
PEACHES and Peers

Massimiliano Pala and Sean W. Smith

Computer Science Department, Dartmouth College
6211 Sudikoff Laboratory, Hanover, NH 03755, US

{pala,sws}@cs.dartmouth.edu

Abstract. How to distribute resource locators is a fundamental prob-
lem in PKI. Our PKI Resource Query Protocol (PRQP), recently pre-
sented at IETF, provides a standard method to query for PKI resources
locators. However the distribution of locators across PKIs is still an un-
solved problem. In this paper, we propose an extension to PRQP in
order to distribute PRQP messages over a Peer-to-Peer (P2P) network.
In this work, we combine PRQP with Distributed Hash Tables (DHTs)
to efficiently distribute contents over a dynamic P2P overlay network.
In particular we present the PEACH protocol and a PEACH Enabled
System (PEACHES) which are specifically targeted toward solving the
PKI resources discovery problem. Our work enhances interoperability
between existing PKIs and allows for easy configuration of applications,
thus augmenting usability of PKI technology.

1 Introduction and Motivation

Public key cryptography has become, in many environments, a fundamental
building block for authentication. Many applications already support the usage
of Public Key Certificates (PKCs)—e.g. browsers, mail user agents, web-based
applications, etc. PKCs can be requested and obtained from different Certifi-
cation Authorities (CAs) which may live within a large infrastructure or may
be deployed as isolated entities. However, locating services and data repositories
related to a CA is still an open problem. The lack of a standard way to distribute
resource locators to applications heavily (and negatively) impacts interoperabil-
ity between PKIs and usability of applications.

In order to manage and extend trust among CAs and PKIs, different trust
models have been studied and deployed.

Regardless of what the adopted trust model is, achieving interoperability
between deployed infrastructure is very difficult and the management of the
authentication infrastructure can be frustrating. One of the main reasons for
these interoperability issues is the difficulty in discovering resources related to a
Certification Authority.

An example of an interoperability nightmare is certificate validation. In order
to grant access to its service, an application needs to verify that a certificate is
still valid by, at the very least, retrieving the revocation information provided
by the issuing CA.

2 Massimiliano Pala and Sean W. Smith

This information is usually provided by the issuing CA by means of a Certifi-
cate Revocation List (CRL) or by an OCSP server. If no previous configuration
exists at the application level, finding where the revocation information is avail-
able can be very difficult. As discussed in our earlier work [1], current solutions
are not capable of solving the problem even in controlled environments like Vir-
tual Organizations and Computational Grids.

Motivated by how this lack of resource pointers impacts many usability as-
pects in PKIs, this paper extends the PKI Resource Query Protocol (PRQP) in
a peer-to-peer network in order to provide an efficient Discovery service for PKI
resources—thus enhancing practical interoperability and usability of currently
deployed PKIs.

The core contribution of this work is PEACH, a scalable system for PKI
resources lookup.

2 Background

In order to provide a distributed and interoperable method to provide appli-
cations with pointers to PKI resources, we combine two existing technologies:
the PKI Resource Query Protocol (PRQP) and a distributed hash table routing
protocol, based on a modified version of Chord [2]. In this section, we provide
the reader with a description of the background knowledge needed to understand
our work.

2.1 The PKI Resource Query Protocol

PRQP is a simple query-response protocol designed to provide applications with
the ability to query an entity for locators of specific services associated with a
CA. In PKIs, the CA can grant other entities the authority to provide specific
information to clients. An example of this is OCSP, where the CA delegates
to the OCSP server the authority to provide information about the revocation
status of its certificates. Similarly, in PRQP the CA identifies an entity to be
authoritative for PRQP answers. The identified entity is called the Resource
Query Authority (RQA). By querying the RQA, an application can discover the
location (URL) of a service or of a repository associated with a specific CA.

PRQP identifies two different trust model for the RQA. In the first model,
the RQA is directly designated by the CA by having the CA issue a certificate
to the RQA with a specific value set in the extendedKeyUsage extension.

