
Katana: A Hot Patching Framework for ELF Executables

Ashwin Ramaswamy, Sergey Bratus, Sean W. Smith
Computer Science Dept.

Dartmouth College
Hanover, New Hampshire

Michael E. Locasto
Computer Science Dept.

George Mason University
Arlington, Virginia

Abstract—Despite advances in software modularity, security,
and reliability, offline patching remains the predominant form
of updating or protecting commodity software. Unfortunately,
the mechanics of hot patching (the process of upgrading a
program while it executes) remain understudied, even though
such a capability offers practical benefits for both consumer
and mission-critical systems. A reliable hot patching procedure
would serve particularly well by reducing the downtime nec-
essary for critical functionality or security upgrades. Yet, hot
patching also carries the risk – real or perceived – of leaving
the system in an inconsistent state, which leads many owners
to forego its benefits as too risky. In this paper, we propose a
novel method for hot patching ELF binaries that supports (a)
synchronized global data and code updates and (b) reasoning
about the results of applying the hot patch. We propose a
format, which we call a Patch Object, for encoding patches as
a special type of ELF relocatable object file. Our tool, Katana,
automatically creates these patch objects as a by-product of the
standard source build process. Katana also allows an end-user
to apply the Patch Objects to a running process. In essence,
our method can be viewed as an extension of the Application
Binary Interface (ABI), and we argue for its inclusion in future
ABI standards.

“Some reports, such as the case of the Conficker outbreak
within Sheffield Hospital’s operating ward, suggest that even
security- conscious environments may elect to forgo auto-
mated software patching, choosing to trade off vulnerability
exposure for some perceived notion of platform stability...” –
http://mtc.sri.com/Conficker/

I. INTRODUCTION

It is somewhat ironic that users and organizatations hes-
istate to apply patches whose stated purpose is to support
availability or reliability precisely because the process of do-
ing so can lead to downtime (both from the patching process
itself as well as unanticipated issues with the patch). Periodic
reboots in desktop systems — irrespective of the vendor
— are at best annoying. Reboots in enterprise environments
(e.g., trading, e-commerce, core network systems), even for a
few minutes, imply large revenue loss or an extensive backup
and failover infrastructure with rolling updates. We question

The first three authors’ work was supported in part by the National
Science Foundation, under grant CNS-0524695. The views and conclusions
do not necessarily represent those of the sponsors.

Locasto is supported in part by grant 2006-CS-001-000001 from the
U.S. Department of Homeland Security under the auspices of the I3P
research program. The I3P is managed by Dartmouth College. The opinions
expressed in this paper should not be taken as the view of the authors’
institutions, the DHS, or the I3P.

whether this de facto acceptence of significant downtime and
redundant infrastructure should not be abandoned in favor
of a reliable hot patching process.

Software, the product of an inherently human process,
remains a flawed and incomplete artifact. This reality leads
to the uncomfortable inevitability of future fixes, upgrades,
and enhancements. Given the way such fixes are currently
applied (i.e., patch and reboot), downtime is a foregone
conclusion even as the software is released.

While patches themselves are a necessity, we believe
that the process of applying them remains rather crude.
First, the target process is terminated, the new binary and
corresponding libraries (if any) are then written over the
older versions, the system is restarted if necessary, and
finally the upgraded application begins execution. Besides
the appreciable loss in uptime, all context held by the
application is also lost, unless the application had saved its
state to persistent storage [7], [6] and later restored it (which
is expensive to design for, implement, and execute). In the
case of mission-critical services, even after a major flaw is
unveiled and a patch subsequently created, administrators
likely wish to apply the patch and upgrade the process
without actually restarting the program and losing state and
time. This requirement serves as our motivation for hot
patching.

