
Trusting Trusted Hardware: Towards a Formal Model for

Programmable Secure Coprocessors �

Sean W. Smith Vernon Austel

Secure Systems and Smart Cards

IBM T.J. Watson Research Center

Yorktown Heights, NY 10598-0704

sean@watson.ibm.com austel@watson.ibm.com

Abstract

Secure coprocessors provide a foundation for many
exciting electronic commerce applications, as previ-
ous work [20, 21] has demonstrated. As our recent
work [6, 13, 14] has explored, building a high-end
secure coprocessor that can be easily programmed
and deployed by a wide range of third parties can
be an important step toward realizing this promise.
But this step requires trusting trusted hardware|
and achieving this trust can be di�cult in the face
of a problem and solution space that can be surpris-
ingly complex and subtle.

Formal methods provide one means to express, ver-
ify, and analyze such solutions (and would be re-
quired for such a solution to be certi�ed at FIPS
140-1 Level 4). This paper discusses our current
e�orts to apply these principles to the architecture
of our secure coprocessor. We present formal state-
ments of the security goals our architecture needs
to provide; we argue for correctness by enumerating
the architectural properties from which these goals
can be proven; we argue for conciseness by showing
how eliminating properties causes the goals to fail;
but we discuss how simpler versions of the architec-
ture can satisfy weaker security goals.

We view this work as the beginning of developing
formal models to address the trust challenges aris-
ing from using trusted hardware for electronic com-
merce.

�The Third USENIX Workshop on Electronic Commerce

Proceedings. To appear, August 1998.

1 Introduction

Motivation and Context Programmable se-
cure coprocessors can be the foundation for many
e-commerce applications, as has been demonstrated
in the laboratory (e.g., Tygar and Yee's seminal
work [20, 21]). To enable real-world deployment
of such applications, our team at IBM has recently
completed a multi-year project to design and build
such a device, that also meets the requirements of
realistic manufacturing and use scenarios [13] (and
which reached market [6] in the fall of 1997). Boot-
strap software that enables secure con�guration and
programmability, while requiring neither on-site se-
curity o�cers nor trusted shipping channels, played
a key part in meeting these requirements. [14]

However, using trusted hardware as a foundation for
real e-commerce applications gives rise to an addi-
tional requirement: validating that trust. Many e-
commerce e�orts cite FIPS 140-1 [11] (even though
this U.S. government standard addresses crypto
modules, not general-purpose secure coprocessors).
Certi�cation to this standard means that the de-
vice passed a suite of speci�c tests [4] administered
by an independent laboratory. Level 4 (the most
stringent level in the standard) requires that secrets
are rendered unavailable in all foreseeable physical
attacks|the standard de�nition of a high-end \se-
cure coprocessor." As of this writing, no device has
ever been certi�ed at that level.

Our team plans to meet this trust requirement by
submitting our hardware for full certi�cation at
FIPS 140-1 Level 4, and (as a research project) car-
rying out the formal modeling and veri�cation that
would be necessary for also certifying the bootstrap
software at Level 4. Besides applying formal meth-
ods to a sizable, implemented system, this project is

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 1

challenging because it applies a standard originally
crafted for cryptographic modules to programmable
secure coprocessors, the
exible platform necessary
for e-commerce applications.

This e�ort involves:

� building a formal model of the con�guration of
a programmable secure coprocessor

� expressing the security requirements in terms
of this model

� translating the bootstrap software and other as-
pects of system behavior into a set of transfor-
mations on this model

� formally verifying that the security properties
are preserved by these transformations

This paper presents our initial plan of attack: trans-
lating into formal methods the goals and require-
ments that guided the implementation of our de-
vice. We have proceeded to carry out this plan,
by building the model, assertions, transformations,
and proofs within the ACL2 [7] mechanical theorem
prover. This work is nearly complete; follow-up re-
ports will detail our experiences with this modeling,
and with the FIPS process.

The Potential of Trusted Hardware The se-
curity of electronic commerce applications requires
that participating computers and storage devices
correctly carry out their tasks. An adversary who
modi�es or clones these devices can undermine the
entire system. However, in many current and pro-
posed electronic commerce scenarios, the adversary
may have physical access to machines whose com-
promise bene�ts him. These threats include insider
attack, attacks on exposed machines, and dishonest
users attacking their own machines.

A secure coprocessor is a general-purpose comput-
ing device with secure memory that is protected
by physical and/or electrical techniques intended
to ensure that all foreseeable physical attack ze-

roizes its contents. Previous work at our labora-
tory [12, 16, 17, 18] explored the potential of build-
ing a coprocessor with a high-end computational
environment and cryptographic accelerators, encap-
sulated in protective membrane and protected by
tamper-response circuitry that senses any physical
changes to this membrane. Subsequent work at

CMU [15, 20] used these prototypes to de�ne and
demonstrate the power of the secure coprocessing
model|achieving broad protocol security by ampli-
fying the security of a device trusted to keep its
secrets despite physical attack. In particular, this
model addresses many security problems in elec-
tronic commerce applications [21].

Building Trusted Hardware In order to move
the secure coprocessing model from the research
laboratory into real-world e-commerce applications,
our group, over the last two years, has been re-
searching, designing, and implementing a mass-
produced high-end secure coprocessor. We needed
to accommodate many constraints:

� A device must detect and respond to all fore-
seeable avenues of tamper.

� We cannot rely on physical inspection to distin-
guish a tampered device from an untampered
device.

� A device must be tamper-protected for life,
from the time it leaves the factory|the �eld
is a hostile environment.

� Nearly all software on the device|including
most bootstrap, and the operating system|
must be remotely replaceable in the �eld with-

out security o�cers, secure couriers, or other

trusted physical channels.

� The di�erent layers of software within any one
device must be controllable by di�erent, mutu-
ally suspicious authorities|so we need to allow
for malicious authorities, as well as Byzantine
failure of fundamental code (such as the OS or
bootstrap).