In the second model, the RQA acts as a PRQP Trusted Authority (PTA) for
a set of users—e.g., users in an enterprise environment. When operating as a
PTA, the RQA may provide responses about multiple CAs, without the need to
have been directly certified by them. To operate as such, PRQP requires that
a specific extension, i.e. prqpTrustedAuthority, should be present in RQA’s
certificate and its value should be set to TRUE.

A full description of the protocol and its details is provided in our RFC [3].

PEACHES and Peers 3

2.2 Distributed Systems: the Peer-2-Peer Revolution

One open problem in PRQP is how to find information about CAs without prior
knowledge of the associated RQA. To solve this problem, we now provide a
distributed discovery system for PKI resources.

However, designing, implementing and debugging a large distributed system
is a notoriously difficult task. Consequently much of the current effort has been
spent on easing the construction of such systems.

The simplest organizational model for distributed systems is the Client/Server
model. This model is well-known, powerful and reliable. In this configuration,
the server is a data source while the client is a data consumer. Simple exam-
ples that make use of this model are Web Services and FTP. The Client/Server
model, however, presents some limitations. For one thing, scalability is hard to
achieve. For another, the model presents a single point of failure. The model also
leaves unused resources at the network edges.

Peer-to-Peer (P2P) systems try to address these limitations by leveraging
collaborations among all the participating parties (peers). Within this paradigm,
all nodes are both clients and server: any node can provide and consume data.
Several characteristics make P2P systems very interesting for data or services
distribution over the Internet. They can implement an efficient use of resources
by equally distributing usage of bandwidth, storage and processing power at
every node. Most importantly, P2P systems are scalable. Napster, Gnutella and
Kazaa are popular examples of first-generation P2P applications known to be
efficient in data lookup and distribution. These systems use different approaches
to provide a lookup service about the data provided by the participating peers.
Napster implements a centralized search service where a single server keeps track
of the location of the shared contents. On the opposite side is Gnutella; in this
type of network, search is implemented by recursively asking the neighbors for
files of interest. The search goes on till a Time To Live (TTL) limit is reached.
Other systems like Kazaa or Skype use a hybrid model where super-peers act
as local search hubs. Super-nodes are automatically chosen by the system based
on their capacities in terms of storage, bandwith and availability.

2.3 Distributed Hash Tables

The second generation of P2P overlay networks provide more advanced features:
they are self-organizing, load-balanced and fault tolerant. A major difference over
an unstructured P2P system is that these second-generation systems also guar-
antee that the number of hops needed to answer a query is predictable. These
systems are based on Distributed Hash Tables (DHTs). DHTs are a distributed
version of a hash table data structure, which stores (key, value) pairs, where the
key is the identifier of the resource while the value can be the file contents. DHTs
provide an efficient way to look up data and objects in a P2P network. Each
node in the network is assigned a node-id and is responsible for only a subset
of (key, value) pairs. By using the DHT interface, these systems are capable of

4 Massimiliano Pala and Sean W. Smith

finding a node responsible for a given key and efficiently routing the specific re-
quest (e.g., insert, lookup or delete) to this node. There are several DHT routing
protocols, often referred to as P2P routing substrates or P2P overlay networks.
Chord [4,5] implements a concept of a circular address space and provides sim-
ple operations—insert(key, value), lookup(key), update(key, value), join(n), and
leave()—to maintain and update the network routing tables. Pastry [6] imple-
ments a similar interface to Chord; however it considers network locality in order
to minimize hops that the messages travel. CAN [7] is based on a “d-dimensional”
Cartesian coordinate space on a d-torus. In CAN, each node owns a distinct one
in the space and each key hashes to a point in the space. Other examples of
DHTs include Tapestry [8], Kademlia [9], and P-Grid [10].

3 The PEACH Protocol

This section describes our PKI Easy Auto-discovery Collaborative Hash-table
(PEACH) protocol. Our protocol specifies how to find the location of a specific
RQA, how RQAs join the system, and how to update the system in case a node
leaves.

The PEACH protocol is derived from the Chord protocol. Although there are
many similarities with Chord, we designed PEACH in order to leverage unique
features of PRQP to provide support for a P2P overlay network specifically for
RQAs.

