one.

The DHCP protocol provides sufficient flexibility for this purpose. In par-
ticular it allows the client to request the server to send specific information if
needed. By modifying the configuration (to add specific options both to the
client and the server) it is possible to store the provided addresses in a system-
wide configuration file where applications could retrieve the local RQA address.
Fig. 8 reports an example configuration file for PRQP5. In case no DHCP server
is available, configuration can be provided by using a simple user interface, also
common practice for DNS configuration on many systems.

5.2 Integrating PRQP into Applications

To easily provide support for applications that want to make use of PRQP,
we implemented a PRQP library. It can be invoked by applications in order
to discover the address of a repository or a service. The implemented interface

5Our implementation stores the file as /etc/pki.conf

# generated by /sbin/dhclient­script
queryauthority 130.192.1.23
queryauthority 130.192.1.59

Figure 8: Example configuration file originated by the extended DHCP client
(dhclient).
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Function Description
PRQP REQ *PRQP REQ new url(...) generates a new PRQP request
int PRQP REQ add service stack(...) adds the stack of requested services to the request
PRQP RESP *PKI get PRQP RESP url(...) sends the request and retrieves the response to/from the server
int PRQP REQ sign tk(...) signs the PRQP request
int PRQP RESP sign tk(...) signs the PRQP response
int PRQP REQ verify(...) verifies the signature on the PRQP request
int PRQP RESP verify(...) verifies the signature on the PRQP response

Table 3: Implemented PRQP API in LibPKI

provides applications with easy-to-use functions that handle both the generation
and parsing of requests/responses as well as communication with the designated
RQA. To further facilitate interoperability, we decided to integrate the devel-
oped code into LibPKI [36], which enables developers with the possibility to
implement complex cryptographic and certificate management operations with
a few simple function calls by implementing an high-level cryptographic API.
At its lower layer, LibPKI makes use of OpenSSL [37] and can support different
cryptographic providers, e.g. KMF [38].

Our PRQP library uses the configuration file generated by the DHCP client
in order to automatically retrieve the address of the RQA. Besides the low-level
functionality needed to manage the PRQP data structures, we also implemented
several high-level ones that help developers to integrate PRQP in their appli-
cations. In particular we provided the following functions described in Table 3.

Along with the library, we built a command line tool that accepts an X.509
certificate and configuration options (e.g. names of requested resources) as
input, and outputs the response both in PEM/DER and in a human-readable
format. The output could then be parsed by any calling application in order to
use the response’s data.

When the command line tool is executed, it performs the following steps:

1. verifies the user input and load the certificate(s) whose services and/or
data are requested;

2. builds up the PRQP request;

3. parses the global PKI configuration file;

4. connects to the configured RQA server via TCP sockets;

5. sends the request to the server by using the HTTP protocol (in particular
we use the POST method to upload the request to the server);

6. retrieves and parse the RQA response;

7. eventually saves the request and the response in separate files; and

8. prints out the response details in text format.
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By using the client library, steps from two throughout six can be performed auto-
matically. For this purpose we provided the library with the getpkiresources
function which handles all the PRQP details and returns a stack of URL struc-
tures back to the calling application. The address of the RQA is directly ex-
tracted from a global pki configuration file located in /etc/pki.conf which is
generated by the extended DHCP client. The application is not required, at
any point, to have any specific knowledge about the PRQP protocol as all the
messaging with the RQA server is handled within our PRQP library.

5.3 RQA Server

Because of many similarities between PRQP and OCSP in the basic design
we decided to implement our PRQP responder by using the OpenCA [39] OC-
SPD [40] package. This software uses OpenSSL and implements an OCSP re-
sponder over HTTP. To implement PRQP, we modified the software by leverag-
ing the functionality provided by the LibPKI library: ASN.1 functions capable
to load, parse and save PRQP data structures by using the I/O abstraction
layer; request and response processing functions; network communication func-
tions to manage the simple HTTP POST method used between the client and
the RQA.

Because of the simple design of OpenCA’s OCSP responder, we could reuse
much part of the original code in order to build PRQP responses instead of
OCSP ones. Currently we support PRQP over HTTP only. We also de-
fined the “application/prqp−request” and “application/prqp−response”
HTTP content types for PRQP requests and responses, respectively.

Our server is capable to act also as a TA by supporting multiple CAs by set-
ting the appropriate configuration options. Each configured CA and its provided
services have been grouped together in separated sections of the configuration
file, thus being very easy to add new CAs to the server.