� Di�erent end-users of the same application (but
on di�erent coprocessors) may not necessarily
trust each other|and possibly may never have
met.

� Nevertheless, an application running on an un-
tampered device must be able to prove, to all
concerned, that it's the real thing, doing the
right thing.

These constraints were driven by the goal of build-
ing a mass-produced tool that enables widespread
development of e-commerce applications on secure
hardware, much as the earlier generation laboratory

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 2

prototypes enabled Tygar and Yee's development
of research proofs-of-concept [21]. Separate reports
discuss the broader problem space [13] and the de-
tails of our solution [14] for the resulting commercial
product [6].

Trusting Trusted Hardware Clearly, a critical
component of such a device is e�ective tamper re-
sponse: physical attack must zeroize the contents of
secure memory, near-instantly and with extremely
high probability. Our protections are based on
always-active circuitry that crowbars memory when
it senses changes to a tamper-detecting membrane,
which is interleaved with tamper-resistant material
to force attacks to a�ect the membrane. As widely
reported (e.g., [1, 2, 19]), designing e�ective tamper-
response techniques and verifying they work can be
tricky; [14] discusses the suite of techniques we use
in our device, currently under independent evalua-
tion against the FIPS 140-1 Level 4 criteria [4, 11].

Other important components include the hardware
and software design that enable fast crypto perfor-
mance, and the software programming environment
that enables applications to easily exploit these abil-
ities.

However, a security architecture must connect these
pieces in order to ensure that the tamper response
actually did any good. Since developing our archi-
tecture required simultaneously addressing several
complex issues, we �nd that presenting this mater-
ial often leads to the same questions:

� \What does a secure coprocessor do?"

� \What is your architecture trying to achieve?"

� \Why does it have so many pieces?"

� \Why should I believe it works?"

� \What if I'm solving a simpler problem, and
can eliminate property X?"

As part of veri�cation of our commercial design, as
well as preparation for future work in secure com-
merce systems, we are currently developing formal
models (based on the formalism which guided the
implementation) in which to frame and answer these
questions. This paper presents some preliminary
results. Section 2 presents English statements of

some of the overall security goals for a program-
mable high-end secure coprocessor. Section 3 re-
�nes these statements in more formal terms. Sec-
tion 4 enumerates the elements of our architecture
that makes these properties hold. Section 5 presents
some arguments for conciseness of design, by show-
ing how eliminating elements of the design causes
these properties to fail. But Section 6 shows how
weakening the security properties can lead to sim-
pler designs.

This paper presents a snapshot of one aspect of the
broader e�orts required to ensure that trusted hard-
ware can be trusted. Section 7 explores some of this
broader picture.

2 English Statements of Security

Goals

2.1 System Components

As noted earlier, a generic secure coprocessor con-
sists of a CPU, secure memory (which may be both
volatile and non-volatile), potentially some addi-
tional non-secure non-volatile memory, and often
some cryptographic accelerators. (See Figure 1.)
All this is packaged in a physical security design
intended to render unavailable the contents of se-
cure memory, upon physical attack. Since exploring
the e�ectiveness of physical tamper response lies be-
yond the scope of this paper, this analysis simply
assumes that the physical tamper response works.
However, we stress that as part of meeting the trust
requirement of trusted hardware, our device's phys-
ical security design is undergoing the extensive in-
dependent tests required by FIPS 140-1 Level 4.

In our design, the non-volatile secure memory
consists of battery-backed static RAM (BBRAM).
Hardware constraints limited the amount of
BBRAM to 8.5 kilobytes; the business goal required
that the device carry within it its own software; and
our security model did not require that this software
be secret1 from adversaries. Consequently, our de-
sign includes a megabyte of FLASH memory2 as the

1Clearly, this design extends to a model where software is

secret, by putting in FLASH a two-part program: one part

uses secrets in BBRAM to verify and decrypt the second part.
2FLASHmemory provides rewritable non-volatile storage;

but rewriting involves a lengthy process of erasing and mod-

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 3

primary code store; this memory is contained with
the secure boundary (so attacks on it should �rst
trigger tamper response) but is not itself zeroized
upon attack.

The constraints we faced caused us to partition the
code-space in FLASH into three layers: a founda-
tional Miniboot 1 layer, an operating system layer,
and an application layer. We refer to a generic layer
as Layer N ; boot-block ROM code is Layer 0, Mini-
boot 0. See Figure 2.

For each device, each of these layers may potentially
be controlled by a di�erent authority. Articulating
and accommodating the nature of this control con-
stituted one of the major challenges of moving our
secure coprocessor from a laboratory prototype to a
real-world device.

� We had to permit the authority to be at a re-
mote site, not where the card is.

� We had to recognize that, potentially, no one
at the card's site may be trustworthy.

� We had to allow di�erent authorities to distrust
each other.

For a particular device, we refer to the party in
charge of the software in Layer N as Authority N .
Each layer includes code, as well as space for a pub-
lic key (of the authority over that layer), and some
additional parameters.

We partition the BBRAM into a region for each
code layer: Page N belongs to Layer N . Given the
multitude of potential owners and the potential fail-
ure properties of FLASH, we also must include some
notion of the status of a code layer at any particu-
lar time: e.g., \unowned," \owned but unreliable,"
\reliable but unrunnable," \runnable."

2.2 Desired Properties

Besides accommodating the constraints dictated by
business and engineering concerns, our device must
make it easy for third party programmers to develop
and deploy applications in the style of [21]. This
led us to articulate some basic goals for our security
architecture.

ifying a sector that is tens of kilobytes long, and can only be

done a relatively small number of times compared to ordinary

RAM.

2.2.1 Control of Software

Suppose A has ownership of a particular software
layer in particular untampered device. Then only
A, or a designated superior, can load code into that
layer in that device|even though the card may be
in a hostile environment, far away from A and her
superiors.

2.2.2 Access to Secrets

The secrets belonging to layer N are accessible only
by code that Authority N trusts, executing on an
untampered device that Authority N trusts, in the
appropriate context.

