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Public key cryptography can uniquely enable trust within distributed settings. Employing it usually re-
quires deploying a set of tools and services collectively known as a Public Key Infrastructure (PKI). PKIs
have become a central asset for many organizations, due to distributed IT and users. Even though the usage
of PKIs in closed and controlled environments is quite common, interoperability and usability problems
arise when shifting to a broader, open environment. To make an effective trust judgment about a public
key certificate, a PKI user needs more than just knowledge of that certificate: she also needs to be able to
locate critical parameters such as the certificate repositories and certificate validation servers relevant to
that certificate – and all the others the trust path she builds for it. Surprisingly, locating these resources
and services remains a largely unsolved problem in real-world X.509 PKI deployment. This issue impacts
especially on the usability of this technology and the interoperability of PKIs in open environments such
as the Internet.

In this paper, we present the design and prototype of a new and flexible solution for automatic dis-
covery of the services and data repositories made available by a Certificate Service Provider (CSP). This
contribution will take real-world PKI one step closer to enhancing usability of digital certificates and
interoperability between PKIs.

1. Introduction

Public key cryptography enables secure communication and authentication be-
tween parties who do not need to share secrets. The benefits coming from the de-
ployment of PKIs have convinced companies and universities to enable the use of
digital certificates as an efficient way to manage identities and authenticate their own
users. As reported by OASIS, benefits from deploying PKI-enabled applications sig-
nificantly outweigh the costs of PKI implementation [3].

Unfortunately, these costs are still high. Setting up new PKI-enabled services is
equally painful for administrators as well as final users – all of whom are often
misguided by badly written User Interfaces (UI) and overly detailed configurations.
Every application needs to be properly configured by filling in complex configura-
tion options whose meaning is mostly unknown to the average user (and often to
the advanced one as well). Enabling applications to automatically find PKI services
(such as OCSP servers, timestamping, etc.) and repositories (e.g., CRLs, certificate
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pointers, etc.) would relieve users and administrators from this burden, and hence
lower these barriers to interoperability and deployment.

Regrettably, Certification Authorities barely publish access details on their official
websites; even data as basic as the URLs for the services and repositories they pro-
vide are usually omitted. As a result, if a CA provides a new service (e.g., OCSP [27])
or a new data repository (e.g., LDAP [41]), users and administrators have difficulty
learning of these changes. Nor would there be any sign of the new service on the
certificates that have been already issued. Hence, it is unlikely that users (and ap-
plications) will be easily aware of the new services unless someone directly advises
them.

This problem has even bigger impact on users from organizations other than the
one that issued a certificate; these “foreign” users will usually have very limited
knowledge about the specific CA’s practices and service locations.

Thus, a new approach is needed to provide a flexible way for PKI users to au-
tomatically discover which services and data repositories are available from a CA.
This flexibility would also facilitate interoperability across different infrastructures
in an open environment (e.g., Web, E-mail, Wireless, etc.). An OASIS survey [18]
on issues in PKI deployment survey points out two important aspects (Fig. 1):

• Support for PKI is often missing from applications and operating systems; when
present, it is always inconsistent.

• Current PKI standards are inadequate; they are often too complicated, and im-
plementations from different vendors rarely interoperate.

Fig. 1. Our summary of the OASIS survey results – interestingly, seven deployment obstacles out of the
first ten are related to PKI usability and interoperability.
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It is interesting to notice that seven out of ten reported problems in the list are related
to PKI usability and interoperability.

We think that some of these problems can be efficiently tackled by facilitating the
location of PKI resources. In this paper, we present a new approach that provides
a flexible way to automatically discover which services and data repositories are
related to a specific CA. The core of our solution is based on the definition and im-
plementation of a new (and simple) PKI Resource Query Protocol (PRQP) which is
aimed to ease PKI management both for administrators and final users. The flexibility
introduced by PRQP would also facilitate interoperability across different infrastruc-
tures. By providing such a mechanism, support for PKI basic operations (e.g., cer-
tificates validation) could be easily implemented also at the operating system level.

The outline of this paper is as follows. Section 2 provides an overview of the issue.
Section 3 reviews other approaches to solving the problem. Section 4 presents the
core aspect of our solution: the design and the implementation of the PKI Resource
Query Protocol (PRQP). Section 5 presents our prototype, AutoPKI. Section 6 evalu-
ates the performance of our prototype and the effectiveness of our solution. Section 7
provides two example scenarios. Section 8 concludes with some directions for future
work.

2. Problem description

The central goal of Public Key Infrastructure (PKI) is to enable trust judgments
between distributed users. At its core, a PKI depends on certificates: signed bindings
of public keys to keyholder properties. Effective use of PKI requires use of these cer-
tificates; however, effective use of certificates requires many additional services, such
as OCSP servers, CRL repositories, timestamping services, etc. As a consequence,
client-side PKI tools need to be able to discover and use these services; server-side
PKI tools need to be able to provide these services and enable client tools to discover
them.

In order to better understand the limitations of the current practices and to validate
the need for PRQP, we analyzed the profile of a population of widely deployed CA
certificates.