In particular, PEACH differs from the Chord protocol in two main aspects.
First, we implement a completely new method to assign node identifiers to peers.
As a consequence, the lookup protocol directly provides the requesting entity
with the address of the authoritative RQA for a requested CA. Moreover, because
of this new idea, PEACH is simpler than Chord in that it does not require any
insert() or get() operations to locate the needed data—that is, to recover the
network addresses of RQAs.

The second change is related to the way nodes join the PEACH network.
In fact, the new join() operation allows only authenticated RQAs to join the
network.

3.1 Overview

Similarly to Chord, PEACH uses a standard hash function to assign node iden-
tifiers. Differently from Chord, we use a PKI-specific method instead of network
addresses to assign node identifiers.

In PEACH, the participating peers are RQAs. We assume that each RQA has
a (cryptographic) key pair that has already being certified by its CA. Specific
certificate contents—that is, the extendedKeyUsage field—allow the RQA to
provide responses about resources related to that particular CA.

The basic idea is to leverage the direct link between a CA and its RA by
building the node identifiers by using the CA’s certificate fingerprint1. Since the
1 The fingerprint of a certificate is calculated by computing a cryptographic hash over

the DER- encoded certificate.

PEACHES and Peers 5

ExtendedCertInfo ::= SEQUENCE {
certificateHash OCTET STRING,
subjectKeyHash OCTET STRING,
subjectKeyIdentifier [0] KeyIdentifier OPT,
issuerKeyIdentifier [1] KeyIdentifier OPT

}

BasicCertIdentifier ::= SEQUENCE {
serialNumber CertificateSerialNumber,
subjectNameHash OCTET STRING,
issuerNameHash OCTET STRING,

}CertIdentifier ::= SET {
hashAlgorithm AlgorithmIdentifier,
basicCertId BasicCertIdentifier,
extInfo [0] ExtendedCertInfo OPT

}

Fig. 1. PRQP CertificateIdentifier data structure.

CA’s fingerprint is often used as part of a PRQP request, it is a perfect candidate
for a node identifier. Moreover, this allows a node to provide authentication
information that may be used by the successor node to verify that the joining
RQA is authoritative for a specific CA.

This method of building node identifiers frees us from the requirement of
having to store any value on the participating peers. Therefore, when a peer
joins or leaves the network no data need be moved (or copied) among nodes and
there is no need to implement operations for data storing/retireving to/from
the network (e.g., insert() and get()). This increases the network reliability and
lowers the number and load of operations needed in order to manage join() and
leave() operations.

In order to guarantee that the lookup of nodes takes place within O(log N)
steps, a list of m pointers is maintained at each node. This list of pointers is the
equivalent of the fingers table in Chord and has the same purpose.

3.2 Certificate-Based Node Identifiers

In PEACH, we use a cryptographic hash function to generate node identifiers.
In particular, to maintain compatibility with current PRQP specification, we
use the same hash function that is implemented in PRQP. The current PRQP
Internet draft uses SHA-1 [11] to provide CAs certificates identifiers. PEACH
does not depend on the hash function itself, therefore it can be easily updated
to future functions, like SHA-256, to build identifiers.

Although it is possible to use different hash algorithms to build identifiers,
is must be noted that the chosen algorithm has to be shared across the whole
PEACH network.

Because PEACH is specifically designed to be used in conjunction with
PRQP, we leverage some data structures already present in PRQP to build
PEACH node identifiers. In particular, PRQP allows a client to request pointers
related to a CA by providing the CertIdentifier within a request. This data
structure allows for several ways to identify the certificate of the CA of interest.
Figure 1 provides the ASN.1 description of the CertIdentifier data structure. The
BasicCertIdentifier carries the information needed to identify a certificate:
that is, the serial number, the hash of the subject name and the hash of the

6 Massimiliano Pala and Sean W. Smith

issuer name. The optional ExtendedCertIdentifier field bears more detailed
information about the CA’s certificate. In PRQP, this field is optional as the
client could ask for pointers related to a CA without having the possibility to
compute the fingerprint of the CA’s certificate.

In PEACH, each peer that joins the network is assigned with a node identifier
which corresponds to the hash of its CA’s certificate. In other words, when an
RQA joins the network, it uses the fingerprint of the certificate of the CA that
issued the RQA’s certificate.