2.2.3 Authenticated Execution

It must be possible to distinguish remotely between

� a message from a particular layer N with par-
ticular software environment on a particular
untampered device

� a message from a clever adversary

However, the adversary could have access to other
untampered devices, or even to this one, untam-
pered but with a di�erent software environment.

2.2.4 Recoverability

We must be able to recover from arbitrary failure in
any rewritable layer|including the operating sys-
tem and rewritable Miniboot.

These failures include:

� the layer contents themselves become scram-
bled

� the program in that layer behaves with arbi-
trary evil intent

Furthermore, for this recovery to be meaningful, we
must be able to con�rm that the recovery has taken
place.

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 4

External Interface

Physical Security Boundary

Secure Memory

CPU FLASH, ROM Crypto
Support

Non−Volatile Volatile

SECRETS
KEYS
SOFTWARE

SOFTWARE
WORKING
DATA

Figure 1: High-level sketch of our secure coprocessor.

External Interface

Secure Memory
FLASH, ROM Volatile

Layer 0
Layer 1

Layer 2

Layer 3

Page 0
Page 1

Page 2

Page 3

Authority 0

Authority 1

an Authority 2

another
Authority 2

another
Authority 3

an Authority 3

a different
Authority 3

Figure 2: Each code layer has its own subset of BBRAM, and is potentially controlled by a di�erent
authority. But di�erent devices may have di�erent authority sets, and the set for any one device may
change over time.

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 5

2.2.5 Fault Tolerance

Interruption of execution at any point will not leave
the device in a condition that violates the above.

2.3 Justi�cation

Although driven by our particular design con-
straints, these goals might arguably apply to any
general-purpose secure coprocessor intended for
third party use, and that is rich enough to require
code maintenance.

� (Section 2.2.1) A party who deploys an e-
commerce application on such a device wants to
be sure that others cannot alter his code. Oth-
erwise, the application can be subverted by an
adversary \updating" the program to include a
backdoor or Trojan horse.

� (Section 2.2.2) The coprocessor must really pro-
vide a trusted environment to safely store ap-
plication secrets. For example, an adversarial
application should not be be able to copy or
use secret keys, or modify the balance in an
e-wallet.

� (Section 2.2.3) It must be possible for a partic-
ipant in a coprocessor-based e-commerce appli-
cation to verify that they are interacting with
the correct software on an untampered device.
Failure of either of these conditions leaves even
basic coprocessor applications, such as crypto-
graphic accelerators, open to attack (e.g., [22]).

� (Section 2.2.4) Failures and interruptions
should leave us with at least a safe state, if
not a recoverable one; otherwise, an adversary
can be expected to cause the necessary failures
and interruptions. The cost of the device, and
the inevitability of errors in complex software,
stress recovery fromByzantine action by loaded
software.

Although arguable necessary, whether this set of
properties is su�cient is an interesting avenue for
further exploration.

3 Formal Statements of Security
Goals

3.1 Model Components

Formalizing these English statements requires intro-
ducing some terms.

Layer N , Authority N , and Page N were already
introduced in Section 2.1.

The system con�guration consists of a tuple of the
relevant properties, including:

� a vector of conditions for each layer: its sta-
tus, owner, code contents, and BBRAM page
contents

� whether or not the device has been tampered.

� what other hardware failures may have oc-
curred (e.g., does the DRAM scratch area still
work?)

We use standard notation �NC to denote the Layer
N component of a con�guration C.

We organize the possible values of these layer com-
ponents into a natural partial order. For any A,
\owned by A but unreliable" dominates "unowned."
For any A and P , \owned by A with reliable and
runnable contents P" dominates \owned by A with
reliable but unrunnable contents P ," which in turn
dominates \owned by A but unreliable."

For each BBRAM page, we need some notion of
\initial contents."

For a runnable program at layer N , the software

environment of N in con�guration C consists of the
programs and status of the components �KC for 0 �
K � N . We denote this by ENVNC. Our intention
here is that the correct and secure execution of the
layer N code on an untampered device depends only
on the correct and secure execution of the code in
its software environment.

Initial State. In our design, devices are initial-

ized at the factory and left in a con�guration where
only Layers 0 and 1 are installed, and each of these
has a self-generated random secret in its BBRAM

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 6

page, with a corresponding certi�cate stored in the
FLASH layer. For Layer 1, this is just an RSA key-
pair, with public key signed by the Factory Certi�-
cate Authority (CA); for Layer 0 (which, as ROM,
does not contain public-key code), this consists of
a set of DES keys, and a certi�cate consisting of
the encryption and signature of these keys by the
privileged Authority 0.

Transitions. The con�guration of a device can
change due to several potential causes:

� explicit con�guration-changing
commands, which (in our design) are carried
out by the Miniboot layers;

� failures of hardware components, BBRAM and
FLASH (discussed further in Section 3.2.5 be-
low)

� tamper events

� ordinary operation of the device, and execution
of the code layers.

We model this notion by de�ning the set of valid
transitions on con�gurations, following the above
causes. A valid con�guration is one that can be
reached from a valid initial con�guration by a se-
quence of zero or more valid transitions. We fre-
quently discuss a sequence of con�gurations C0::::
with C0 being some particular valid con�guration
and with each Ci+1 reachable from Ci by a valid
transition.

Tamper. With our earlier assumption that the
physical tamper response actually works, perhaps
the most natural characterization of tamper is \the
device doesn't have its secrets any more." How-
ever, this characterization of the e�ect of tamper-
response on secrets overlooks some critical issues:

� The device's secrets may have been copied o�-
card before tamper, due to exploitation of some
error in memory management, and be restored
later. (For example, the OS might have a bug
that permits a hostile application to download
the entire contents of secure memory.)

� The secrets belonging to another device may
be loaded into this one, after tamper.

� The device's secrets may still be present after
tamper, perhaps due a malicious code-loading
command that tricked the device into thinking
that the secret storage area contained the new
code to be burned into FLASH.