A. Challenges of Patching

Requiring and encouraging the adoption of the latest
security patches is a matter of common wisdom and prudent
policy. It appears, however, that this wisdom is routinely
ignored in practice. This disconnect suggests that we should
look for the reasons underlying users’ hesitancy to apply
patches, as these reasons might be due to fundamental
technical challenges that are not yet recognized as such. We
believe that the current mechanics of applying patches prove
to be just such a stumbling block, and we contend that the
underlying challenges need to and can be addressed in a
fundamental manner by extending the core elements of the
ABI and the executable file format.

Mission-critical systems seem hardest to patch. They
can ill afford downtime, and the owner may be reluctant
to patch due to the real or perceived risk of the patch
breaking essential functionality. For example, patching a



component of a distributed system might lead to a loss or
corruption of state for the entire system. An administrator
might also suspect that the patch is incompatible with some
legacy parts of the system. Even so, the patch may target
a latent vulnerability in a software feature that is not now
in active use, but also cannot be easily made unreachable
via configuration or module unloading. The administrator is
forced to accept a particularly thorny choice: inaction holds
as much risk as a proactive “responsible” approach. Since the
risks of patching must be weighed against those of staying
unpatched, we seek to shift the balance of this decision
toward hot patching by making it not only possible, but
also less risky in a broad range of circumstances.

Our key observation is that current binary patches,
whether “hot” or static, are almost entirely opaque and do
not support any form of reasoning about the impact of the
patch (short of reverse engineering both the patch and the
targeted binary). In particular, it is hard for the software
owner to find out whether and how a patch would affect
any particular subsystem or compatibility of the target with
other software in any other way than applying the patch
on the test system and trying it out, somehow finding a
way to faithfully replicate the conditions of the production
environment.

Given these circumstances, our tool Katana and our Patch
Object format not only seek to make possible the mechanics
of hot patching, but also enable administrators to reduce the
risk of applying a particular fix by providing them with
enough information to support examination of the patch
structure, reasoning1 about its interaction with the rest of
the system, and an understanding of the tradeoffs involved
in applying it.

B. Why Not Just Employ Redundancy?

Redundant infrastructure, containing replicas of nodes and
service paths, often helps an organization bridge the service
disruption stemming from patches. We believe, however,
that redundancy isn’t always the best approach for ensuring
availability during an upgrade or security-critical patching
process. Rather than an established best practice, we invite
the reader to see redundancy as an extreme measure that
needlessly duplicates hardware, networking, and software of
the original system. We suggest that redundancy is:

a. expensive - especially in medium-sized enterprises
where the cost of a single server, gateway, or switch is
high enough to outweigh the benefits of redundancy.

b. wasteful - Redundant systems are typically passive
bystanders, lying in wait for an active machine to
initiate a failover.

c. requires complicated logic - Transferring application
state (even across multiple homogenous systems) is

1By which we mean manual, human-level reasoning, although applying
automated reasoning methods is an interesting (and open) avenue of
research.

non-trivial, especially when the state transfer occurs
within hardware (such as for call trunks).

d. specialized - The process of building system redun-
dancy is not easily generalizable across heterogenous
systems and requires full knowledge of the underlying
protocol and application state in order to provide
faithful failover and failback.

II. KATANA DESIGN: TRACKING OBJECT
DEPENDENCIES

Katana leverages the typical Unix Makefile build
mechanism to track file-level dependencies. Normally, after
applying a source patch file and performing a top-level
make, only those object files whose underlying sources
have changed are rebuilt. Katana thus tracks object-level (.o)
dependencies as follows. We first replicate all object files and
the ELF executable from the existing source tree. We then
apply the patch to the original source tree. At this point,
only source files have been modified. Next, using the Linux
kernel’s inotify mechanism2, Katana sets up a notification on
the original source tree, so that it knows when an object file
is created or modified under the original tree. Finally, we
perform the top-level make under this source and record all
created/modified object files, along with the newly created
executable.

.c  .c 
.c 

.c 
.c 

.o  .o 
.o 

.o 
.o 

.o  .o  .o  .o  .o 

Executable 

Figure 1. An Example Code Base. From the top: each source
file creates a corresponding object file; multiple object files are
combined into intermediate compilation units (CU); and multiple
CUs are merged to form the executable. All shaded blocks indicate
modified files.