Our analysis focused on two different set of certificates:

(a) the ones embedded into popular browsers (i.e., Firefox, IE and Konqueror) and
Mail User Agents (i.e., Thunderbird, Outlook and K-mail) and

(b) the ones used in the main web pages of universities in USA and Europe.

Figure 2 shows the results coming from the study of the certificate profiles from the
first set. Most of the certificates in (a) do not provide any pointers, thus making it re-
ally difficult for applications to correctly reach PKI related resources. For instance, in
the Firefox/Thunderbird certificate store 66% of certificates have no pointers to any
service or data repository (not even to CRLs), while for IE7/Outlook this percentage
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Fig. 2. Profile analysis for certificates embedded in major applications.

Fig. 3. Validity periods of CA certificates present in today’s browsers.

goes up to 82%. This problem is even worse when taking into account the lifetime of
the certificates. Figure 3 shows that the majority of the analyzed certificates present
a validity period that spans over twenty or more years. Indeed, most certificates have
lifetimes far longer than a typical URL – making it risky to solve the resource dis-
covery problem by simply listing the URL in a certificate. The combination of the
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two analyses suggests that updating the contents of embedded CA certificates could
be really difficult. PQRP would solve this problem.

To understand if these results were biased by the requirements imposed by the
application policies, we turned our attention to the second set, university certificates.
The profiles of the collected certificates are depicted in Fig. 4. By contacting all
the university websites [40,42] with the HTTPS protocol – where supported – we
were able to dump the list of certificates from the servers. After having retrieved all
the certificates, we analyzed the results. From a pool of 2013 US universities, 1016
support HTTPS. The retrieved certificates were primarily issued by organizations
external to the university (91.4%). In this scenario, many certificates were pointing
to the same providers; only 35 different CAs provide certificates for 929 different
universities. Most of the certificates were providing pointers to CRLs and OCSP
servers which were, most of the time, the same across different organizations. We
think that the university usage of certificates from commercial vendors, even when
the university has an internal CA, is due to the lack of real solutions to achieve
interoperability between PKIs. (That is, it’s easier for relying parties to find your
root if it’s baked into the browser.)

Results for European universities were quite different. In this case out of 2541
universities, 745 support HTTPS. Differently from the US case, the number of inter-
nally1 issued certificates exceeds the number of certificates from external vendors.
We were able to count 414 different providers of which 332 were “internal”. In this
environment, where there are many different vendors, we discovered that more than
54% of certificates did not provided any pointer to any PKI resources. From this
result, it is therefore evident that also for End Entities (EE) certificates, such as the

Fig. 4. Profile analysis for certificates of European and USA universities.

1Issued by the university’s internal CA.
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ones from university websites, solving the resource discovery problem by simply
listing URLs in the certificate does not provide a working solution. Also in this case
PRQP would solve the problem.

3. Related work

Our work focuses on the PKI resources look-up problem. This problem involves
not only certificate retieval, but also discovery of new services whenever they are
made available by service providers. In the literature, we see three primary methods
for clients to obtain pointers to PKI data: adopting specific certificate extensions;
looking at easily accessible repositories (e.g., DNS, local database, etc.); and adapt-
ing existing protocols (e.g., Web services).

3.1. Certificate extensions

To provide pointers to published data, a CA could use the Authority Information
Access (AIA) and Subject Information Access (SIA) extensions (within X.509 certifi-
cates), as detailed in RFC 3280 [19]. The former can provide information about the
issuer of the certificate while the latter carries information (inside CA certificates)
about offered services. The Subject Information Access extension can carry a URI
to point to certificate repositories and timestamping services. Hence this extension
allows to access services by several different protocols (e.g., HTTP, LDAP or SMTP).

Although encouraged, usage of the AIA and SIA extensions are still not widely
deployed. There are two main reasons for this. The first is the lack of support for
such extensions in available clients. The second reason is that extensions are static,
i.e. not modifiable. Indeed to modify or add new extensions, in order to have users
and applications to be aware of new services or their dismissal, the certificate must
be re-issued.

This would not be feasible for EE certificates, except during periodic reissuing.
This would also not be really feasible for the CA certificate itself. The CA could
retain the same public key and name and just add new values to the AIA extension in
the new certificate. If users fetch the CA certificate regularly, rather than caching it,
this would enable them to become aware of the new services. Unfortunately, almost
every client available does not look for CA certificates if they are already stored in
the client’s local database.

In any case, since URLs tend to change quite often while certificates persist for
longer time frames, experience suggests that these extensions will invariably point
to URLs that no longer function. Moreover, considering the fact that the entity that
issues the certificates and the one who runs the services may not be the same, it is
infeasible that the issuing CA will reissue all of its certificate in case a server URL’s
changes. Therefore, it is not wise to depend on the usage of AIA or SIA extensions
for discovery of available services and repositories.
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Table 1

Analysis of AIA statistics, for each browser we report the number of certifi-
cates that carry a particular type of Authority Information Access pointer

AIA Datatype Firefox IE7 Konqueror

OCSP 12 0 1

caIssuers 0 0 0

timeStamping 0 0 0

DVCS 0 0 0

In Table 1 we report the contents of the AIA extensions in some representa-
tive applications. As expected, only OCSP pointers are present in a very small
number of certificates (i.e., 11% for Firefox/Thunderbird, 0% for IE7/Outlook and
Konqueror/K-mail), whilst no pointer to other services are provided.