As far as secrets go, the only thing we can say
for certain is that a tamper event transforms the
device con�guration by destroying the contents of
BBRAM. Immediately after the event, the secrets
are no longer in that location.

However, the potential for tamper caused further
headaches for formal analysis. The possible con-
�guration transformations for a device are gov-
erned by its current code layers, and the physi-
cal construction of the device. (Indeed, it is the
physical construction which causes the tamper re-
sponse to occur.) Physical tamper can change these
properties|and thus arbitrarily change the possible
transformations and behaviors after tamper.

Clearly, reasoning about whether a remote party
can authenticate an untampered device requires rea-
soning about tamper. However, our initial work
also found it necessary to include \untamperedness"
as an assumption for many other properties|since
without it, no memory restrictions or other useful
behaviors can hold with any certainty. This is the
reason we ended up including \memory of being
tampered" as an explicit element in the system con-
�guration: to distinguish traces that have ventured
into this terrain, from traces that have remained
safe.

Authentication. We need to consider scenarios
where needs to determine whether a particular mes-
sage M came from a particular A, or from someone
else, and we consider authentication schemes based
on some secret possessed by A.

For such secret-based schemes, we de�ne the nec-

essary trust set to consist of those parties who, if
they abuse or distribute their secrets, can make it
impossible for B to make this distinction. For exam-
ple, in a standard public-key scheme with a single
CA, the necessary trust set would include both A,
as well as the root CA. (In a scheme with multiple
certi�cate authorities, the trust set would include
the intermediate certi�cate authorities as well.)

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 7

3.2 Goals

We now attempt to express the goals of Section 2
more formally. (Recall that Section 3.1 discussed
the initial conditions of the device.)

3.2.1 Control of Software

Formal Statement Suppose:

� an untampered device is in valid con�guration
C

� N � 0

� AUTH be the set of authorities over �KC, for
0 � K � N .

� a sequence of valid transitions takes C to some
C0, where the device is still untampered

If �kC0 does not precede or equal �kC in the layer
partial order, then:

� at least one transition in the sequence from C

to C0 was caused by a con�guration-changing
command

� at least the �rst such command in this sequence
required knowledge of a secret belonging to a
member of AUTH

English An authority must be able to control his
layer, and (under appropriate conditions) a superior
authority should be able to repair that layer.

However, we also need to recognize the fact that
failures of hardware or \trust invariants" also a�ect
a layer's con�guration, even without the action of
any of these authorities.

The formal statement above attempts to express
that one's layer can be demoted, due to failure or
other reasons, but any change that otherwise mod-
i�es the contents must be traceable to an action|
now or later|by some current Authority K � N .

3.2.2 Access to Secrets

Formal Statement Suppose:

� A is the authority over a layer N in some un-
tampered device in valid con�guration C0

� In �NC0, Page N has its initial contents, but
no program in ENVNC0 has yet executed since
these contents have been initialized.

� TA is the set of software environments for N
that A trusts.

Let C0; :::; Ci; ::: be a valid sequence of con�gura-
tions, and let Ck be the �rst in this sequence such
that one of the following is true:

� The device is tampered in Ck

� Some �MCk, for M � N , is not runnable

� ENVNCk 62 TA

Then:

� The contents of Page N are destroyed or re-
turned to their initial state in Ck.

� For all 0 � i < k, only the programs in
ENVNCi can directly access page N .

English This formal statement expresses that
once an authority's program establishes secrets,
the device maintains them only while the support-
ing environment is trusted by that authority|and
even during this period, protects them from lower-
privileged layers.

The overall motivation here is that authority A

should be able to trust that any future from con�g-
uration C0 is safe, without trusting anything more
than ENVNC0|his environment right now.

In particular, we should permit A to regard any of
the following to cause ENVN to stop being trust-
worthy:

� Some Ci to Ci+1 transition might include a
change to the code in layer K < N , which A

does not trust. (Your parent might do some-
thing you don't trust.)

� Some �KCi, for K > N and i � 0, might try
to attack layer N . (Your child might be try to
usurp your secrets.)

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 8

� Some other authority in any Ci, i � 0, might
behave clumsily or maliciously with his or her
private key|e.g., to try to change what the
device believes is A's public key. (Your parent
might try to usurp your authority.)

3.2.3 Authenticated Execution

Formal Statement Suppose Bob receives a mes-
sage M allegedly from layer N on an untampered
device with a particular ENVNCk, for valid con�g-
uration Ck.

Then Bob can determine whetherM came from this
program in this environment, or from some adver-
sary, with a necessary trust set as small as possible.

In particular, Bob should be able to correctly au-
thenticate M , despite potential adversarial control
of any of these:

� new code in any layer in Cj, for j > k;

� code in any layer in some alternate con�gura-
tion C0 that follows from some Cj via a se-
quence of valid transformations, one of which
is tamper;

� code in any layer L > N in Ck;

� old code in any layer L > 1 in Cj for j < k.

English This formal statement basically restates
Section 2.2.3, while acknowledging that a clever ad-
versary might load new code into the device, includ-
ing new bootstrap code, or control code already in
a lower-privileged layer in that device, or have con-
trolled code that used to be even in layer N , but
has since been replaced.

3.2.4 Recoverability

Formal Statement Suppose:

� an untampered device is in con�guration C

� N > 0,

� AUTH is the set of authorities for 0 to N � 1
in C.

� �0C through �N�1C are runnable

� �NC is arbitrary (and may have attempted
to cause unauthorized con�guration changes
through its execution)

� PN speci�es proposed new contents for layer N .

Then there exists a sequence of con�guration-
changing commands, from the members of AUTH,
that takes C to C0 where

� �kC = �kC
0, for 0 � k < N

� �NC = PN .

� the device is still untampered in C0

� the members of AUTH can verify that these
properties of C0 hold

English The formal statement basically says that,
if layer N is bad but the higher-privileged layers
are good, then the authorities over these layers can
repair layer N .

