
Capability Exchange: Improving Access Control

Usability in Health IT

Chen Qin, Emily Freebairn, Sean Smith
Department of Computer Science

Dartmouth College

July 18, 2013

Abstract

Clinicians report usability problems in modern
health IT systems in part because the strictness
of computerization eliminates the layer of informal-
ity which previously enabled them to get their jobs
done. In this paper, we examine a solution by con-
sidering the strictly-enforced medical order as a se-
curity capability, and then using capability exchange
to authorize frustrated end-users to re-introduce the
necessarily flexibility. We prototype our idea us-
ing OpenEMR and Belay, and show how this proto-
type can address access control usability problems
reported by clinicians.

1 Introduction

A common theme among research about large-scale
business security systems, including health care
systems, is that access control does not hold up
under the complexities of real world usage (e.g.,
[1, 7, 8, 10, 18, 19, 21, 20]). There have been
many different attempts to understand where ac-
cess control fails and how it could be augmented or
redesigned in order to address these issues. Gran-
dison and Davis argue that current security models
are too broad and do not address the challenges and
needs specific to each industry, and provide a set of
general guidelines they feel all security systems must
address for each particular industry [8]. In particu-
lar, they argue that each industry has a prime direc-
tive that a security model must accommodate in or-
der to limit user frustration and workarounds of the
system. For health care, they observe that extraor-
dinary circumstances are commonplace and recom-
mend that any security system must accommodate
accordingly, by allowing exceptions and executing
checks if a user has no credentials, rather than refus-

ing access or undergoing a lengthy recovery process
to retrieve or create credentials.

Alam et al. [1] are more specific and describe par-
ticular problem areas in health IT which basic ac-
cess control does not address, including dynamic ac-
cess control, delegation of rights (under certain cir-
cumstances, a medical practitioner must be able to
delegate their authority to accomplish a particular
task), and break glass policy (in healthcare emergen-
cies, a medical practitioner must be able to help a
patient quickly and efficiently, regardless of whether
they ordinarily have an high enough level of author-
ity).

In all these situations, the end-user clinician may
face real-world exigencies requiring he or she to
get more access than a strict health IT system
provides—Figure 1 sketches this problem. In previ-
ous work [25], we looked at some potential psycho-
logical causes; in this work, we examine a potential
technological solution.

This Paper Section 2 presents two specific mo-
tivating examples drawn from real clinicians. Sec-
tion 3 presents the approach we took to the problem.
Section 4 discusses our experimental prototype, in
OpenEMR and Belay. Section 5 shows, in screen-
shots, how this prototype can address the motivat-
ing examples. Section 6 discusses next steps and
concludes.

2 Motivating Examples

We now consider two specific usability problems re-
ported by clinicians. (In concurrent work, we have
been preparing a systematic taxonomy [22].) To
clarify discussion, we adopt the terms “physician”
and “nurse” for the two clinician roles involved.

1



Physician Nurse

Health IT system

Order

Reality

X
AlternativeX

Figure 1: In many of the health IT usability prob-
lems we saw, the system embodied an order which
the end user was not able to carry out—but the sys-
tem did not allow the user to perform the natural
alternative which had worked in the pre-electronic
world.

Medication Dose Size Koppel et al examined a
health IT system which enforced access control for
medication by requiring end-user clinicians to scan
a barcode on the drug and on the patient, and only
permitting the action if the systems’ internal records
show they matched [13]. Unfortunately, the health
IT system did not recognize that two 5mg tablets
were equivalent to one 10mg tablet. Consequently,
a clinician with an order to give a 10mg dose to
patient, but who only had 5mg tablets, either had to
deny the patient her medication—or had to operate
outside system authorization.

Medication Timeshift Private communication
[12] reveals a different medication “access con-
trol” problem introduced when a medical enterprise
moved to a stricter health IT system. In this case,
a physician may often order a medication regimen
for some specific number of hours starting at a spe-
cific time. (For purposes of this discussion, let’s say
5 hours, starting at 5pm.) Unfortunately, the pa-
tient may not necessarily be present at the starting
time—e.g., the patient may “still be in dialysis” and
not show up until an hour later. In the more for-
giving older system, the nurse could still give the
full regimen, from 6pm to 11pm. However, the new
system only permitted the nurse to give the medica-
tion until 10pm. Consequently, the nurse either had
to deny the patient the tail end of the regimen—or
had to operate outside authorization.