3.2. DNS service records

The SRV record or Service record technique is thought to provide pointers to
servers directly in the DNS [25]. As defined in RFC 2782 [14], the introduction
of this type of record allows administrators to perform operations rather similar to
the ones needed to solve the problem we are addressing in this paper, i.e. an easily
configurable PKI discovery service.

The basic idea is to have the client query the DNS for a specific SRV record. For
example if an SRV-aware LDAP client wants to discover an LDAP server for a certain
domain, it performs a DNS look up for _ldap._tcp.example.com (the “_tcp” means
the client requesting a TCP enabled LDAP server). The returned record contains
information on the priority, the weight, the port and the target for the service in
that domain. The priority indicates the order in which the client should contact the
available servers. The weight field specifies a relative weight for entries with the
same priority and it is used for server selection mechanism as specified in [14].

The problem in the adoption of this mechanism is that in PKIs (unlike DNS) there
is usually no fixed requirement for the name space used. Most of the time, there
is no correspondence between DNS structure and data contained in the certificates.
The only exception is when the Domain Component (DC) attributes are used in the
certificate’s subject.

The DC attributes are used to specify domain components of a DNS name, for
example the domain name “example.com” could be represented by using the

dc = com, dc = example.

If the CA’s subject field would make use of such a format, the content of issued
certificates (e.g., the Issuer field) would allow client applications to perform DNS
lookups for the provided domain where the information about repositories and ser-
vices could be stored.
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However, currently, the practice is very different. In fact it is extremely difficult
for a client to map digital certificates to DNS records because the DC format is not
widely adopted by existing CAs. As shown by our analysis, only one certificate2

(out of the 105 in the IE7/Outlook store) uses the domain components to provide a
mapping between the certificate and an Internet Domain.

Recently a new proposal has been presented by the IETF PKIX Working Group [2]
to standardize the usage of DNS records to locate PKI repositories. It emerged from
discussion that, although a client has been implemented that is capable of locating
an LDAP service for a specific e-mail address, the authors of the proposal were not
able to find anyone who announces their directory service in the DNS according to
the specification.

Another example of the infeasibility of this solution is presented in Fig. 5. The fig-
ure depicts a very common scenario where an organization “A” buys a certificate for
its web server from a CA ran by organization “B”. Neither the contents of the distin-
guished name nor the contents of other fields in the certificate (e.g., subjectAlt-
Name) provide a pointer to the right domain where the query for RR records should
be made.

Moreover, the issuing organization may not even have control over the DNS
records in case they need to be updated. In our example, if RR records are put in
the DNS under the domain identified in the Common Name (CN) attribute of the
web server’s certificate, i.e. “my.server”, the management of such records is not
under control of the issuing organization (“B”).

3.3. Web services

Web services [9] is a new technology using three different components to allow
applications to exchange data: SOAP (Simple Object Access Protocol) [24], WSDL
(Web Services Description Language) [5,6] and UDDI (Universal Description Dis-
covery and Integration) [7].

Fig. 5. The Certificate Authority from Organization “B” issues a certificate to the web server from Orga-
nization “A”.

2/DC=com/DC=microsoft/CN=Microsoft Root Certificate Authority.



M. Pala and S.W. Smith / Finding the PKI needles in the Internet haystack 405

By using UDDI, applications discover available Web Services (described by us-
ing the WSDL language) and interact with them by using SOAP to exchange data.
Although Web Services provide a good tradeoff between flexibility and complexity
(e.g., CORBA [8] offers much more possibilities but CORBA-oriented applications
are difficult to implement), the format of exchanged messages is still complex. In
fact, communication is handled by using XML [43] which is quite slow when com-
pared to other binary formats like DER [20]. These aspects are to be considered with
special care when it comes to mobile devices. XML-formatted messages require a
large amount of computational power to be correctly processed and large bandwidth
(messages are usually bigger in size). From our experience a message encoded by us-
ing the DER format is less than the 30% in size when compared to the corresponding
XML format.

Another important aspect to be considered here is the ease of integration into
existing applications. Every application dealing with digital certificates already have
its own implementation for DER, while it is not true that XML is widely supported
as well.

3.4. Local network-oriented solutions

Another approach to provide reliable information is to use existing protocols for
service location such as Jini [1,11], Universal Plug and Play protocol (UPnP) [23,
39] or Service Location Protocol (SLP) [15–17].

Jini is used to locate and interact with Java-based services. The main disadvantage
of Jini is that it is tied to a specific programming language and it requires a lot of Java-
specific mechanisms (e.g., object serialization, RMI [22] and code downloading)
in order to function properly. In addition it provides many communication services
which are quite complex and not really needed in our environment.