The �nal condition expresses a necessary but often-
overlooked aspect of code-downloading: the ability
to repair a device in a hostile environment is often
not meaningful, unless one authenticate that the re-
pair actually took place. Did the new code ever get
there? (Any secret used to authenticate this fact
must not be accessible to the faulty code.)

3.2.5 Fault Tolerance

The above statements asserted properties of untam-
pered devices in a con�guration reachable from an
initial con�guration via a sequence of valid transfor-
mations.

To achieve the real-world goal of fault tolerance, it
is important that our model be as complete as pos-
sible: these transformations must include not just
con�guration-changing commands and ordinary op-
eration, but also:

� improperly formatted but authentic commands

� early termination of command processing

� as many \hardware failures" (e.g., FLASH stor-
age failures) as possible

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 9

Unlike the other desired property, this goal is best
expressed as a meta-statement: the other properties
hold, even when the model is expanded to cover
these conditions.

However, in the process of carrying out the plan out-
lined in this paper, we discovered that this require-
ment leads to quite a few subtleties. For example,
we did easily extend our initial formal model to ex-
press abnormal termination, but we found it inad-
equate to address improper formatting. (These is-
sues are potentially amenable to formal models, but
not with the level of abstraction we chose.) Conse-
quently, we resorted to a separate, systematic code
analysis to address improper formatting.

3.3 Independence

The initial statements of Section 2 came almost di-
rectly from engineering requirements. We note how-
ever that, now rendered more formally, the goals
appear to remain independent.

For example, \Control of Software" does not imply
\Recoverability." A scheme where software could
never change, or where software could only change
if the public key of that layer's owner was contained
in the FLASH segment, would satisfy the former but
not the latter.

Conversely, a scheme where any layer owner could
change layer N establishes that \Recoverability"
does not imply \Control of Software."

This remains an area for further investigation, par-
ticularly with the mechanical theorem prover. Ex-
ploring whether this set of necessary properties
could be expressed in a smaller, more concise form
could be an interesting problem.

4 Correctness

In the previous section, we attempted to render
statements of the important security properties in
more formal terms. In this section, we now try to
examine the assumptions and proof strategies that
can verify that the architecture meets these goals.

4.1 Architecture Components

Examining why our architecture might achieve its
goals �rst requires articulating some common pre-
liminary subgoals.

4.1.1 Boot Sequence

Reasoning about the run-time behavior of the device
requires addressing the issue of who is doing what,
when.

Our architecture addresses this problem linking
device-reset to a hardware ratchet :

� a ratchet circuit, independent of the mainCPU,
tracks a \ratchet value" ratchet

� hardware ensures that the reset signal forces
CPU execution to begin in Miniboot 0 boot-
block ROM, and forces ratchet to zero.

� software on the CPU can increment the ratchet
at any point, but only reset can bring it back
to zero.

The intention is that each layer N advances the
ratchet to N + 1 before �rst passing control or in-
voking layer N + 1; the ratchet then controls access
control of code to critical resources.

We model this by introducing an execution set of
programs that have had control or have been in-
voked since reset. Hardware reset forces the exe-
cution set to empty; invocation or passing control
adds a program to the set.

4.1.2 Hardware Locks

Who does the hardware permit to access critical
memory?

For purposes of this paper, we simplify the behavior
of the ratchet to restrict access only to FLASH and
BBRAM, according to the following policy:

� The protected FLASH segments can only be
written when ratchet � 1.

� Page N in BBRAM can be read or written only
when ratchet � N .

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 10

We stress this is enforced by hardware: the CPU is
free to issue a forbidden request, but the memory
device will never see it.

4.1.3 Key Management

How does the outside world know it's hearing from
a real device?

As noted earlier, Miniboot 1 generates a keypair
during factory initialization; the private key is re-
tained in Page 1 and the public key is certi�ed by
the factory CA. Miniboot 1 can also regenerate its
keypair, certifying the new public key with the old
private key. In our design, Miniboot 1 generates a
keypair for use by Layer 2; the private key is left
in Page 2, the public key is certi�ed by Miniboot 1,
and the keypair is regenerated each time Layer 2 is
altered. Lacking public key code, Miniboot 0 pos-
sesses a set of random DES keys used for mutual
secret-key authentication with Authority 0.

Section 4.2.3 and Section 5.2 below discuss this in
more detail, as does the architecture report [14].

Both the BBRAM and the FLASH locks play a crit-
ical role in this solution: the BBRAM locks ensure
that the secrets are accessible only by the right lay-
ers, and the FLASH locks ensure that the right lay-
ers are what we thought they were.

4.1.4 Authentication Actually Works

How does the device know it's hearing from the right
party in the outside world?

Our design addresses this problem by having each
Authority N (N � 1) generate an RSA keypair and
use the private key to sign commands; Miniboot 1
veri�es signatures against the public key currently
stored in Layer N . (With no public-key code in
Miniboot 0, Authority 0 uses secret-key authentica-
tion.)

However, reasoning that \Miniboot accepted au-
thenticated command from Authority N" implies
\Authority N signed that command" requires many
additional assumptions:

� the intractability assumption underlying cryp-
tography are true;

� keys are really generated randomly;

� the authorized owner of a private key actually
keeps it secret;

� Miniboot 0 does not leak its secret keys; and

� Miniboot correctly carries out the crypto-
graphic protocols and algorithms.

4.1.5 Code Actually Works

Throughout this work (such as in the last item in
the previous section), we continually need to make
assertions about \the code actually works."

For example:

� reasoning about the identity of ENVN in some
con�guration C requires assuming that the
code in previous con�gurations correctly fol-
lowed the policy of updating code layers;

� reasoning about the behavior of ENVN in some
con�guration requires assuming that ENVN�1

correctly evaluated and responded to hard-
ware failures and other status changes a�ecting
Layer N , and actually passes control to Layer
N when appropriate;

� asserting that only ENVN can access Page N
requires not just the BBRAM locks, but also
the assumption that each Layer K < N cor-
rectly incremented the ratchet (as well as the
assumption that ENVN is and does what we
thought)

Proving these assertions will require careful mutual
induction: e.g., establishing that code layers change
only through the action of Miniboot requires �rst es-
tablishing that Miniboot hasn't changed in an unau-
thorized way.