In PRQP, an RQA can be issued certificates from more than one CA. This
enables the RQA to be authoritative for each of those CAs. To accommodate for
this possibility, the RQA is assigned multiple network identifiers as described in
Section 3.5.

The hash function generates values of m bits (which for SHA-1 is 160, while
for SHA-256 is 256). Therefore, the node identifiers can be seen as laid on an
ordered circular structure modulo 2m. Hence, the possible values for node iden-
tifiers range from 0 to 2m − 1.

3.3 The Lookup Operation

The lookup operation in PEACH is derived from the one implemented in Chord.
To limit the number of hops needed to find if a node is present on the network,
each node keeps a table of entries where data about nodes present on the network
are stored. This table is called the pointers table. It is important to notice that
PEACH does not need the pointers table in order to function properly. However
the pointers table reduces the complexity of the lookup operation from O(n) to
O(log N).

The number of entries in the pointers table is equal to the number of bits (m)
in the node identifiers. If the SHA-1 hash function is used, the pointers table has
m = 160 entries. The contents of each entry in the table is provided in Figure 2.
The table is ordered on the Entry ID field. The Entry ID values for node n range
(idn +20) mod 2m (for entry 0) to (idn +2m−1) mod 2m value (for entry i). As
in Chord, the concept behind the pointers table is to divide the PEACH network
space into progressively growing slices.

Entry ID

i-th entry

Network Address Port Join_Data

(ID + 2) mod 2n

i m
192.168.50.100 2561 [PKCS#7 Data]

Node ID

net_id p

Network Identifier for node
pointed by entry i-th (k)

Fig. 2. i-th entry in the pointers table of node n.

PEACHES and Peers 7

For example, given the node n and the ith entry in its pointers table, be xn
i

such as:

xn
i = (idn + 2i) mod 2m

then the node-identifier space related to this entry is:

γn
i = [xn

i , xn
i+1)

Figure 3 shows two consecutive slices on the PEACH network for node n. To
perform a lookup of a node address, the application would execute a find node().
At first, the node n will perform a lookup table (i) operation. This would look at
the local pointers table and return the closest node in the network that is equal
or precedes the node we are searching for. Be node k the closes match. If a perfect
match is not found in the local pointers table, then a find node ex(k, i) operation
is performed which asks node k to perform a find node(i). In other words, the
query recursively traverses the PEACH network and returns: (a) the address of
the matching node (if it exists on the network) or (b) the closest preceeding
match that is present on the network. The pseudocodes for the lookup table()
and find node() operations are reported in Figure 4.

Node n

i

n

(N + 2) mod 2
i m

(N + 2) mod 2i+1 m
i+1

n

i

n

(N + 2 -1) mod 2i+2 m

Fig. 3. γn
i and γn

i+1 network identifier spaces. The size of the space doubles at each
step.

The lookup function is different from the Chord protocol in that it looks for
node identifiers, not for a key space assigned to a node.

The lookup function in a Chord-based network is generally used by insert()
or get() operations to retrieve or store content to/from the network. Therefore,
when searching for a particular key, a valid result (i.e., the node identifier that is
responsible for the key space in which the searched key is in) is always returned
on a lookup operation. In fact, the node whose identifier is the next on the Chord
ring is the one responsible for storing all the values related to the specific key
space.

In PEACH, instead, if no exact match is found on the network, the preceding
closest node (RQA) is returned. When this happens, the lookup operation fails,

8 Massimiliano Pala and Sean W. Smith

function lookup table (id, γ):
for j ⇐ m− 1 downto 0

if (pointers[j].id ∈ γ) and
(pointers[j].id < id)

// We found the closest match on the pointers table
return pointers[j]

end if
done
// No suitable pointer found in the table
return (null)

function find node(id, γ):
if (id == self.id)

return (self)
end if
ret ⇐ lookup table (id, γ)
if (ret == null)

// Current node is the closest on the network
return (self)

end if
// Propagate the search with reduced space
γ ⇐ γ - ‖self− ret‖
return (find node ex (ret, id, γ))

Fig. 4. Pseudocode for finding a node with the id indentifier. The closest match on
the local table is found by using the lookup table() function. The peer will then ask
closest matching node (ret) to perform a lookup by using the find node ex () function.
All the search operations are constrained on a seach space γ.

meaning that the RQA that is authoritative for the particular CA is not present
on the network.