6 Evaluation

To test the system, we set up a testbed consisting of two computers connected
over a switched Fast Ethernet LAN. On the first machine (Intel Core Duo @ 2.13
GHz, 4GB Ram) we installed the PRQP library and the PRQP server, while
on the second one (Intel Pentium M @ 600MHz, 512MB Ram) we installed the
PRQP library and the command line tool. Both systems were running Linux
2.6.18.3 Kernels on a Fedora Core 6 distribution. On the RQA server, we con-
figured the pointers to services provided by our CA. Each response was digitally
signed by using the RSA algorithm and 1024 bit keys; no crypto hardware was
used.

On the client, we ran several tests that made use of the command line ap-
plication to query the RQA server; in particular, we queried the server with an
increasing number of requested pointers and repeated the experiment fifty times
each. Although the PRQP enables for caching of responses during their validity
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Figure 9: PRQP Response times.

period, no caching of responses has been used during our tests. Response times
are reported in Fig. 6.

The results show that the overhead introduced by our system is small—and is
almost negligible for the majority of today’s applications. Moreover, no increase
in response time has been noticed with the number of requested locators.

We also analyzed the size of PRQP requests and responses. Collected data
are shown in Fig. 6. Generated requests are considerably smaller in size in
respect to responses. The main reason for this is that we decided not to sign re-
quests and not to include any certificate in the request (because we envisage this
would be the most common scenario), while the server is signing and including
its own certificate into generated responses.

We also noticed that the size of the responses grows more rapidly than the
size of the requests. This is easily explained by the fact that in the request a
single OID is used to identify the service, whilst in the response a more complex
data structure is used that comprises the actual locators and the validity period
for that information.

Enhancing PRQP Response Caching In the first version of our PRQP
protocol proposal [41], only PRQP requests carry an identifier for the CA. This
identifier is used by the RQA to identify the CA whose pointers are requested
by the client. Although efficient, the client would not be able to identify the
CA that the response refers to by simply looking at the response, thus caching
across different applications on the same computer would be infeasible.

In order to allow for client caching of responses, an additional field is required
in the response. We added a CA identifier in the PRQP response message. This
identifier allows the client to tie the information received from an RQA to a
CA without the need to cache the sent request as well. The new CA identifier
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Figure 10: PRQP Message sizes.

structure definition is shown in Figure 11.
By adding the new data structure, we introduced a small overhead in terms of

response size (from 160 to 330 bytes); nevertheless this simple change simplifies
response caching on PRQP enabled clients. Moreover, because the CA identifier
does not change, its contents can be pre-computed, thus it does not add any
significant computational burden on the server.

7 Solving the Problem: Two examples

In this section we provide two different examples. The first one presents a
scenario in which authentication software wants to discover where the OCSP
server (if it exists) for a particular CA is located. The second example describes
a possible usage of PRQP in order to discover the address of a revocation service
from the certificate’s own CA.

BasicCertIndentifier ::= SEQUENCE {
    subjectNameHash    OCTET STRING,
    issuerNameHash     [0] OCTET STRING   OPTIONAL,
    serialNumber       [1] SerialNumber   OPTIONAL  }

Figure 11: ASN1 description of the CA identifier added to the Response Message
in our modified version of PRQP.
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7.1 Discovering OCSP

Consider a scenario where many large organizations of a particular type have
deployed their own PKIs within their own user populations, but wish to pro-
vide services to users from peer organizations. (This is already happening: in
US universities, in pharmaceutical corporations, in branches of the U.S. Fed-
eral Government, for a few examples.) In such scenarios, the authentication
layer of the authentication framework of an organization needs to discover ser-
vices provided by external CAs in order to get the latest information about the
revocation status of a given supplicant certificate.

At first, the authentication server receives the client’s certificate from the
application—e.g., a web server or a custom application. In case the needed data
is not already cached by the authentication software, the authentication server
can build a PRQP request for the information by processing the certificate data
(i.e., by looking at the issuer identifier in the certificate). In this example, the
authentication layer asks the RQA for the location of the OCSP server for the
CA that issued the client’s certificate. This step might also be useful when the
OCSP pointer is not provided in the certificate (e.g. the OCSP service was
activated after the particular certificate was issued). This provides the server
with the freshest information in case the CA started, moved or dismissed the
OCSP service.