Given the fact that Miniboot 1 itself can change,
this means that most trust assertions about the ar-
chitecture will follow the schema \believing X is
true for the system, from now on, requires believing
that Miniboot does Y right now."

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 11

4.2 Assumptions for Goals

4.2.1 Control of Software

Establishing that the architecture achieves the
\Control of Software" goal requires establishing,
as noted above, that only Miniboot, executing as
Miniboot can change the FLASH code layers; that
authentication of commands works correctly; and
then tracing through the possible transformations
to show that:

� demotion of status can occur via failure re-
sponse;

� any other transition requires an authenticated
command; and

� the authority issuing this command must have
been in the authority set at C.

4.2.2 Access to Secrets

Establishing that the architecture achieves the \Ac-
cess to Secrets" goal requires the lemma, noted in
Section 4.1.5 above, that only ENVNC can access
Page N in an untampered device, and then show-
ing that all con�guration transitions preserve the
invariant:

If Ci di�ers from Ci�1 for at least one of
the following reasons:

� the device is tampered

� ENVNCi stopped being fully
runnable

� ENVNCi 62 TA

then Ci also di�ers in that the contents of
Page N are cleared or returned to initial
state.

(Departure from TA is, from Layer N 's perspective,
essentially equivalent to tamper.)

Enforcing this invariant requires developing some
reasonable way that the device can determine
whether or not a new con�guration is still a mem-
ber of TA. We adopted some simple trust parameter
schemes to characterize the detectable TA, then fur-
ther reduce this detectable set by requiring that

� the device itself must be able to con�rm that a
new ENVN 2 TA

� by directly verifying its signature against a re-
liable public key currently in Layer N

� before the change occurs

The fact that this invariant is enforced by Miniboot
code that is itself part of ENVN , and subject to
untrusted change, complicates this implementation.
If the Ck transition involved the loading of an un-
trusted Miniboot, we ensure that trusted Miniboot
code currently part ofENVNCk�1 ensures that Page
N secrets are erased before the transition succeeds.
The fact that, if A does not trust a new Miniboot in
Ck, it cannot trust Miniboot to correctly carry out
authentication in Ck and the future, leads to some
additional protocol considerations.

4.2.3 Authenticated Execution

Basically, our scheme (Section 4.1.3) binds a pub-
lic key to certain software environment, and then
con�nes the private key to that environment.

Suppose Bob is trying to authenticate a message
from layer N , in Ck. For simplicity, let suppose
0 � N � 2. (The argument extends to the 3-layer
schemes discussed in [14].)

The hierarchical nature of code layers, coupled with
the fact that each layer N > 0 is replaceable, gives
a two-dimensional history of code changes. We
can extract this history from the con�guration se-
quence C0; :::Ci::: undergone by an untampered de-
vice: each �NCi depends on �N�1Ci, and is suc-
ceeded by �NCi+1.

These two dimensions create two dimensions for
spoo�ng: in one axis, some �jCk might have sent
the message, for j 6= N ; in the other, some
�NCj might have sent the message, for ENVNCj 6=
ENVNCk.

If N = 0, the preliminary subgoal that only ENVN
sees Page N gives the result|with Bob's necessary
trust set consisting of Miniboot 0, �1C0 (since Mini-
boot 1 at the factory participates in initialization)
and the Authority 0/Factory CA.

If N = 1, the preliminary subgoal coupled with
the regeneration policy, gives the result|with Bob's

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 12

necessary trust set consisting of Miniboot 0, the Fac-
tory CA, and each version of Miniboot 1 from �1C0
up to �1Ck. (The fact that any code-changing ac-
tion of Authority 0 requires repeating factory certi-
�cation removes Authority 0 from this set).

If N = 2, the preliminary subgoal along with the
layer 2 key policy gives the result|with Bob's nec-
essary trust set consisting of the N = 1 set, along
with �2Ck.

This necessary trust set for N = 1; 2 is arguably
minimal:

� a secret-based scheme forces the factory CA,
and �1C0 (the on-card code that participates
in initialization) to be in the set;

� �NCk must be in the set

� the on-card components in the set must be
\connected": some certi�cation path must ex-
ist from the initializer �1C0 to �NCk

� from hierarchical dependence, the set must be
\bottom-closed": if �jCi is in the set, then so
must be �j�1Ci.

4.2.4 Recoverability

Establishing Recoverability follows from the sub-
goals that only ENVN�1 sees Page N � 1, that
only Miniboot changes layers, that permanent Mini-
boot 0 can correctly replace Miniboot 1 when ap-
propriate, and that the boot sequence always gives
Miniboot a chance to authenticate commands. Con-
�rming a successful change follows from the Authen-
ticated Execution property, for Miniboot.

4.2.5 Fault Tolerance

Establishing that the architecture meets the Fault
Tolerance goal follows from careful code design.
Code that already works tests for (and responds to)
hardware failures. Con�guration transitions need
to be structured so that, despite interruptions and
other failures, the device is left in a clean, pre-
dictable state.

However, various constraints forced our design to
depart from standard atomicity|a change fails
completely or succeeds completely|in a few subtle
ways.

First, hardware constraints permit us to have re-
dundant FLASH areas only for Layer 1|so reburns
of Layer 2 or 3 force the device �rst to erase the
entire Layer, then reburn it. We handle such de-
structive transitions by implementing a sequence of
two transitions, each of which is atomic. The inter-
mediate failure state is taken to a safe state by the
transformation performed by clean-up at the next
boot.

Second, some failures can leave the device in a fairly
odd state, that requires clean-up by execution of
code. We handle these situations by having Mini-
boot 0 in ROM enforce these clean-up rules, and
using the boot sequence subgoal to argue that this
clean-up happens before anyone else has a chance
to perceive the troubled state. This complicates the
formal analysis: atomicity of con�guration change
does not happen to device con�gurations as they

exist in real time, but device con�gurations as they
can be perceived .