3.4 The Join Operation

One of the most important operations in PEACH is join(). In order to be able to
find an authoritative RQA, the network has to be made aware of its availability.
Therefore when an RQA wants to provide services to the network via PEACH
it has to join() the network.

In PEACH , each node maintains, at minimum, the information about its
successor and its predecessor on the network. For the network to operate properly,
this information must be up to date. This is achieved via the join() and leave()
operations. When a node joins the network it performs the following operations:

a. connects to the one of the available nodes
b. finds its successor on the PEACH network

PEACHES and Peers 9

c. informs its predecessor and its successor of its presence on the network
d. (optionally) builds the list of pointers to other nodes

In order to perform step (a.), applications need to be instructed on how to reach
one node that participates in the network. PEACH does not specify how to
provide applications with a list of active nodes to contact at startup. However,
it is possible to provide a pointer to active nodes by using different methods,
e.g. DNS SRV records [12], DHCP extensions [13], or by scanning the local
network for active nodes. Another very popular method is to simply embed a
list of URLs that applications can use and update upon startup (e.g., root DNS
server addresses are usually embedded into DNS server software like Bind [14]).
Currently, in our test environment we use the latter approach. Future plans are
to set up some stable nodes that RQAs can use as “entry points” to the PEACH
network.

To find its successor on the network (step b.), the joining RQA performs a
find node ex(). Be n the joining RQA, and k the “entry point”.

The find node ex() function asks node k to perform a lookup. The successor
of node n is found by simply using the find node ex() on node k with idn+1 =
(idn + 1) mod 2m. Be p the returned node. If the returned value is a perfect
match, the successor of node n is found. If the returned value is not a perfect
match, the returned value is the closest preceding node. In this case, to find its
successor, the node n contacts ret and asks it for his successor. Ultimately, the
node p will return the first entry in its pointers table to node n.

In order to find its predecessor on the network (step c.), the node n simply
performs a lookup for node whose id is idn−1. More details on format of the data
packet that are exchanged over the PEACH network is discussed in Section 4.

Now, the joining RQA asks p to be considered as the new predecessor. To
do so, the n node sends to p a PKCS#7 [15] signed object. This object carries
the details about the n’s network address as the data payload. The object type
used for the exchanged message is SignedData. The RQA’s certificate and the
certificate of the issuing CA (the one for whom the RQA is authoritative) are
embedded in the certificates field.

The receiving node, before updating the details about its predecessor but
after joining the PEACH network, verifies that the RQA’s certificate is valid
and that it has been issued by the CA for which the RQA will be registered to
be authoritative, In order to do so, it verifies that the signature on the PKCS#7
object is valid and that is has been signed with the private key that corresponds
to the public key present in the RQA’s certificate. Secondly it verifies that the
RQA’s certificate is issued by the presented CA’s certificate (by verifying its
signature against the public key of the CA’s certificate). As a last step, the
receiving node calculates the CA’s certificate fingerprint and assigns it as the
identifier for node n as its predecessor. The new id, together with the network
address data, is stored on the receiving node. Differently from Chord where
only the successor of a node is informed when a new node joins the network, in
PEACH the joining peer pushes its information to its predecessor as well. Also

10 Massimiliano Pala and Sean W. Smith

differently from Chord, as a result of our join() operation, participating nodes
do not need to execute any update() function to discover new nodes.

Once an RQA joins the PEACH network, it is required to maintain open one
socket to its predecessor and one socket to its successor. This enables nodes to
immediately be aware of a node leaving the network without the need to run
any update() operation.

3.5 Multiple Joins

PRQP allows a Resource Query Authority to be authoritative for multiple CAs.
To be able to provide PRQP responses for multiple CA, an RQA needs to be
registered with multiple network identifiers.