Figure 1 illustrates how object files are modified by make
as a result of source-level changes. Katana only considers
objects that are closest to the source files and ignores all
other intermediate object files and compilation units (CU).
Hence, in Figure 1, Katana only records the shaded circle-
objects along with the final executable.

To dynamically update the running application, Katana
needs to patch both the code and the data within the process.
It first creates a patch object (PO): an ELF file with sections

2inotify allows the registration of filesystem triggers. We use inotify to
avoid potentially expensive recursive directory comparisons.



that indicate the type of patch (code or data), the patch
offsets and lengths within the process address space, patch
data, function and data names, etc.

III. AUTOMATED PATCHING

In this section, we describe our data and code patching
methods. We note that, compared to previous work, our
PO data structures allow reasoning about the scope, extent,
and impact of the patch (e.g., whether it affects particular
subsystems within the process).

Code Patching. This process involves several stages.
(i) Code Identification: Katana first needs to identify the
section(s) of text that need to be modified within the running
process. To do this, we consider the list of all modified object
files from our tracking step, and identify all functions (both
static and global) within these files from their symbol table.
This list gives us the set of all functions that need to be
patched within the executing application. We note that just
because an object file has been modified does not mean
all functions (at the source-level) within that object have
necessarily been modified, but since it is not possible for us
to determine which exact functions a patch modifies (as local
and weak symbols are not unique within an executable),
we resort to fully patching all functions within a modified
object. Functions thus identified as needing patching are
copied into the PO and marked as code.
(ii) Symbol Resolution: After identifying all functions that
require a patch, we need to resolve outstanding symbol
references within each function. Typically, symbol resolution
for an application happens at both the linking stage (called
static linking, when the symbol is present within another
object file or archive), and the execution stage (or dynamic
linking, when the symbol is present within a shared library).
All code relocations are identified in the ELF sections
.rel.text and .rela.text, within the object files and
the final executable. Each relocation entry contains, among
other information, the code offset that requires relocation,
and the outstanding symbol that provides this fix-up.

For each relocation entry, Katana uses the replicated
executable (from before the patch) to figure out the address
of the symbol. If the symbol was provided by another object
file, then the symbol table of the old executable contains this
final address, and we update the PO accordingly, with this
address as the patch target. Otherwise, if the symbol was
dynamic (i.e., present in a shared library such as libc),
then the fixup value is the address of a corresponding entry
in the procedure linkage table (PLT) of the executable. The
PLT is essentially a jump table with entries for each symbol
that needs to be resolved at runtime by the dynamic linker.
When the process begins execution, the dynamic linker maps
the required shared libraries into the address space of the
process, and updates each PLT entry.

For dynamic symbols, Katana traverses the PLT entries of
the replicated executable and compares the symbol name of

each entry with the symbol name that requires relocation.
If Katana finds a match, then the PO is updated with the
corresponding symbol value. In our prototype, Katana is
unable to handle calls to previously unused functions present
in any shared libraries3

Finally, if the outstanding symbol’s definition was not
found within the replicated executable (either within the
symbol table or the PLT), then it was newly added by the
patch; it is marked as such and added to the PO.
(iii) Patch Application: Applying a code patch is simple
enough, and has been researched in other systems [1],
[2], [3], [20]. We map the new function in memory, and
insert a trampoline jmp instruction at the beginning of
the old function within the process memory image. This
interposition allows the caller to execute our new function
instead of the previous one at the cost of an extra jump. It is
possible to avoid the overhead (from branch mis-prediction)
of the jmp instruction by adding code in the old function
which traces up the stack and modifies the caller’s call
instruction operand to point to the new address instead of
the old one. Although this optimization would ensure that
all subsequent calls from the same caller would execute the
new patched function without stepping into the old one, it
does makes the process of rolling back a patch non-trivial.