3 Our Approach

For such usability challenges, the root cause may
arguably lie in the fact that the health IT system
did not know “when to look the other way” [6].
However, in these cases, the end-user clinician moti-
vated to circumvent the strict “letter” of the access

Physician

Health IT system

Order

Reality

X
Alternative

New Order Nurse

Figure 2: On a high level, our proposed solution en-
ables the end user to exchange (under appropriate
authorization) the initial order for an alternative—
and remembers a template to offer that option au-
tomatically in the future.

laws may arguably feel that all relevant stakehold-
ers would permit this circumvention, if asked—the
medical equivalent of “that classic bit of Italian cler-
ical casuistry: if the pope were here, he would un-
derstand.” [2].

In some sense, we can look at this in the spirit of
Alam’s concerns about dynamism, delegation, and
break-glass. The end-user dynamically needs more
or different permissions from what the system has
granted them. In the traditional security view, del-
egation is when user has some rights, and wants to
pass them on to a different user—possibly first mod-
ifying them by restricting them somehow. In these
problematic health IT settings, the user wants to
pass rights on to herself or himself, first modify-
ing them to account for the real-world scenario not
foreseen by the original granter of the permission.
Such end-user extension cannot be blindly allowed
always, of course. For example we are aware [22]
of a scenario where clinicians would tell the health
IT system that a 1L IV bag in fact only contained
0.85L, so that the “bag is nearly empty” alarm
would ring earlier—the patient thus received better
care from the end-user (no empty bag), but possibly
worse care overall if the system is tightly coupled
and is recording the patient is receiving 15% less
medication than he really is.

Figure 2 sketches our proposed solution: a way for
the end-user to do this modified self-delegation to
themselves, under appropriate authorization. To
carry this out, we look to the technology of capa-
bilities. A capability is a security concept that has
been around for a while (since 1966 at least [5]),
but has also been receiving more recent attention in
securing systems. For example, the Capsicum sys-
tem [26] uses capabilities to provide fine-grained in-
ternal protections within UNIX applications; Belay
[15] uses capabilities to provide authorization across
multiple browsers and servers. Basically, a capabil-
ity is like a car key—it allows whoever has it to do



Draft

Physician

Nurse

Valid

Valid

Done

1 2

345

Figure 3: (1) The physician creates a capability and
assigns it to the nurse. (2) The nurse can carry out
the order, consuming the capability. (3) Alterna-
tively, the nurse can draft one or more proposed
capabilities, and (4) propose exchanging the initial
capability for these alternatives. (5) This proposal
goes back to the physician for approval.

Physician

Nurse

DraftValid

Ex-
changed Valid

5

6
Template

7

Figure 4: (6) If the physician approves the exchange,
the initial capability is revoked and the alternatives
become blessed. (7) The system also gives the clin-
ician the option of pre-approving such exchanged in
the future.

Physician

Nurse

Valid Template

Ex-
changed Valid

8

9

Figure 5: (8) If the physician issues such an order
again, she can include templates for pre-approved
exchanges. (9) The system gives the nurse the op-
tion to automatically carry out that exchange.

particular actions (like driving) to a particular ob-
ject (like a car). The subject carries the right with
them, rather than having the object keep track of
authorized subjects.

To allow the necessarily functionality, we designed
an approach where health IT system explicitly
represents the permission to do the action as a
capability—but then also provides a capability ex-
change, permitting a user to trade in some permis-
sions for other ones, initially with explicit approval,
but eventually automatically (to reduce problems
when the approver might not be available). Figure 3
through Figure 5 sketch the lifecycle we envisioned.

4 Experimental Prototype

To demonstrate the practicality of ideas, we built a
prototype (BelayEMR) integrating an open-source
capability system with an open-source EMR, and
then modified them to add capability exchange fea-
tures for our motivating examples.