Like Jini, UPnP provides a mechanism to locate and to interact with services over
a network. UPnP is also very complex as it involves the usage of different techniques
like XML (SOAP) over HTTP. The protocol is peer-to-peer and it is aimed for home
environments. There exists a service-discovery subset of UPnP, the Simple Service
Discovery Protocol (SSDP) [13], which operates on HTTP over UDP. As UPnP, the
SSDP is thought to be operated in small environments and it is possible that admin-
istrators block UPnP from leaving the LAN or disable it for security reasons, in the
same way they currently block/disable NetBIOS from leaving local networks.

The IETF defined the SLP to provide a service location mechanism that is lan-
guage and technology independent. Some issues, however, make it not the right
choice to solve our problem. First of all, the protocol is very complex to implement,
although a freely available reference implementation [32] exists. Moreover, there is
little deployment of SLP and there is little knowledge of its existence.
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4. The PKI Resource Query Protocol (PRQP)

After considering the available options, we concluded that the definition of a spe-
cific and simple protocol for PKI resources location is needed to ease its integration
into existing and future applications, especially for mobile devices which have lim-
ited computational power and communication bandwidth.

To solve this problem, we define the PKI Resource Query Protocol (PRQP) for
finding any available PKI resource related to a particular CA. In PQRP, the client and
a Resource Query Authority (RQA) exchange a single round of messages (Fig. 6):

(1) the client requests a resource token by sending a request to the server;
(2) the server replies back by sending a response to the requesting entity.

The client embeds zero or more resource identifiers (OIDs) – when specifying ex-
actly the data the client is interested in – in the request token, in order to specify
which subset of CA resources she wants. If the client does not specify any services
by providing an empty list of OIDs in the request, all of the available data for a
particular CA should be returned by the server in the response. The resources might
be items that are (occasionally) embedded in certificates today – such as URLs for
CRLs or OCSP or SCVP – as well as items such as addresses of the CA homepage
address, the subscription service, or the revocation request.

4.1. Resource Query Authority (RQA)

In our protocol, an RQA can play two roles. First, a CA can directly name a
given RQA as the party who can answer queries about its certificates, by issuing

Fig. 6. PRQP processing.
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a certificate to the RQA with a unique value set in the extendedKeyUsage (i.e.,
prqpSigning). The RQA will provide authoritative responses for requests regard-
ing the CA that issued the RQA certificate. Alternatively, an RQA can act as Query
Trusted Authority (QTA) (“trusted” in the sense that a client simply chooses to trust
the RQA’s judgment). In this case, the RQA may provide responses about multiple
CAs without the need to have been directly certified by them. In this case, provided
responses are referred to as non-authoritative, meaning that no explicit trust rela-
tionship exists between the RQA and the CA. To operate as a QTA, a specific exten-
sion (prqpTrustedAuthority) should be present in the RQA’s certificate and its value
should be set to TRUE. In this configuration the RQA may be configured to respond
for different CAs which may or may not belong to the same PKI as the RQA’s one.

4.2. The message format

A PRQP request contains several elements. The protocol version is used to
identify whether the client or the RQA is capable of handling the request for-
mat. (Currently, v1 is the only allowable value.) The NONCE (optional) is a ran-
dom number long enough to assure that the client will produce it only once. The
ResourceRequestToken identifies the resource (e.g., the CA and the ser-
vice itself). The MaxResponse identifier tells the RQA the maximum number of
ResourceResponseToken that may be present in the response.

The ResourceRequestToken contains a CA’s target certificate identifier and
optionally one or more ResourceIdentifier fields. If one or more are provided
in the request, the RQA should report back the location for each of the requested ser-
vices. If no ResourceIdentifier is present in the request, the response should
carry all the available service locations for the specified CA (with respect to the
MaxResponse constrain). Extensions can be used for future protocol enhancement.

The PRQP response also contains several elements. Again, the protocol version
identifies the response’s version. The NONCE, if present, binds the response to a
specific request. The usage of the NONCE is meaningful only in signed responses
and its value must be copied directly from the corresponding request. The status
data structure (PKIStatusInfo) carries the response status and, in case of error,
a description of the cause. The ResourceResponseToken is used to provide
the pointers to the requested resources (one for each requested service). Optional
Extensions may be added if requested.

4.3. Considerations about PRQP

When designing the protocol, we paid special attention to several aspects: sim-
plicity, security, message complexity, and RQA address distribution.

An important target of the protocol design was simplicity. By keeping the protocol
very simple, its adoption would not add a big additional burden to PKI management,
nor to applications and developers.
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Security was another major concern. The PRQP provides URLs to PKI resources,
therefore it only provides locators to data and services, not the real data. It still re-
mains the client’s job to access the provided URLs to gather the needed data, and
validate the data (e.g., via signatures or SSL). Because of this consideration, both
the NONCE and the signature are optional in order to provide flexibility in how re-
quests and responses are generated. Also, it is then possible to provide pre-computed
responses in case the NONCE is not provided by the client. If an authenticated secure
channel is used at the transport level between the client and the RQA (e.g., HTTPS or
SFTP) signatures in requests and responses can be safely omitted. As the RQA would
become a very important service of a PKI, special care should be taken in protect-
ing the service against malicious attackers. In particular when considering Denial of
service (DoS) attacks, caching servers or IP filtering could be used to mitigate their
effectiveness.