The RQA provides the authentication server with the URL of the requested
service which has been configured on the RQA. In this particular example only
the OCSP URL is requested, and therefore only the locator for this service is
put in the response. When the authentication server has all the needed data, it
continues with the normal validation procedures by using the provided URL to
directly access the OCSP server.

7.2 Asking for Revocation

Accidents happen. As PKI permeates broader user populations, the more likely
it will be that some users will encounter scenarios—such as discovering that an
external adversary has “owned” the user machine—which require revoking the
user’s certificate.

However, requesting certificate revocation is typically not an easy task. In
many cases, the URL to request the revocation of a certificate is only distributed
to the user by means of an email sent at the time the credential was initially
issued; that email may not be easily accessible when the subscriber has the
greatest need for it. By using PRQP, an application could present a simple UI
where an “Ask for Revocation” button is presented. An example is shown in
figure 12. By requesting the URL of the revocation service from the RQA, the
application could automatically access the service and ask for the revocation
of the credentials. Such an automated process would only be possible if the
subscriber still had control of their private key, as it is anticipated that any
revocation request not signed by the subject’s private key would need to be
handled via an out of band process involving an RA of the particular PKI.
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Figure 12: Example of a simple User Interface where the user is presented with
simple “Revoke Certificate” and “Renew Certificate” buttons.

This approach potentially eases key management issues for the subscriber, thus
enhancing the certificate usage experience for the user.

Another scenario where PRQP could ehnhance the usability of digital cer-
tificates is the renewal process. A renewal URL could be provided so that the
process of renewing a certificate could be completely automated. Also in this
case the application could provide the user with a simple UI where an “Ask
for Renewal” button is presented. By using PRQP, the application could auto-
matically contact the CA (or Registration Authority) application and send the
renewal request without the user to be require to remember the list of URLs for
all of his certificates.

It is to be noted that the more the CAs will support PRQP, the more the
user can be relieved from difficulties in using digital certificates. We think that
this aspect could enable the user to actually use many certificates, each one for
a different purpose, as the management costs (in terms of time) required would
be negligible.

In this way PRQP facilitates greater flexibility for PKI-enabled applications.
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8 Conclusions

The lack of interoperability among closed PKI islands is a very urgent problem
and demands a solution. The current infrastructure does not solve it. By
providing a PKI-specific protocol for resource discovery, our PRQP protocol
can provide this solution. We offer a design and prototype—and are working on
wider deployment via standards efforts and integration with Open Source tools.

One example of an environment where our system could provide measurable
improvements is the Grid community, which already makes heavy use of X.509.
One of the most sensitive technical issue to be solved is related to the availability
of revocation data and validation services in big Grids. The Grid Security
Infrastructure (GSI) uses proxy certificates to allow an entity to temporary
delegate its rights to remote processes or resources on the Internet. Such a
certificate is derived from, and signed by, a normal EE certificate. Therefore an
easy way to find validation services and CRLs for EE certificates is needed in
order to verify their validity. Administrators decide a set of CAs, and therefore
users, to be trusted for accessing the shared resources.

PRQP could help automatic configuration of validation services by providing
updated URLs to OCSP, CRLs repositories, or other services (e.g. SCVP).
This would increase data availability and possibility to securely use existing
PKIs for Grid Computing. Moreover, a party like the International Grid Trust
Federation (IGTF) [42], established in October 2005, could run a centralized
RQA to provide URLs about federated CAs to all users and resource managers.

Wireless is another very interesting scenario for the deployment of PRQP.
Usage of digital certificates in open environments (e.g. university and enterprise
WLANs) is strongly limited by interoperability issues. Access Points (or RA-
DIUS servers) could leverage the use of PRQP to discover services and, then, re-
trieve PKI data needed for validation of client certificates. For example support
for visiting students or professors to access the University’s network could be
easily managed without requiring complex authentication infrastructures (e.g.
EduRoam [43]) and without delegating credentials validation to third parties.

The PRQP protocol also offers a starting point for the development of a
PKI Resource Discovery Architecture where different RQAs cooperate to access
data which is not locally available. Our research will next proceed by evaluating
the usage of an authenticated Peer-To-Peer (P2P) network for distribution of
URLs of available services between RQAs. These authorities would share data
about configured services with other peers in the P2P network. In this scenario,
each client would use one of the configured RQAs as an entry point where all its
requests will be sent to. Thus the P2P network would map network addresses
to services mostly like the DNS maps logical names to IP addresses. Current
research is focused both on the study and the implementation of such a network.
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