Our design permits the code authorities to specify
what family of untampered devices (and with what
software environments) should accept a particular
code-loading command. These target features pro-
vide the hooks for authorities to enforce the serializ-
ability and compatibility rules they �nd important.

5 Conciseness

We argue for conciseness of design by considering
two aspects: code loading, and authenticated exe-
cution.

5.1 Code Loading

Our code-loading involves the \Control of Soft-
ware," \Access to Secrets" and \Recoverability"
goals.

The correctness of our scheme follows from a num-
ber of items, include the ratchet locks on FLASH,
the ratchet locks on BBRAM, and the trust parame-
ters for what happens to Page N when something
in ENVN is changed.

If our scheme omitted FLASH locks, then we could
no longer be sure what layer code is carrying out

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 13

code changes, and what's in the contents of the code
layer that is supposed to be evaluating and carrying
out the changes.

If our scheme omitted BBRAM locks, then we would
not be able to authenticate whether a change has
actually occurred|so, for example, we could never
recover from a memory-manager vulnerability in a
deployed operating system.

If our scheme forced all code changes to erase all

BBRAM, then we would lose the ability to authen-
ticate an untampered device while also performing
updates remotely in a hostile �eld|since the de-
vice, after the code change, would not be able to
prove that it was the same untampered device that
existed before the change, one would have to rely
on the testimony of the code-loader.

If we did not treat untrusted changes to Miniboot 1
di�erently from the other layers, then we would
force authorities to be in the inconsistent situation
of relying on code they no longer trust to correctly
evaluate statements about what they do or do not
trust.

5.2 Authenticated Execution

Our outgoing authentication scheme (Section 4.1.3)
forces recipients of a message allegedly from some
untampered �NCk to trust ENVNCk, �iC1 (for 0 �
i � k), and the Factory CA. But, as noted earlier,
this trust set is arguably minimal: and if any party
in this set published or abused its secret keys, then,
with this standard PKI approach to authentication
the recipient could never ascertain whether or not
the message came from �NCk.

If the device Page 1 keypair was not regenerated as
an atomic part of Miniboot 1 reloads, then it would
be possible for new code in �1Ck+1 to forge this
message. Regeneration protects against attack by
future, evil versions of Miniboot 1.

If we did not have a separate keypair for Layer 2,
then we'd either have the ine�ciency of forcing
Layer 2 to reboot the device in order to get a sig-
nature (and have Miniboot 1 carefully format what
it signs on behalf of Layer 2), or leave the private
key outside of Page 1 and have the vulnerability of
�2Ck forging messages from �1Ck.

If we did not regenerate the Layer 2 key with each
ENV2 change, then we'd permit �2Ck+1 and �2Ck�1
to forge messages from �2Ck. (For one example,
suppose Authority 2 releases a new operating sys-
tem to �x a known hole in the old one. Even though
the �xed version should retain other operational se-
crets, not forcing a change of the keypair permits
the buggy version to impersonate the �xed version.
Conversely, if Authority 2 mistakenly introduces a
hole with a new version, not forcing a change of the
keypair permits the new version to impersonate the
old.)

If we did not have the BBRAM locks, then �jCk
could forge messages from �NCk for general j > N .
If we did not have the FLASH locks, then any �jCi
for 0 � i � k might be forging this message.

6 Simpli�cations

We developed our security architecture to support a
secure coprocessor with a speci�c set of constraints.
However, the
exibility and security goals for our
\high-end" product forced us (for the most part)
into a di�cult situation. (Our one \easy way out"
was the freedom not to spontaneously load arbi-
trary, mutually suspicious peer applications.)

To put it succinctly, our design is an arguably mini-
mal solution to an arguably pessimal problem. Sim-
plifying the problem can certainly simplify the so-
lution. For example:

� Forcing any con�guration change to ENVN to
kill Page N|except for the outgoing authenti-
cation keys|would simplify enforcement of Ac-
cess to Secrets.

� Only allowing for one code authority|or for a
family of mutually trusting authorities|would
simplify authentication and trust.

� If we assume the OS will never have any mem-
ory access vulnerabilities, then we could elim-
inate FLASH locks and BBRAM locks: mem-
ory management would be enforced by code we
trusted.

� If Miniboot, and possibly the OS, were never
to be changed, then the key management and
secret-access schemes can be greatly simpli�ed.

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 14

We anticipate that many of these simpli�cations
may arise if this architecture were mapped to a
smaller device, such as a next-generation smart
card.

7 Related and Future Work

Much previous and current work (e.g., [3, 7, 9]) ex-
plores the use of formalmethods as tools to examine
the basic question of: does the design work? Many
recent e�orts (e.g., [5, 8, 10]) apply automated tools
speci�cally to electronic commerce protocols.

As noted earlier, this paper reports our initial strat-
egy for formal veri�cation of our existing implemen-
tation of an e-commerce tool. Having re�ned the
design goals into statements about a formal model,
the next step is to express and verify these prop-
erties with a mechanical veri�cation tool|and to,
in accordance with FIPS 140-1 Level 4, rigorously
document how the model and transformation sys-
tem correspond to the actual device and its code.
This work is underway, as is independent veri�ca-
tion of the physical security of our device.

However, we have found that convincing users that
our trusted hardware can indeed be trusted also re-
quires addressing additional issues. For example:

� Does the implementation match the design?

History clearly shows that \secure" software is
fraught with unintended vulnerabilities. In our
work, we address this with several techniques:

{ evaluation by independent laboratories
(e.g., as part of FIPS certi�cation)

{ continual consultation and evaluation by
in-house penetration specialists

{ following general principles of careful cod-
ing design such as clearing the stack, and
safely tolerating input that is deranged
(e.g., negative o�sets) even if authenti-
cated

� Does the product, when purchased, match the

implementation? Our policy of \tamper-
protection for life" protects the device when it
leaves the factory; we have procedures in place
to address potential attack before that point.