To be assigned multiple node identifiers, the joining RQA performs multiple
join() on the network. Let n be the number of certificate the RQA possesses.
The set of its certificates (φ) can be expressed as:

φ = {x1, x2, . . . , xn}

Let θ be the set of network identifiers related to the joining RQA:

θ = {y1, y2, . . . , yn}

where:

∀i ∈ [1, 2, ... , n], ∃xi, yi : xi ∈ φ ∨ yi ∈ θ ⇒ yi = H(xi)

For each xi the peer is authoritative for, the RQA has a different network iden-
tifier yi which is based on the CA’s certificate fingerprint. For each of these
identifiers, the joining peers performs find node() to find successor in the net-
work ring and proceeds to register itself in the right position.

3.6 Other Operations

In this section we provide some considerations on the efficiency of PEACH. We
especially focus our attention on the network maintainance operations.

Leaving the Network. PEACH does not require participating peers to execute
any leave() operation. Because each peer is required to maintain open two TCP
connections toward its successor and its predecessor, when the node leaves the
network, the required TCP connections are dropped. Hence both its predecessor
and its successor would be aware of the leaving operation right away.

Creating the list of pointers After an RQA has successfully joined the net-
work, it needs to populate its pointers table. To do so, the joining peer queries
the network for the entries in the pointers table. The algorithm is reported in

PEACHES and Peers 11

function update table ():
for (i = 1; i < m; i = i + 1)

ret = find node (pointers[i].id)
if ret.id ∈ [pointers[i].id, pointers[i + 1].id)

pointers[i] ⇐ ret
end if

done

Fig. 5. Pseudocode for building the table of pointers.

Figure 5. Ultimately, the list of pointers is built by performing lookups for each
entry id, that is:

entryid = (idn + 2i) mod 2m

where the table size is m, and the peer network identifier is idn. The returned
value is stored in the entry only if it is in the space identified by the ith entry
(γn

i). For instance, let the space of identifiers be 3 bits, let x be the joining node
and let 1 be its id. The nodes present in the network have identifiers 0, 2, and
3. The last entry in the x pointers table is:

xid = (1 + 23−1) mod 23

= 5

Now, let k be the closest previous match on the network, and let 3 be its network
identifier. The possible results of the performed search are:

res =

{
5 if xid ∃ on the network,
3 if xid @ on the network,

Because no node with 5 as its identifier is present on the network, node k is
returned instead. As the result should be stored only if it falls into the ith key
space, the returned value is discarded.

Maintaining the list of pointers. When performing a find node() operation,
it may happen that an entry in the pointers table points to a node that is no
longer available on the network. In this case, if the connection to the entry fails,
the entry is simply removed from the table and the lookup operation is resumed.
Occasionally a node may update its list of pointers in order to leverage the
presence of new nodes in the network.

4 PEACHES Details

In this section we provide considerations about the implementation of the algo-
rithm and an evaluation based on a PEACH simulator.

12 Massimiliano Pala and Sean W. Smith

0 84

CMD_CODE PKT_SIZE

PAYLOAD

Size (bytes)

To
ta

l s
iz

e
of

 d
at

a
p

ac
ke

t
P

K
T

 S
IZ

E
 +

 8

Fig. 6. Basic structure of data packets exchanged on the PEACH network. The payload
depends on the specific command.

4.1 Network Communication

While building a PEACH enabled system, we also defined the format of ex-
changed messages over the network. To minimize the impact of the message
format, we opted for a simple binary format.

The PEACH data packets are depicted in Figure 6. The format is consistent
across the different commands that nodes exchange. In particular, each data
packet has the following fields:

– command code
– packet length
– payload

The packet length is used to identify the lenght of the payload and it is 4 bytes
long (type uint32 t). The command code is 4 bytes long as well and it specifies
the action to be performed on the target node or the return code. The identified
opt codes and their description are reported in Table 4.1.

Command Name Code Description

CMD ERROR 0x200 + 0 General Error

CMD SUCCESS 0x200 + 1 Cmd Successful

CMD GET NODE INFO 0x500 + 0 Get node information

CMD GET NODE SUCCESSOR 0x500 + 1 Get node successor

CMD GET NODE PREDECESSOR 0x500 + 2 Get node predecessor

CMD UPDATE PREDECESSOR 0x600 + 1 Update predecessor info

CMD UPDATE SUCCESSOR 0x600 + 2 Update successor info

CMD LOOKUP NODE 0x600 + 2 Perform a lookup

Table 1. PEACH opt codes values and description.