4.1 OpenEMR

For an open-source EMR, we explored VistA [24]
and OpenMRS [17], but ending up settling on Open-
EMR [16], due to the ease of installing and mod-
ifying it, the realistic look-and-feel (as judged by
medical colleagues), and the fact that it actually
has a footprint in the US medical system. (E.g.,
one source estimates that in the US alone, over “30
million patients are being treated at healthcare fa-
cilities running OpenEMR” [9].)

4.2 Belay

Google’s Belay project [15] is an implementation
of the Belay Cloud Access Protocol (BCAP), a
capabilities-based security protocol that seeks to
support web and cloud based computing contexts
for asynchronous web applications.

Belay was inspired by work done in four primary
areas, and Belay developers have incorporated these
ideas into their work.

Usability vs. security on the web It is a com-
mon belief that security and usability are at odds
with each other, and that designing for one auto-
matically puts the other at a disadvantage. How-
ever, in the last ten years there has been an effort



Figure 6: (Left) Screenshot of the login window for our Belay/EMR prototype; (right) the menu of capability
operations offered

to disprove this notion [11, 28, 27]. Belay continues
with this goal in mind for web development, and also
includes some of the suggestions made by Ye about
cookie management [28] with additional modifica-
tions; in fact, Belay replaces cookies entirely with
BCAP capabilities.

Maintaining session continuity in the interac-
tive web Websites are becoming more and more
interactive, and there are a growing number of web
apps available to the public. Since the web is both
stateless and asynchronous, these web applications

18:03,11/27/12

00:03,11/28/12

Figure 7: Physician Alice issues a medication order,
in our Belay/EMR prototype

require a means of saving state (or context) either
by saving it on the server or, frequently, sending the
context back to the client as a cookie. Cookies are
often used as a means of both authentication and
authorization.

Belay identifies three major problems with cookies:

1. Cookies are passed to the server as part of every
request from the client, which makes cross-site
request forgery (XSRF) possible.

2. Cookies represent all the state and authority of
the user in one token.

3. The state saved by the cookie cannot be used
outside the browser.

Both Waterken and the PLT-scheme server are ear-
lier projects that have explored web-keys as alterna-
tives to cookie usage [4, 14], inspiring Belay to do
the same. A web-key is a large randomly generated
string used as a URL. The idea is that this key pro-
vides unique and specialized access to a certain re-
source, so whoever knows this URL can access the
resource. If someone loses their key, they can no
longer access the resource, and similarly, if someone
malicious is able to find the key, they have gained
access. However, a web-key is tied to a very specific
resource; thus an attacker who is somehow able to
gain access to a web-key has both limited authority
and resources to work with. A web-key is similar to
a cookie in that both are large random numbers that
are used by the server to map to specific data. How-
ever, a web-key has a few advantages over a cookie,



Figure 8: Nurse Bob sees the order capability, in our Belay/EMR prototype

since a web-key has only a portion of the authority
of the user, and can only access certain data and do
one specific action.

Delegated vs. Federated Authentication
Currently, a user has multiple accounts on the in-
ternet, with one account for each website that of-
fers personalized service. Each account consists of a
username and password that authenticates the user
and authorizes that user to do specific things on
their account. As more websites have become inter-
active and want to offer personalized services to each
client (thereby requiring an account), the number of
accounts a single person has to keep track of has in-
creased, and rather than coming up with a unique
password for each account, most people choose the
same account name and password. This decreases
the security strength of all the user’s accounts to
the security strength of the website with the weak-

est security measures.

Some website developers have become aware of
this issue, and rather than checking authentication
themselves, they delegate authentication to a more
well-known website. Federated authentication takes
this further and decentralizes delegated authentica-
tion, so that any identity provider can authenticate
for any relying party. OpenID, an open standard
that Google has implemented since 2008 [3], is one
such example of federated authentication, and Belay
makes use of this as part of the process of simpli-
fying and centralizing security on the web for both
common users and web developers.

Cross-App Authorization As web apps have
become more popular, developers have begun doing
“mashups” of current applications—for instance, a
developer might want their web app to use both

Figure 9: If Nurse Bob does not have 10mg tablets, he can draft alternative capabilities for two 5mg tablets,
and request an exchange.