We also analyzed the level of complexity of messages. Some type of services, e.g.,
delta CRLs, can be directly detected upon data downloading. However, if a client is
looking for a specific version of a protocol or data type, a fine-grained query system
can reduce server load by only permitting data download when the requesting client
actually supports that version.

We considered two different candidates for the PRQP message format: eXtensible
Markup Language (XML) and Distinguished Encoding Rules (DER). The adoption
of the Abstract Syntax Notation (ASN.1) to describe the data structures would let the
software developer provide either DER or XML-based implementations of the proto-
col. However we think that a DER-based implementation of PRQP is the best choice
because of compatibility considerations with existing applications and APIs. More-
over, signed DER encoded messages are smaller in size and easier to process then
XML encoded ones [26] and almost all PKI aware applications already support it.

Last but not least considered issue was the distribution of the RQA’s address. We
envisage two different approaches. A first option would be to use the AIA and SIA
extensions to provide pointers to RQAs. Although this approach seems to be in con-
trast with considerations provided in Section 3.1, we believe that by using only one
extension to locate the RQA would provide an easy way to distribute the RQA’s
URL. The size of issued certificates would be smaller, thus providing a more space
efficient solution. A second option is applicable mostly in LANs and consists in pro-
viding the RQA’s address by means of DHCP. This method would be mostly used
when a trusted RQA is locally available. These two techniques can then be combined
together.

4.4. Extending querying capabilities

PRQP was designed in order to enhance interoperability between PKIs. Thanks to
the extensibility of the PRQP format, the definition of a common set of OIDs is what
was required to provide grid specific pointers. Table 2 summarizes the results.
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Table 2

Newly identified OIDs for PKI operations

OID Text Description

PK
IX

3

id-ad 1 ocsp OCSP service

id-ad 2 caIssuers CA information

id-ad 3 timeStamping Time stamping service

id-ad 10 dvcs DVCS service

id-ad 11 scvp SCVP service

N
ew

D
efi

ne
d

O
ID

s

id-ad 50 certPolicy Certificate Policy (CP) URL

id-ad 51 certPracticesStatement Certification Practices Statement (CPS) URL

id-ad 60 httpRevokeCertificate HTTP based (browsers) certificate revocation service

id-ad 61 httpRequestCertificate HTTP based (browsers) certificate request service

id-ad 61 httpRenewCertificate HTTP based (browsers) certificate renewal service

id-ad 62 httpSuspendCertificate Certificate suspension service

id-ad 40 cmsGateway CMS gateway

id-ad 41 scepGateway SCEP gateway

id-ad 42 xkmsGateway XKMS gateway

eng-ltd 3344810 10 2 webdavCert Webdav certificate validation service

eng-ltd 3344810 10 3 webdavRev Webdav certificate revocation service

Some of the newly proposed pointers (OIDs) deserve further description. Today
several standardized protocols can be used to interact with a CA. In order to allow
users and applications to discover these Points of Interactions, we provide a set of
pointers that specify these “Communication Gateways”. In particular we identified
three protocols that are mature enough to be deployed in applications. The first one
is the Certificate Management over CMS (CMC) Transport Protocol [37] by IETF.
The second one, the Simple Certificate Status Protocol (SCEP) [28] was designed
by CISCO. Although this protocol is not officially a IETF standard,3 it is one of the
most widely supported protocols both by commercial and open source software. We
also defined a pointer for the XML Key Management System (XKMS) [36], which
was defined by W3C. Although the XKMS specifications have been available for
quite a while now, not many software implementations support it yet.

We also identified two pointers that may be used for Certificate Policy (certPolicy)
and Certification Practices Statement (certPracticesStatement) specification. CP and
CPS provide the relying parties with the information upon which the trust in the
certificate is built. By providing the pointers to this information in a standardized
way, automatic auditing tools could be used to download this information and verify
it is made publicly available.

As PKIs change and new protocols are defined, PRQP can provide the CA man-
agement with a dynamic model capable of providing information about new services

3During the 70th IETF Meeting the PKIX Working Group decided to dismiss the proposal to move
SCEP on standard track.
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or, if needed, to allow clients to switch to newer and more efficient ones. In the IETF
PKIX WG, a new use of the WebDav protocol has been proposed in order to provide
an efficient certificate publication and revocation [4] mechanism. To support this pro-
posal we identified the WebDav Certificate Validation Service (webdavCert) and the
WebDav Certificate Revocation Service (webdavRev) pointers. A simple change in
the configuration of the RQA enables a CA to specify the URLs where access to the
new services (e.g., the WebDav revocation information) is located.