PEACHES and Peers 13

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 4000 16000 32000 48000 60000

T
im

e
[m

s]

Number of Nodes

lookup time

 0

 0.1

 0.2

 50 500

lookup time

Fig. 7. Lookup times in the PEACH network simulator.

4.2 The PEACH Simulator

To analyze the feasibility of building a PEACH system, we developed a simulator
that implements the protocol’s operations. The current version of the simulator
is written in PERL. To implement the cryptographic functionalities, we use a
command-line based tool that is built on top of LibPKI [16]. This tool loads keys
and certificates and provides the simulator with an easy-to-use PKCS#7 object
generator.

Because the focus of the simulation is to test the feasibility of the PEACH de-
ployment, we concentrated our attention on the routing of the data in PEACH.
Because our work targets PKIs, we reasonably think that the number of par-
ticipating RQAs for a PEACH based system could reasonably set between few
hundreds to few thousands of peers. We have been able to successfully simulate
systems with more than 65000 nodes on a 2.4Ghz Core-Duo laptop equipped
with 2GB of memory. Moreover we measured the performance of the lookup op-
eration in PEACH. The results are reported in Figure 7. We simulated PEACH
networks with an increasing number of nodes, starting from 50 to 65535. As
expected, because PEACH makes use of DHTs, after an initial trend (reported
in the small box in Figure 7), the lookup time grows very slowly with the the
number of nodes present in the network. It is to be noted that our simulator
does not take in consideration network-related delays, therefore in a real deploy-
ment lookup times may be sensibly larger because of communication constrains
between nodes.

During our simulations, we also noticed that the overhead introduced by
the need to provide signed messages when joining the network was relatively
high. The main reason for this is that we use an external command-line based

14 Massimiliano Pala and Sean W. Smith

tool2 to generate the signatures. In PEACH, a peer is require to generate two
different signatures in order to perform a join(). Therefore it is not surprising
that, to simulate a join() operation, it can take up to a second, although the
signing time per each signature should take only a few milliseconds. A fully C-
based PEACH implementation would not suffer from this problem. We envision
that the total time for a join() operation to occur (without considering time
spent on network operations) can be less than 100ms without requiring special
cryptographic hardware.

5 Integrating PEACH and PRQP

In PRQP each client could use one of the configured RQAs to query for re-
sources related to a CA. When the contacted RQA has no information about
the requested service, the client has no alternative way to discover where to
forward the request to. By integrating PEACH into an RQA server, the RQA
would be enabled to forward the requests into the P2P network and retrieve the
missing information.

The RQA can leverage the PEACH in two different ways. The first one is to
have the RQA act as a PRQP client. When a request cannot be answered, such
as the case where there is a lack of information about the queried CA, the RQA
searches for the authoritative RQA on PEACH and, if found, issues a request
to the RQA. The returned response is then parsed, and the signature (and the
server data) is substituted before sending the response back to the client. The
problem with this solution is that the original signature on the response is lost,
requiring the client to configure the RQA as a trusted authority (i.e., the RQA
is allowed to provide responses for different CAs without having to be certified
by them).

The second option is to have the RQA act as a proxy for the client. In this
case, the RQA forwards the requests that it cannot answer to the authoritative
RQA, but only when it is present on the PEACH network. The response is then
forwarded back to the client.

When PRQP and PEACH are integrated, the P2P network maps network
addresses to PKI services similar to the way DNS maps logical names to IP
addresses. The main difference between the DNS and the RQA network is the
absence of a hierarchical system approach.

6 Conclusions and Future Work

In our work, we describe the PEACH algorithm and its application to PKIs.
In particular, the presented approach introduces—for the first time—the idea
of providing interoperable and collaborative peer-to-peer-based services in X509
PKIs.
2 openca-sv, available as part of the openca-tools package from https://www.openca.

org.

PEACHES and Peers 15

We extend the PRQP protocol, which provides a PKI-specific protocol for
resource discovery, by providing the starting point for the development of a
PKI Resource Discovery Architecture. Under this novel system, different RQAs
cooperate to access data that is not locally available.