Google maps and a weather forecasting app from
NOAA. However, it has been noted (e.g., [23, 4])
that access control lists cannot ensure secure behav-
ior in interactions between more than two parties.
BCAP capabilities offer a more secure alternative
for such interactions [15].

4.3 Integration

From a high-level view, what we did is extend
OpenEMR to to use Belay authentication, to pack-
age Belay capabilities as the vehicle to convey
authorization—and then to add the ability for end-
users to request capability exchanges when the re-
ality of their usage situation does not match the
authorization that was given them.

For our work, we used OpenEMR 4.1.0, and the Au-
gust 2012 trunk branch of Google Belay. (The Au-
tumn 2012 branch introduced a bug we identified
and file.) In OpenEMR, we changed its ACL rule
setting to populate our test user roles (e.g., physi-
cian Alice, nurse Bob, etc).

We changed the login page to allow users to log in
with a Belay account. As our motivating examples
dealt with drugs, we changed the OpenEMR pre-
scription page to allow the physician role to create
and assign capabilities when they give a medication
order, and the nurse role to view and act on these
capabilities.

In Belay, we added logic to pull out database records
from OpenEMR. We added logic to build capabil-
ity models for our BelayEMR application and inte-
grate with with entities and models in OpenEMR
settings. We also added logic to handle capability
invocations, retrieval, and meta data lookup (that
is, inquiring what this capability is about before re-
trieve it).

For both the nurse and the physician roles, we added
features to support representative cycles of capabil-
ity exchange. We changed the prescription page to
allow the nurse role to create a capability exchange
request, and added logic to allow the nurse to create
draft capabilities (not valid) for exchange request
purpose. We added an exchange request view page
for for the physician to review capability exchange
requests, and then approve or reject requests.

We also added “allow similar requests” in the physi-
cian’s capability exchange request page, to serve
as templates for future capability exchange sce-
narios (potentially even pre-approved—thus avoid-
ing problems should the approver not be available

when the exchange is required), and logic to re-
place exchange requests capabilities for its substitu-
tion draft capabilities. Our initial hypothesis here
is that adding templates for the basic scenarios (e.g.
“10mg” can be exchanged for two “5mg,” for any pa-
tient) that users encounter would suffice; however,
if too many variations emerge in practice, then we
would need to examine ways to create more general
templates (each covering more cases) and perhaps
to limit template creation/storage to the most com-
mon cases.

4.4 Implementation

Figure 15 sketches our basic software architecture.

In Belay, a capability is a URL pointing to a capa-
bility agent in or outside of a website. In our case,
it lives together with the OpenEMR site Alice and
Bob use. The capability agent stores the actions
each capability URL can perform During invocation
time, an http request comes from a client browser
through BCAP, passing parameters to the capabil-
ity agent. Eventually, after an action gets called, the
browser gets a response. These actions and method
signature are defined when a new capability URL is
created at the capability agent.

In a capability exchange scenario (say, for medi-
cation dose sizes), when user Bob find a capabil-
ity issued by Alice too constraining, he prepares
drafts capabilities in OpenEMR. He calls cap draft
POST with these new drafts and sends them to
the capability agent, which responds with two
cap medication draft capabilities. Bob sends the
“exchange request” to Alice through OpenEMR. Al-
ice checks the cap medication draft with HEAD
method to view what these capabilities are about,
and then approves them and revokes the initial ca-
pability via the agent. The exchange is recorded
in database; if Alice opts to create a template, this
template is also stored in the database.

We built BelayEMR upon the Python Django
framework. The total codebase (excluding Google
Belay trunk code, OpenEMR code, and the Django
framework) consists about 32K lines of code—
although about 28K of that are browser script li-
braries to support BCAP communication and user
interaction.



Figure 10: Physician Alice has the option of approving the capability exchange Nurse Bob proposed.

Figure 11: If physician Alice approves the exchange, then nurse Bob’s initial capability (which he could not
execute) has been revoked and replaced with his alternatives, which he can.