The existence of
exible, powerful and trusted se-
cure coprocessors can help secure computation in
untrusted environments. This research is one part
of our group's broader e�orts to achieve this security
by making these tools available.

Acknowledgments

The authors gratefully acknowledge the contribu-
tions of entire Watson development team, includ-
ing Dave Baukus, Suresh Chari, Joan Dyer, Gideon
Eisenstadter, Bob Gezelter, Juan Gonzalez, Je�
Kravitz, Mark Lindemann, Joe McArthur, Dennis
Nagel, Elaine Palmer, Ron Perez, Pankaj Rohatgi,
David Toll, Steve Weingart, and Bennet Yee; the
IBM Global Security Analysis Lab at Watson, and
the IBM development teams in Vimercate, Char-
lotte, and Poughkeepsie.

We also wish to thank Ran Canetti, Michel Hack,
Matthias Kaiserswerth, Mike Matyas, and the ref-
erees for their helpful advice, and Bill Arnold, Liam
Comerford, Doug Tygar, Steve White, and Bennet
Yee for their inspirational pioneering work.

Availability

Hardware Our secure coprocessor exists as the
IBM 4758, a commercially available PCI card. (Ad-
ditional research prototypes exist in in PCMCIA
format.)

Software Toolkits exist for independent parties to
develop, experiment with, and deploy their own ap-
plications on this platform. In addition, application
software available from IBM transforms the box into
a cryptographic accelerator.

Data More information|including development
manuals|is available on the Web:

www.ibm.com/security/cryptocards/

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 15

References

[1] R. Anderson, M. Kuhn. \Tamper Resistance|A
Cautionary Note." The Second USENIX Workshop

on Electronic Commerce. November 1996.

[2] R. Anderson, M. Kuhn. Low Cost Attacks on Tam-

per Resistant Devices. Preprint. 1997.

[3] E. M. Clarke and J. M. Wing. \Formal Methods:
State of the Art and Future Directions." ACM

Computing Surveys. 28: 626-643. December 1996.

[4] W. Havener, R. Medlock, R. Mitchell, R. Walcott.
Derived Test Requirements for FIPS PUB 140-1.

National Institute of Standards and Technology.
March 1995.

[5] N. Heintze, J. D. Tygar, J. M. Wing, H. C.
Wong. \Model Checking Electronic Commerce Pro-
tocols." The Second USENIX Workshop on Elec-

tronic Commerce. November 1996.

[6] IBM PCI Cryptographic Coprocessor. Product
Brochure G325-1118. August 1997.

[7] M. Kaufmann and J. S. Moore. \An Industrial
Strength Theorem Prover for a Logic Based on
Common Lisp." IEEE Transactions on Software

Engineering. 23, No. 4. April 1997.

[8] D. Kindred and J.M. Wing. \Fast, Automatic
Checking of Security Protocols." The Second

USENIX Workshop on Electronic Commerce. No-
vember 1996.

[9] C. Meadows. \Language Generation and Veri�ca-
tion in the NRL Protocol Analyzer." Proceedings of
the 9th Computer Security Foundations Workshop.

1996.

[10] C. Meadows and P. Syverson. \A Formal Speci�ca-
tion of Requirements for Payment Transactions in
the SET Protocol." Proceedings of the Second In-

ternational Conference on Financial Cryptography.

Springer-Verlag LNCS. To appear, 1998.

[11] National Institute of Standards and Technology.
Security Requirements for Cryptographic Modules.

Federal Information Processing Standards Publica-
tion 140-1, 1994.

[12] E. R. Palmer. An Introduction to Citadel|A Se-

cure Crypto Coprocessor for Workstations. Com-
puter Science Research Report RC 18373, IBM T.
J. Watson Research Center. September 1992.

[13] S. W. Smith, E. R. Palmer, S. H. Weingart. \Us-
ing a High-Performance, Programmable Secure Co-
processor." Proceedings of the Second International
Conference on Financial Cryptography. Springer-
Verlag LNCS. To appear, 1998.

[14] S. W. Smith, S. H. Weingart. Building a High-

Performance, Programmable Secure Coprocessor.

Resarch Report RC21102. IBM T.J. Watson Re-
search Center. February 1998. (A preliminary ver-
sion is available as Resarch Report RC21045.)

[15] J. D. Tygar and B. S. Yee. \Dyad: A System for
Using Physically Secure Coprocessors." Proceedings
of the Joint Harvard-MIT Workshop on Techno-

logical Strategies for the Protection of Intellectual

Property in the Network Multimedia Environment.

April 1993.

[16] S. H. Weingart. \Physical Security for the �ABYSS
System." IEEE Computer Society Conference on

Security and Privacy. 1987.

[17] S. R. White, L. D. Comerford. \ABYSS: A Trusted
Architecture for Software Protection." IEEE Com-

puter Society Conference on Security and Privacy.

1987.

[18] S. R. White, S. H. Weingart, W. C. Arnold and
E. R. Palmer. Introduction to the Citadel Architec-

ture: Security in Physically Exposed Environments.

Technical Report RC 16672, Distributed Systems
Security Group. IBM T. J. Watson Research Cen-
ter. March 1991.

[19] S. H. Weingart, S. R. White, W. C. Arnold, and G.
P. Double. \An Evaluation System for the Physi-
cal Security of Computing Systems." Sixth Annual
Computer Security Applications Conference. 1990.

[20] B. S. Yee. Using Secure Coprocessors. Ph.D. thesis.
Computer Science Technical Report CMU-CS-94-
149, Carnegie Mellon University. May 1994.

[21] B. S. Yee, J. D. Tygar. \Secure Coprocessors
in Electronic Commerce Applications." The First

USENIX Workshop on Electronic Commerce. July
1995.

[22] A. Young and M. Yung. \The Dark Side of Black-
Box Cryptography|or|should we trust Cap-
stone?" CRYPTO 1996. LNCS 1109.

Appeared at the 3rd USENIX Workshop on Electronic Commerce, Aug 1998. 16