Data Patching. Patching data within a running process
is significantly harder than patching application code. The
primary challenge here is to synchronize the code and the
data structures it acts on.4

Tracking down previously allocated data is nontrivial (one
of the reasons why garbage collectors are interwoven with
the language implementation). Even after identifying the
allocated chunks of memory, in the absence of some kind
of a type specification, the internal structure of memory
remains opaque. We also need a method for extracting only
the modified data variables from the patch and a means to
discover the actual modifications that were performed.

We first note that any code that acts on patch-modified
data is already taken care of by Katana’s code patching
process. This is because we rely on make to build the object
files that correspond to all modified sources. We resolve
the previously identified problems towards patching data
by leveraging DWARF5 debugging information within the
application executable. This requires the object files to be
compiled with debugging support, but we do not see this as
a limitation. Since we only need DWARF information while
building the PO, all debugging symbols can be stripped from
the executable during application deployment, if so desired.

3This would require creation of new PLT and GOT entries and either
subsequent re-basing of the following segments of the executable, or
creation of a new segment to allocate the extra entries. Although ELF
rewriting systems like ERESI or Diablo show that such manipulations can
be made practical, we chose not to complicate Katana with them.

4For example, consider adding a new member to a C struct definition
and an additional clause to the logic that processes it.

5http://dwarfstd.org



We recall the representation of types in the DWARF format
and then detail the various steps in Katana’s data patching
process.

DWARF type information. The DWARF structure is
laid out as a tree of DIEs (Debugging Information Entries)
within the executable file. Each DIE has an associated
tag and a set of attributes. The DIE that defines type
information has the tag as one of DW_TAG_base_type,
DW_TAG_structure_type or DW_TAG_union_type.
Typedefs and other type modifiers (such as const,
volatile, pointer etc.) are referenced by the DIE
that defines the type. In case of structures or unions, each
member is contained as a separate DIE within the parent DIE
that identifies the struct/union. It is important to note that
DWARF annotates types of all visibilities from the program
sources - local, global and static.

Katana’s data patching process contains a number of steps:
(i) Type Discovery: We set out to discover all newly

created or modified data types – those that are primarily
user-defined (such as structures and unions in C). Katana
traverses the type information (as identified by the above
DWARF tags) from the newly created executable, and for
each encountered type, it searches for the corresponding
type-name within the replicated executable (from before the
patch). If so found, the full types (i.e. the number, type
and position of all member variables contained within) are
compared to determine if they are identical. If not identical,
the parent type identifying the struct/union is inserted into
the PO. Else, if the type name itself was not found within
the replicated executable, then the current type was created
by the patch, and is added as such to the PO.
(ii) Data Traversal: The next step is to traverse all variables
defined within the new application, and for each one en-
countered, we first determine its lexical scope. If the scope
is local, then we ensure that the corresponding function (the
one that defines this variable) does not have an activation
frame on the program stack while applying the patch. Else,
the variable has been defined as either global or static. We
first check if the replicated executable defines the same
variable. If not, then this variable has been created by the
patch and we need not worry about it and leave the symbol
resolution upto the compiler (as only new code can use this
variable). Otherwise, we verify whether the variable’s type is
one of the modified types identified during type discovery.
If it is, then we add the variable along with its original
address from the replicated executable, its new address from
the patch, and type information to the PO. At the end of
this stage, Katana would have identified all newly created
or modified variables from the patch.
(iii) Patch Application: Applying a data patch consists of
first tracking down the relevant symbols in program memory.
Katana reads in the PO, and for each data variable encoun-
tered, it checks if the variable is a pointer or not. If it is, then
the current validity of the pointer is verified (by bounds-

checking the pointer value to within heap boundaries). If
the pointer is found to be invalid, no further action is taken.
If the pointer is valid, then memory for the new type(s)
is allocated, the older structure is copied into the new one
taking into account the difference in structure definition, the
old memory is then freed, and the pointer is modified to
point to the new segment (in case of structures such as lists,
trees, since we have the type specification, we can repeat
this process recursively for each node on the list or tree).
Else if the variable is not a pointer, then Katana modifies
all its references in the program text to the updated memory
location from the patch. Katana automatically zeros all new
member variables within structures.