In a more general sense, PEACH allows for the building of an authenticated
peer-to-peer network for client-server-based PKI services. Furthermore, our work
can be easily extended to provide other collaborative services. For example, the
proposed PEACH protocol would allow for OCSP or TimeStamping services to
be integrated among different CAs and PKIs.

In the future, we plan to investigate the applicability of PEACH to the real
world. In particular, we plan to release an open-source version of the PEACH
enabled server based on the OpenCA-PRQP daemon and to establish collabo-
ration with other authorities to setup a public PEACH network. Overall, this
new approach tries to enhance interoperability across PKIs and will be actively
promoted within the IETF PKIX working group as a standardized protocol.

Ultimately, we believe that this work will have a signficant impact over the
interoperability and usability of PKIs and that it will open up new X509 PKI
models based on collaborative services.

Acknowledgments

This work was supported in part by the NSF (under grant CNS-0448499) and the
U.S. Department of Homeland Security (under Grant Award Number 2006-CS-
001-000001). The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of any of the sponsors.

References

1. M. Pala and S. W. Smith, “AutoPKI: A PKI Resources Discovery System,” in
EuroPKI, ser. Lecture Notes in Computer Science, J. Lopez, P. Samarati, and
J. L. Ferrer, Eds., vol. 4582. Springer, 2007, pp. 154–169. [Online]. Available:
http://dblp.uni-trier.de/db/conf/europki/europki2007.html#PalaS07

2. I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications,” in SIGCOMM,
2001, pp. 149–160.

3. M. Pala, “The PKI Resource Query Protocol (PRQP),” Internet Draft, June 2007.
[Online]. Available: http://www.ietf.org/internet-drafts/draft-pala-prqp-01.txt

4. I. Stoica, R. Morris, D. Karger, F. F. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications,” SIGCOMM
Comput. Commun. Rev., vol. 31, no. 4, pp. 149–160, October 2001. [Online].
Available: http://portal.acm.org/citation.cfm?id=964723.383071

5. “Chord.” [Online]. Available: http://www.pdos.lcs.mit.edu/chord/
6. “Pastry.” [Online]. Available: http://freepastry.rice.edu
7. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A Scalable

Content-Addressable Network,” in SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer

16 Massimiliano Pala and Sean W. Smith

communications, vol. 31, no. 4. ACM Press, October 2001, pp. 161–172. [Online].
Available: http://portal.acm.org/citation.cfm?id=383072

8. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Routing,” UC
Berkeley, Tech. Rep. UCB/CSD-01-1141, # apr # 2001. [Online]. Available:
http://citeseer.ist.psu.edu/zhao01tapestry.html

9. P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric,” 2002. [Online]. Available: http://citeseer.ist.psu.edu/
maymounkov02kademlia.html

10. K. Aberer, P. Cudr-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth, M. Punceva,
and R. Schmidt, “P-Grid: A Self-organizing Structured P2P System,” SIGMOD
Record, vol. 32, no. 3, September 2003, http://lsirpeople.epfl.ch/rschmidt/papers/
Aberer03P-GridSelfOrganizing.pdf.

11. NIST, “FIPS PUB 180-2 — Secure Hash Standard,” Processing Standards
Publication 180-2, August 2002. [Online]. Available: http://csrc.nist.gov/
publications/fips/fips180-2/fips180-2.pdf

12. J. Postel, “Domain Name System Structure and Delegation,” RFC 1591, March
1994. [Online]. Available: http://www.ietf.org/rfc/rfc1591.txt

13. R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, March 1997.
[Online]. Available: http://www.faqs.org/rfcs/rfc2131.html

14. “ISC Bind Server,” Homepage. [Online]. Available: http://www.isc.org/index.pl?
/sw/bind/index.php

15. B. Kaliski, “PKCS #7: Cryptographic Message Syntax,” RFC 2315, March 1998.
[Online]. Available: http://www.ietf.org/rfc/rfc2315.txt

16. M. Pala, “The LibPKI project,” Project Homepage. [Online]. Available:
https://www.openca.org/projects/libpki/