5. Prototype design and implementation

To bring our solution into practice, we built AutoPKI, a prototype implementation
of the libraries and software support to carry out PQRP in real PKI applications.
The basic idea behind AutoPKI is to automatically provide clients with addresses of
PKI resources and to ease administrators and users from PKI configuration issues.

Our system differs from previous work in that it is aimed to provide an easy-to-
use and simple-to-deploy location service without the complexity of providing third
party validation or proxying services (e.g., does not provide services as SCVP [12]).
The availability of PKI resource addresses enables applications to automatically look
for different type of data:

• Certification Services – where the client could automatically submit a certifica-
tion request to get a new certificate or where to submit a revocation request for
an already issued certificate.

• Data Repositories – where to look for certificates and revocation data (e.g., an
LDAP server or an FTP repository).

• Extra Services – URLs of additional services, this would include all services
currently available from a CA, e.g., OCSP, SCVP, TimeStamping, etc.

The AutoPKI system is mostly built on the integration of the PRQP into PKI ap-
plications and it makes use of the three principal components (Fig. 7): an Extended
DHCP client and server, a Resource Query Authority server, and a PRQP library. We
describe each of them separately.

5.1. The extended DHCP client and server

To bring PRQP into the real world, we need to distribute the addresses of available
RQAs. A naive option is to include the AIA and SIA extensions to carry the pointer
to the RQA directly in digital certificates. This approach would actually work only
if the CA of the target certificate provides an RQA. The extension contents would
point to the available RQA and the client could directly discover services provided
by the CA by querying the RQA.

However, we cannot rely on the presence of RQA pointers in certificates, since
they are not generally present in today’s infrastructure. Therefore we needed a way
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Fig. 7. General Design of AutoPKI, our PRQP prototype. The address of the RQA server is retrieved
via (a) an enhanced DHCP server/client when the user system is started. When a PKI resource is to be
found, the application communicates to the (b) RQA server by using the functions provided by (c) libPKI.
The application can then (d) retrieve the needed data by contacting the discovered PKI resource URL.

Fig. 8. Example configuration file originated by the extended DHCP client (dhclient).

to provide clients with a pointer to a local RQA to query for resources provided by
CAs that do not have RQAs. In fact if no RQA address is present in the certificate,
a client application could use a default configured one.

The DHCP protocol provides sufficient flexibility for this purpose. In particular it
allows the client to request the server to send specific information if needed. By mod-
ifying the configuration (to add specific options both to the client and the server) it
is possible to store the provided addresses in a system-wide configuration file where
applications could retrieve the local RQA address. Figure 8 reports an example con-
figuration file for PRQP.4 In case no DHCP server is available, configuration can be
provided by using a simple user interface, also common practice for DNS configura-
tion on many systems.

5.2. Integrating PRQP into applications

To easily provide support for applications that want to make use of PRQP, we im-
plemented a PRQP library. It can be invoked by applications in order to discover

4Our implementation stores the file as /etc/pki.conf.
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the address of a repository or a service. The implemented interface provides appli-
cations with easy-to-use functions that handle both the generation and parsing of re-
quests/responses as well as communication with the designated RQA. To further fa-
cilitate interoperability, we decided to integrate the developed code into LibPKI [29],
which enables developers with the possibility to implement complex cryptographic
and certificate management operations with a few simple function calls by imple-
menting an high-level cryptographic API. At its lower layer, LibPKI makes use of
OpenSSL [33] and can support different cryptographic providers, e.g., KMF [38].

Our PRQP library uses the configuration file generated by the DHCP client in
order to automatically retrieve the address of the RQA. Besides the low-level func-
tionality needed to manage the PRQP data structures, we also implemented several
high-level ones that help developers to integrate PRQP in their applications. In par-
ticular we provided the following functions described in Table 3.

Along with the library, we built a command line tool that accepts an X.509 cer-
tificate and configuration options (e.g., names of requested resources) as input, and
outputs the response both in PEM/DER and in a human-readable format. The output
could then be parsed by any calling application in order to use the response’s data.

When the command line tool is executed, it performs the following steps:

(1) verifies the user input and load the certificate(s) whose services and/or data are
requested;

(2) builds up the PRQP request;
(3) parses the global PKI configuration file;
(4) connects to the configured RQA server via TCP sockets;
(5) sends the request to the server by using the HTTP protocol (in particular we

use the POST method to upload the request to the server);
(6) retrieves and parse the RQA response;
(7) eventually saves the request and the response in separate files; and
(8) prints out the response details in text format.

Table 3

Implemented PRQP API in LibPKI

Function Description

PRQP_REQ *PRQP_REQ_new_url(...) Generates a new PRQP request

int PRQP_REQ_add_service_stack(...) Adds the stack of requested services to the

request

PRQP_RESP *PKI_get_PRQP_RESP_url(...) Sends the request and retrieves the response

to/from the server

int PRQP_REQ_sign_tk(...) Signs the PRQP request

int PRQP_RESP_sign_tk(...) Signs the PRQP response

int PRQP_REQ_verify(...) Verifies the signature on the PRQP request

int PRQP_RESP_verify(...) Verifies the signature on the PRQP response
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By using the client library, steps from two throughout six can be performed auto-
matically. For this purpose we provided the library with the getpkiresources
function which handles all the PRQP details and returns a stack of URL structures
back to the calling application. The address of the RQA is directly extracted from
a global PKI configuration file located in /etc/pki.conf which is generated by
the extended DHCP client. The application is not required, at any point, to have any
specific knowledge about the PRQP protocol as all the messaging with the RQA
server is handled within our PRQP library.