Challenges. Hot patching still faces a number of chal-
lenges, including dealing with multithreaded programs and
address space randomization (which slight changes to the OS
loader can help us overcome). Furthermore, dynamic updates
require some knowledge of the program’s execution state so
that the application is quiescent with respect to the code and
data being altered by Katana as it applies the Patch Object.
We consider the program to be in a safe state if all activation
records are free of functions contained in the PO and all
activition records are free of functions that (1) access any
global or static symbols we identify during Katana’s Data
Traversal stage and (2) do not define any local variables of
modified types identified during our Type Discovery phase.
Katana uses the ptrace interface to pause execution and
query this state.

IV. DISCUSSION

When to apply the patch. Dynamically updating a
running application requires diligence and patience. One
cannot update the target application without any knowledge
of the program’s execution state, by which we mean the
program stack, processor registers etc. Even after possessing
this information, the application has to be in what we call a
“safe state” for Katana to apply the patch. We characterize a
program state as a safe state if the following two conditions
hold:
• All activation frames in the program stack belong to

functions that do not get updated during code patching.
It is easy to verify this by comparing each function on
the stack to the list of upgradeable functions contained
within the PO.

• All activation frames in the program stack belong to
functions that do not access any global/static symbols
identified during Data Traversal, and do not define
any local variables of the modified types identified
during Type Discovery. Again, since we maintain type
and variable definitions within the PO, verifying this
condition is easy.

Given the patch object, Katana uses Linux’s ptrace
interface to temporarily halt the execution of the target
process, query the current execution stack and determine if



the application is currently in a safe state. If so, then Katana
applies the code patch followed by the data patch. We note
that it is not possible to apply the code and data patches
at different times since new code likely uses the new data,
and hence postponing data patching to when only the second
condition is satisfied is impractical and unsafe.

Let A denote be the current activation frame on the
program stack, and the notation (X : Y ) define all frames
from X to Y (on a time scale, X precedes Y ) on the
stack; so (1 : A) defines the current stack. Now, in case
we determine (1 : A) to be an unsafe state, we could
repeatedly keep querying the stack until the application
reaches some safe state. However, this is highly inefficient
and cumbersome.

Instead, when we determine the program to be in an
unsafe state, we traverse up the stack from A, and for each
preceding frame (say A′), we determine if (1 : A′) is a safe
state. This takes into consideration only A′ and all other
frames preceding it. If (1 : A′) is a safe state, then we
insert a breakpoint on the return instruction pointer (EIP)
pointed to by the successive frame: (A′ + 1). What this
guarantees us is that when this breakpoint is hit, the state of
the program stack will be (1 : A′). Since we just determined
this to be a safe state, we can reliably conduct the patching
procedure. If however, no such frames preceding A satisfy
a safe state, then it means that the application cannot be
patched successfully in its current execution since there will
always be a function that violates our safety condition.

Finally we note that even after inserting a breakpoint, the
problem of determining when the breakpoint will be hit is
essentially a hard one, and so in such cases, Katana can
provide no time-bounding guarantees. Still, this is a cleaner
and more efficient approach than just naı̈vely retrying the
full update procedure, which is both an expensive and
incomplete solution.

Address Space Randomization. Load-time address ran-
domization has become a stable and popular way of raising
the bar for attackers, and so we must discuss how it
interacts with our patching scheme. The gist of random-
ization schemes is invalidating various default assumptions
regarding the locations of code and data elements that might
facilitate exploitation. In particular, the virtual addresses
of loadable segments are displaced by random6 offsets by
the loader, which relocates them (using their accompanying
relocation sections).