Figure 12: When the system prompts physician Alice to approve or reject the capability exchange that
nurse Bob proposed, it also gives her the option to create a template to pre-approve similar exchanges in
the future. (See also the right-most button in Figure 10.)



Figure 13: If nurse Bob receives a similar order to one he previously needed to exchange and a pre-approved
template exists, the system will permit him to directly carry out this exchange (e.g., obviating the actions
in Figure 9 an Figure 10 and going straight to Figure 11).

Figure 14: If nurse Bob needs to timeshift the medication order (e.g., because the patient arrived late due
to dialysis), he can propose to exchange the impossible capability for a possible one.



OpenEMR Capability 
Agent

Database

Open 
identity 
Provider

Client (Browser) BCAP

BCAPHTTP(S)

BCAP

Figure 15: Architecture of BelayEMR

5 Addressing the Examples

We built our prototype to explicitly demonstrate
how our notion of capability exchange might help
with the problem scenarios in Section 2. Initially,
users log in to OpenEMR via Belay and see an addi-
tional suite of capability actions for the medication
suite (Figure 6).

For the 10mg/5mg case of Section 2, physician Alice
now issues a capability when she creates her 10mg
order (Figure 7). Nurse Bob sees this capability
(Figure 8), but if he doesn’t have 10mg pills, the
system lets him draft the alternative approach he
sees but Alice did not envision and request an ex-
change (Figure 9). If Alice approves this request
(Figure 10), then Bob now has the capabilities he
needs (Figure 11). To streamline future interaction,
Alice can also instruct the system to pre-approve fu-
ture requests that are similar (Figure 12, Figure 13).

(Indeed, Koppel et al [13] suggested the problem
might be addressed by “new policies for medication
administration of different medication forms”; what
we are doing is creating a technological path to re-
alize that suggestion.)

BelayEMR can similarly address the timeshift prob-
lem of Section 2: nurse Bob drafts a proposed alter-
native capability embodying the timeshift he knows
about but Alice did not envision (Figure 14).

6 Conclusions and Future Work

Many researchers, including our own lab, have
lamented the mismatch between the rigidity of strict
access control in health IT and the end-user flexibil-
ity this domain appears to require. In this project,
we have explored a potential solution, to allow end-
user flexibility while also preserving security; we

have also demonstrated evidence of its potential
effectiveness by prototyping it in real-world open-
source capability and EMR codebases.

Next steps here include further exploration of the
engineering feasibility: that is, more fully incorpo-
rating the capability exchange framework through-
out OpenEMR and dealing with resulting challenges
(such as expressiveness of templates and scalability
of keeping track of them). We also need to explore
the usability and usefulness: will clinicians be able
to easily understand and use these features, and
will the features indeed reduce the usability trou-
ble that appears to challenge this space? Naturally,
a larger installation would also require a more thor-
ough security analysis—as well as an exploration of
the other advantages Belay can bring to the Open-
EMR framework.

Nevertheless, we offer this is a first step.

Acknowledgments and Availability

This work is supported in part by the US Na-
tional Science Foundation’s Trustworthy Comput-
ing award #0910842 and is part of the Trustworthy
Information Systems for Healthcare project spon-
sored by Dartmouth College’s Institute for Secu-
rity, Technology, and Society; the work was also
supported in part by Google. However, views and
conclusions are the authors alone. We are grate-
ful to the Google Belay team and the anonymous
reviewers for their helpful comments.

Contact chen-qin@cs.dartmouth.edu for informa-
tion on code availability.

References

[1] M. Alam, M. Hafner, M. Memom, and P. Hung.
Modeling and Enforcing Advanced Access
Control Policies in Healthcare Systems with
SECTET. In Holger Giese, editor, Models in
Software Engineering. Springer-Verlag, 2008.

[2] J. Allen, Jr. At the Vatican, Exceptions Make
the Rule. The New York Times, September
2005.

[3] W. Chun. Using Federated Authenti-
cation via OpenID in Google App En-
gine. https://developers.google.com/
appengine/articles/openid.



[4] T. Close. Waterken Server. http://waterken.
sourceforge.net.

[5] J.B. Dennis and E.C. Van Horn. Program-
ing Semantics for Multiprogrammed Computa-
tions. Communications of the ACM, 9(3):143–
155, March 1966.