5.3. RQA server

Because of many similarities between PRQP and OCSP in the basic design we
decided to implement our PRQP responder by using the OpenCA [31] OCSPD [30]
package. This software uses OpenSSL and implements an OCSP responder over
HTTP. To implement PRQP, we modified the software by leveraging the functional-
ity provided by the LibPKI library: ASN.1 functions capable of loading, parse and
save PRQP data structures by using the I/O abstraction layer; request and response
processing functions; network communication functions to manage the simple HTTP
POST method used between the client and the RQA.

Because of the simple design of OpenCA’s OCSP responder, we could reuse
much part of the original code in order to build PRQP responses instead of
OCSP ones. Currently we support PRQP over HTTP only. We also defined the
“application/prqp−request” and “application/prqp−response”
HTTP content types for PRQP requests and responses, respectively.

Our server is capable of acting also as a TA by supporting multiple CAs by setting
the appropriate configuration options. Each configured CA and its provided services
have been grouped together in separated sections of the configuration file, thus being
very easy to add new CAs to the server.

6. Evaluation

To test the system, we set up a testbed consisting of two computers connected over
a switched Fast Ethernet LAN. On the first machine (Intel Core Duo @ 2.13 GHz,
4 GB RAM) we installed the PRQP library and the PRQP server, while on the second
one (Intel Pentium M @ 600 MHz, 512 MB RAM) we installed the PRQP library
and the command line tool. Both systems were running Linux 2.6.18.3 Kernels on
a Fedora Core 6 distribution. On the RQA server, we configured the pointers to ser-
vices provided by our CA. Each response was digitally signed by using the RSA
algorithm and 1024 bit keys; no crypto hardware was used.

On the client, we ran several tests that made use of the command line application
to query the RQA server; in particular, we queried the server with an increasing
number of requested pointers and repeated the experiment fifty times each. Although
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Fig. 9. PRQP response times.

the PRQP enables for caching of responses during their validity period, no caching
of responses has been used during our tests. Response times are reported in Fig. 9.

The results show that the overhead introduced by our system is small – and is
almost negligible for the majority of today’s applications. Moreover, no increase in
response time has been noticed with the number of requested locators.

We also analyzed the size of PRQP requests and responses. Collected data are
shown in Fig. 10. Generated requests are considerably smaller in size in respect to
responses. The main reason for this is that we decided not to sign requests and not
to include any certificate in the request (because we envisage this would be the most
common scenario), while the server is signing and including its own certificate into
generated responses.

We also noticed that the size of the responses grows more rapidly than the size of
the requests. This is easily explained by the fact that in the request a single OID is
used to identify the service, whilst in the response a more complex data structure is
used that comprises the actual locators and the validity period for that information.

Enhancing PRQP response caching. In the first version of our PRQP protocol
proposal [34], only PRQP requests carry an identifier for the CA. This identifier is
used by the RQA to identify the CA whose pointers are requested by the client.
Although efficient, the client would not be able to identify the CA that the response
refers to by simply looking at the response, thus caching across different applications
on the same computer would be infeasible.

In order to allow for client caching of responses, an additional field is required in
the response. We added a CA identifier in the PRQP response message. This identi-
fier allows the client to tie the information received from an RQA to a CA without
the need to cache the sent request as well. The new CA identifier structure definition
is shown in Fig. 11.

By adding the new data structure, we introduced a small overhead in terms of
response size (from 160 to 330 bytes); nevertheless this simple change simplifies
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Fig. 10. PRQP message sizes.

Fig. 11. ASN1 description of the CA identifier added to the response message in our modified version of
PRQP.

response caching on PRQP enabled clients. Moreover, because the CA identifier does
not change, its contents can be pre-computed, thus it does not add any significant
computational burden on the server.

7. Solving the problem: Two examples

In this section we provide two different examples. The first one presents a scenario
in which authentication software wants to discover where the OCSP server (if it
exists) for a particular CA is located. The second example describes a possible usage
of PRQP in order to discover the address of a revocation service from the certificate’s
own CA.

7.1. Discovering OCSP

Consider a scenario where many large organizations of a particular type have de-
ployed their own PKIs within their own user populations, but wish to provide ser-
vices to users from peer organizations. (This is already happening: in US univer-
sities, in pharmaceutical corporations, in branches of the US Federal Government,
for a few examples.) In such scenarios, the authentication layer of the authentication
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framework of an organization needs to discover services provided by external CAs
in order to get the latest information about the revocation status of a given supplicant
certificate.