Patching relocated code with our PO files requires
knowledge of the displacements introduced at loading-and-
relocation time. While there is no common ABI standard for
saving this information, conceptually it is no different from
saving virtual addresses of other files’ loaded symbols in the
Global Offset Table (GOT). We note that the names of the

6In reality, the choice of offset is still limited by the platform’s alignment
requirements.

constituent object files themselves are customarily included
in the symbol tables, and that the symbol table entry format
can be easily adopted for storing virtual addresses of the
relocated objects.

Thus, at the cost of small modifications to the OS loader
and the dynamic linker, we can make the information on the
layout of the “randomly” relocated executable and libraries
available to our patching process driven by our POs.7

Future work. Katana is a work in progress, and must
address several important engineering issues, such as inter-
action of patched code with dynamically loaded libraries (in-
cluding the dlopen mechanism), and assuring that accumu-
lation of administered patches does not lead to unacceptable
performance degradation. It also poses a broader question
of describing and detecting software designs not amenable
to its runtime patching and steering programmers to avoid
them if possible.

V. RELATED WORK

Maintaining continuous availability, even in the absence of
disruptive events like patches, is both a challenging technical
exercise and the driving need for research on dependability,
reliability, and fault tolereance [21].

The work most closely related to Katana focuses on
enabling a software application to continue providing ser-
vice or survive significant events like errors, exploits, and
patches. This body of work includes research on dynamic
kernel updates, software survivability, and software self-
healing. However, other research areas also addressed the
challenge of enabling software to adapt at runtime, e.g., the
area of software evolution (e.g., [18]).

The concept of crash-only software [7] advocates microre-
booting: the procedure of retrofitting each component of a
system with the ability to crash and reboot safely as the
default mode of operation. Despite its appeal as a design
principle, such an approach would be difficult to retrofit to
legacy software. Although restarting a particular service or
application is disruptive enough, rebooting the operating sys-
tem itself multiplies this disruption. The need to avoid that
kind of downtime helped drive the creation of frameworks
like Loadable Kernel Modules for Linux, which allow for
extending the kernel during runtime without a reboot. The
ability to update the running kernel (as opposed to adding or
removing modules) without rebooting was achieved at least
ten years ago [8] and recently rediscovered, albiet mostly
for research, rather than commodity, kernels [14], [4], [17]).
Even so, dynamic updates of the kernel during runtime that
don’t require a reboot are difficult to apply to a commodity

7We note that saving this information about the post-relocation layout of
the process does not weaken “randomization”, because the latter does not
assume the attacker’s ability to arbitrarily read process memory (in which
case the addresses of required symbols are easily found by scanning it for
their code or data patterns), but rather breaks hard-coding of these symbols’
expected addresses.



OS, although several efforts have been successful for the
K42 experimental system [17], [5].

Software self-healing aims at ensuring continuous or
increased availability for systems subjected to exploited vul-
nerabilities, either by automatically generating patches [19],
[15] to gradually harden the application or seeking to avoid
a restart altogether by modifying certain runtime aspects
(e.g., the memory subsystem [12], properties of the execution
environment [11]), or selected control paths [16], [9]) of the
system in response to attacks. One major risk of employing
self-healing in production environments is that the semantics
of follow-on execution remain largely uncontrolled, although
recent work in automatically correcting memory errors [10]
seems to achieve fairly reliable results. Both automated
responses and traditional patches can make it difficult for an
administrator to understand the implications of a particular
fix [13].

VI. CONCLUSION

We introduce a method for hot patching: a technique
we believe to be a promising alternative to redundancy,
ad hoc self–healing techniques, “patch and pray,” or other
approaches to dynamic software updates. Hot patching has
the potential for aligning actual practices with acknowledged
“best practices” relating to critical security or functionality
updates. We hold that one major impediment to hot patching
is the opaque nature of most patches (be it proprietary or
open software), and our method of patching along with the
PO file format are first attempts at providing a basis for
informed reasoning about the structure and implications of
a patch.

REFERENCES

[1] http://pannus.sourceforge.net/.