[6] E. Felten. Too Stupid to Look the Other Way.
Freedom to Tinker, October 2002.

[7] A. Ferreira, R. Cruz-Correia, L. Antunes, and
D. Chadwick. Access Control: How Can it Im-
prove Patients’ Healthcare? Studies In Health
Technology And Informatics, 127:65–76, 2007.

[8] T. Grandison and J. Davis. The Im-
pact of Industry Constraints on Model-Driven
Data Disclosure Controls. In Proceedings
of the 1st International Workshop on Model-
Based Trustworthy Health Information Systems
(MOTHIS), 2007.

[9] P. Groen. OpenEMR continue to grow in pop-
ularity and use. OpenHealthNews, December
2012.

[10] C. Gunter, D. Liebovitz, and B. Malin.
Experience-Based Access Management: A Life-
Cycle Framework for Identity and Access Man-
agement Systems. IEEE Security and Privacy,
9(5):48–55, 2011.

[11] A. Karp, M. Stiegler, and T. Close. Not One
Click for Security. Technical report, HP Labo-
ratories, March 2009.

[12] R. Koppel, S.W. Smith, and students. Pri-
vate communication with clinician intervie-
wees, 2008–2012.

[13] R. Koppel, T. Wetterneck, J.L. Telles, and
B.-T. Karsh. Workarounds to Barcode Med-
ication Administration Systems: their Occur-
rences, Causes, and Threats to Patient Safety.
Journal of the American Medical Informatics
Association, 15(4), 2008.

[14] S. Krishnamurthi, P. Hopkins, J. Mccarthy,
P. Graunke, G. Pettyjohn, and M. Felleisen.
Implementation and Use of the PLT Scheme
Web Server. Higher-Order and Symbolic Com-
putation, 20(4):431–460, December 2007.

[15] M. Lentczner. Belay Research.
https://sites.google.com/site/
belayresearchproject/.

[16] OpenEMR Project. http://www.open-emr.
org.

[17] OpenMRS. http://openmrs.org.

[18] J. Saleem, A. Russ, A. Neddo, P. Blades,
B. Doebbeling, and B. Foresman. Paper
Persistence, Workarounds, and Communica-
tion Breakdowns in Computerized Consulta-
tion Management. International Journal of
Medical Informatics, 80(7):466–479, 2011.

[19] S. Sinclair. Access Control in and for Real-
World Organizations. PhD thesis, Dartmouth
College, 2013.

[20] S. Sinclair and S. W. Smith. What’s Wrong
with Access Control in the Real World? IEEE
Security and Privacy, 8(4):74–77, 2010.

[21] S. Sinclair and S.W. Smith. Access Control Re-
alities As Observed in a Clinical Medical Set-
ting. Technical Report Computer Science Tech-
nical Report TR2012-714, Dartmouth College,
April 2012.

[22] S.W. Smith and R. Koppel. Healthcare In-
formation Technology’s Relativity Problems:
A Typology of How Patients’ Physical Re-
ality, Clincians’ Mental Models, and Health-
care Information Technology Differ. Journal of
the American Medical Informatics Association,
2013.

[23] M. Stiegler. Rich Sharing for the Web. Tech-
nical report, HP Laboratories, July 2009.

[24] United States Department of Veterans Af-
fairs. VistA–eHealth. http://www.ehealth.
va.gov/VistA.asp.

[25] Y. Wang, S.W. Smith, and A. Gettinger. Ac-
cess Control Hygiene and the Empathy Gap in
Medical IT. In USENIX HealthSec, 2012.

[26] R.N.M. Watson, J. Anderson, B. Laurie, and
K. Kennaway. Capsicum: practical capabilities
for UNIX. In Proceedings of the 19th USENIX
Security Symposium, 2010.

[27] K.-P. Ye. User Interaction Design for Secure
Systems. In Proceedings of the International
Conference on Information and Communica-
tions Security, pages 278–290. Springer-Verlag,
2002.

[28] K.-P. Ye. Aligning Security and Usability.
IEEE Security and Privacy, 2(5):48–55, 2004.