At first, the authentication server receives the client’s certificate from the appli-
cation – e.g., a web server or a custom application. In case the needed data is not
already cached by the authentication software, the authentication server can build a
PRQP request for the information by processing the certificate data (i.e., by looking
at the issuer identifier in the certificate). In this example, the authentication layer
asks the RQA for the location of the OCSP server for the CA that issued the client’s
certificate. This step might also be useful when the OCSP pointer is not provided
in the certificate (e.g., the OCSP service was activated after the particular certificate
was issued). This provides the server with the freshest information in case the CA
started, moved or dismissed the OCSP service.

The RQA provides the authentication server with the URL of the requested service
which has been configured on the RQA. In this particular example only the OCSP
URL is requested, and therefore only the locator for this service is put in the response.
When the authentication server has all the needed data, it continues with the normal
validation procedures by using the provided URL to directly access the OCSP server.

7.2. Asking for revocation

Accidents happen. As PKI permeates broader user populations, the more likely
it will be that some users will encounter scenarios – such as discovering that an
external adversary has “owned” the user machine – which require revoking the user’s
certificate.

However, requesting certificate revocation is typically not an easy task. In many
cases, the URL to request the revocation of a certificate is only distributed to the
user by means of an email sent at the time the certificate was initially issued; that
e-mail may not be easily accessible when the subscriber has the greatest need for
it. By using PRQP, an application could present a simple UI where an “Ask for
Revocation” button is presented. An example is shown in Fig. 12. By requesting the
URL of the revocation service from the RQA, the application could automatically
access the service and ask for the revocation of the certificate. Such an automated
process would only be possible if the subscriber still had control of their private key,
as it is anticipated that any revocation request not signed by the subject’s private key
would need to be handled via an out of band process involving an RA of the particular
PKI. This approach potentially eases key management issues for the subscriber, thus
enhancing the certificate usage experience for the user.

Another scenario where PRQP could enhance the usability of digital certificates
is the renewal process. A renewal URL could be provided so that the process of
renewing a certificate could be completely automated. Also in this case the applica-
tion could provide the user with a simple UI where an “Ask for Renewal” button is
presented. By using PRQP, the application could automatically contact the CA (or
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Fig. 12. Example of a simple User Interface where the user is presented with simple “Revoke Certificate”
and “Renew Certificate” buttons.

Registration Authority) application and send the renewal request without the user to
be required to remember the list of URLs for all of his certificates.

It is to be noted that the more the CAs will support PRQP, the more the user can be
relieved from difficulties in using digital certificates. We think that this aspect could
enable the user to actually use many certificates, each one for a different purpose, as
the management costs (in terms of time) required would be negligible.

In this way PRQP facilitates greater flexibility for PKI-enabled applications.

8. Conclusions

The lack of interoperability among closed PKI islands is a very urgent problem
and demands a solution. The current infrastructure does not solve it. By providing
a PKI-specific protocol for resource discovery, our PRQP protocol can provide this
solution. We offer a design and prototype – and are working on wider deployment
via standards efforts and integration with Open Source tools.

One example of an environment where our system could provide measurable im-
provements is the Grid community [35], which already makes heavy use of X.509.
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One of the most sensitive technical issue to be solved is related to the availability of
revocation data and validation services in big Grids. The Grid Security Infrastruc-
ture (GSI) uses proxy certificates to allow an entity to temporary delegate its rights to
remote processes or resources on the Internet. Such a certificate is derived from, and
signed by, a normal EE certificate. Therefore an easy way to find validation services
and CRLs for EE certificates is needed in order to verify their validity. Administra-
tors decide a set of CAs, and therefore users, to be trusted for accessing the shared
resources.

PRQP could help automatic configuration of validation services by providing up-
dated URLs to OCSP, CRLs repositories, or other services (e.g., SCVP). This would
increase data availability and possibility to securely use existing PKIs for Grid Com-
puting. Moreover, a party like the International Grid Trust Federation (IGTF) [21],
established in October 2005, could run a centralized RQA to provide URLs about
federated CAs to all users and resource managers.

Wireless is another very interesting scenario for the deployment of PRQP. Usage
of digital certificates in open environments (e.g., university and enterprise WLANs)
is strongly limited by interoperability issues. Access Points (or RADIUS servers)
could leverage the use of PRQP to discover services and, then, retrieve PKI data
needed for validation of client certificates. For example support for visiting students
or professors to access the University’s network could be easily managed without
requiring complex authentication infrastructures (e.g., EduRoam [10]) and without
delegating credentials validation to third parties.

The PRQP protocol also offers a starting point for the development of a PKI Re-
source Discovery Architecture where different RQAs cooperate to access data which
is not locally available. Our research will next proceed by evaluating the usage of an
authenticated Peer-To-Peer (P2P) network for distribution of URLs of available ser-
vices between RQAs. These authorities would share data about configured services
with other peers in the P2P network. In this scenario, each client would use one of
the configured RQAs as an entry point where all its requests will be sent to. Thus the
P2P network would map network addresses to services mostly like the DNS maps
logical names to IP addresses. Current research is focused both on the study and the
implementation of such a network.
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