[2] http://ukai.jp/Software/livepatch/.

[3] J. Arnold and M. F. Kaashoek. Ksplice: Automatic Rebootless
Kernel Updates. In Proceedings of EuroSys, 2009.

[4] A. Baumann, J. Appavoo, R. W. Wisniewski, D. D. Silva,
O. Krieger, and G. Heiser. Reboots Are for Hardware:
Challenges and Solutions to Updating an Operating System
on the Fly. In Proceedings of the USENIX Annual Technical
Conference, June 2007.

[5] A. Baumann, G. Heiser, J. Appovoo, D. D. Silva, O. Krieger,
R. Wisniewski, and J. Kerr. Providing Dynamic Update in
an Operating System. In Proceedings of the USENIX Annual
Technical Conference, pages 279–291, 2005.

[6] A. Brown and D. A. Patterson. Rewind, Repair, Replay:
Three R’s to dependability. In 10th ACM SIGOPS European
Workshop, Saint-Emilion, France, Sept. 2002.

[7] G. Candea and A. Fox. Crash-Only Software. In Proceedings
of the 9th Workshop on Hot Topics in Operating Systems
(HOTOS-IX), May 2003.

[8] S. Cesare. Runtime Kernel kmem Patching, 1998. http://vx.
netlux.org/lib/vsc07.html.

[9] M. E. Locasto, A. Stavrou, G. F. Cretu, and A. D. Keromytis.
From STEM to SEAD: Speculative Execution for Automatic
Defense. In Proceedings of the USENIX Annual Technical
Conference, pages 219–232, June 2007.

[10] G. Novark, E. D. Berger, and B. G. Zorn. Exterminator: Au-
tomatically correcting memory errors with high probability.
Commun. ACM, 51(12):87–95, 2008.

[11] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
Bugs as Allergies – A Safe Method to Survive Software
Failures. In Proceedings of the Symposium on Systems and
Operating Systems Principles (SOSP), 2005.

[12] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and
J. W Beebee. Enhancing Server Availability and Security
Through Failure-Oblivious Computing. In Proceedings 6th

Symposium on Operating Systems Design and Implementation
(OSDI), December 2004.

[13] M. C. Rinard. Technical perspective patching program errors.
Commun. ACM, 51(12):86–86, 2008.

[14] sd. Linux on-the-fly Kernel Patching Without LKM. http:
//doc.bughunter.net/rootkit-backdoor/kernel-patching.html.

[15] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for Software
Services. In Proceedings of the USENIX Annual Technical
Conference, pages 149–161, April 2005.

[16] A. Smirnov and T. Chiueh. DIRA: Automatic Detection,
Identification, and Repair of Control-Hijacking Attacks. In
Proceedings of the 12th Symposium on Network and Dis-
tributed System Security (NDSS), February 2005.

[17] C. A. N. Soules, J. Appavoo, K. Hui, R. W. Wisniewski,
D. da Silva, G. R. Ganger, O. Krieger, M. Simon, M. Aus-
lander, M. Ostrowski, B. Rosenburg, and J. Xenidis. System
Support for Online Reconfiguration. In Proceedings of the
USENIX Annual Technical Conference, pages 141–154, 2003.

[18] A. D. Stefano, G. Pappalardo, and E. Tramontana. An infras-
tructure for runtime evolution of software systems. Computers
and Communications, IEEE Symposium on, 2:1129–1135,
2004.

[19] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest. Auto-
matically Finding Patches Using Genetic Programming. In
International Conference on Software Engineering (ICSE),
2009.

[20] K. Yamato and T. Abe. A Runtime Code Modification Method
for Application Programs. In Proceedings of the Ottawa Linux
Symposium, 2009.

[21] Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d’Amorim,
S. Lauterburg, R. M. Lefever, and J. Tucek. Delta Execution
for Software Reliability. In Proceedings of the Third Work-
shop on Hot Topics in System Dependability (HotDep’07),
June 2007.


