
“Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata

Rebecca Shapiro
Dartmouth College

Sergey Bratus
Dartmouth College

Sean W. Smith
Dartmouth College

Abstract
Although software exploitation historically started as an
exercise in coaxing the target’s execution into attacker-
supplied binary shellcode, it soon became a practical
study in pushing the limits of unexpected computation
that could be caused by crafted data not containing any
native code. We show how the ABI metadata that drives
the creation of a process’ runtime can also drive arbitrary
computation. We introduce our design and implemen-
tation of Cobbler, a proof-of-concept toolkit capable of
compiling a Turing-complete language into well-formed
ELF executable metadata that get “executed” by the run-
time loader (RTLD). Our proof-of-concept toolkit high-
lights how important it is that defenders expand their fo-
cus beyond the code and data sections of untrusted bina-
ries, both in static analysis and in the dynamic analysis
of the early runtime setup stages as well as any time the
RTLD is invoked.

1 Introduction

The great threat model change. This last decade saw
a major change in the underlying threat model of ap-
plied security research: the change from the “malicious
code” model (where the attacker slips a native code pay-
load/shellcode into the target system and tricks the target
into passing control into it) to “malicious computation”
driven merely by attacker-crafted data with no native
code payloads (see, e.g., discussion in [23]). This new
attack model not only highlighted the ineffectiveness of
defensive mechanisms that attempted to detect and block
“malicious code” in system’s inputs or communications,
but also helped clarify the core essence of exploitation:
unexpected computation in the target, caused by crafted
inputs.1

1Some exploitation scenarios also include manipulation of the tar-
get’s physical environment, such as application of heat, light, or ra-
diation, as well as use of physical side-channels. For the purposes of

1.1 Data-driven attacks

The ability of non-code crafted inputs to drive “pro-
grams” (chains of the target’s own code fragments, func-
tion calls, or even dynamic linker invocations) in the tar-
get has been discussed by hacker researchers since at
least the early 2000s (e.g., in [37, 32], see also [26, 15, 8]
for historical analysis of these discoveries); other re-
searchers also pointed have out the power of data-only at-
tacks to alter target’s execution [11]. For any sufficiently
complex data, the environment that processes these data
may play the role of a “virtual machine” programmed by
such data acting as “byte-code” unless we can demon-
strate that such computation is limited by design [6, 35].
Typically these data that drive these “weird machines”
are either involved in program flow control or in mem-
ory transformations. For example, stack frames can drive
return-oriented programming (ROP); exception handling
data used for stack unwinding and state recovery can
drive DWARF-based illicit computation [33]; and heap
chunk metadata can be used to manipulate memory man-
agement code [4, 29, 24, 22, 36] (also see [5] for a
high-level view of heap exploits). This type of of weird
programming has become a staple of modern exploita-
tion (e.g., [14]), and thus must also become a part of de-
fensive security analysis.

1.2 Computational power and pwnage

Hovav Shacham et al. used computation theory terms to
describe the execution model and computational power
of these exploit programming techniques – and showed
that they could indeed support Turing-complete environ-
ments [40, 38]. Although attackers rarely need such gen-
erality to control targets, arbitrarily complex programs
such as a Linux kernel rootkit could indeed be compiled
and run entirely within the ROP execution model [23].

this paper, however, we only consider scenarios where attacker controls
input data of a target’s code unit or subsystem.

1

It would be a mistake to claim that the Turing-
completeness of a malicious execution model somehow
represents greater practical danger than, say, a finite au-
tomaton (so long as the latter, e.g., yields root shell) as
it is often the case that the malicious execution is merely
used as a stepping block within an attack. Turing com-
pleteness is an “estimation from above” of the attacker’s
power over the execution and a statement that there is no
algorithmic task possible on the target environment itself
that the attacker could not successfully emulate. “Root
shells” in classic Unix exploitation scenarios2 represent
a similar symbolic statement: even though the attackers’
goals could possibly be accomplished without spawning
a root shell, it serves as evidence of full attacker control.
To quote security researcher Felix ‘FX’ Lindner, “You
can’t argue with root shell.”

1.3 Our contributions

In this paper we introduce the notion of metadata-
driven computation and demonstrate the indispensable
role metadata have played in exploit-techniques to this
day (Section 2). We will then show that metadata can be
just as powerful as code or stack ROP chains by present-
ing the Cobbler toolkit which crafts ELF (executable and
linking format) metadata to take advantage of the Turing-
complete execution environment present in the runtime
loader (RTLD). Cobbler produces programs (encoded as
ELF metadata) that are interpreted by the ld.so run-
time loader (RTLD) as the executable that contains these
metadata is setup for execution (Section 4). This compu-
tation happens with full knowledge of the executable’s
dynamic symbols and thus is not mitigated by address
space layout randomization (ASLR). This opens obvious
opportunities for both hiding code-free Trojan logic and
obfuscating the program flow.

Although the overall ELF file and each metadata entry
in particular are well-formed, it is doubtful that the binary
toolchain developers expect the RTLD to perform arbi-
trary memory transformations and other kinds of general
computation.

In general we would like to put out a call to arms for
researchers to better understand these weird machines
and the role metadata, data, and code have in driving such
machines.

2 A look at metadata

Metadata (and generally speaking, parameters, options,
and other configuration data) fuel software composabil-
ity, adaptability, and diversity. Most modern general-

2Prior to parceling out of the all-powerful root’s privileges, such as
with capabilities, SELinux, Solaris zones, LIDS, etc.

purpose software is designed to work on a variety of ar-
chitectures and operating systems, following the philos-
ophy that code should be reused and shared whenever
possible.

Metadata also allows processes constructed from the
same code units to be laid out differently in memory,
forcing attackers to deal with a diversity of targets. For-
rest has shown that this metadata-supported diversity
may allow systems to be more robust against threats
and vulnerabilities [18], and has proven its usefulness in
many cases (e.g.,[16, 19]). However we posit that at the
same time we must be cautious – rich-enough metadata
may expand the attack surface of a system in unexpected
ways.

Hacker research and metadata. Given hacker intu-
itions about computation as the key object of security,
it’s not surprising that hacker research leads in under-
standing the role of ABI metadata in modern compu-
tational environments. For instance, to date the guides
published by Grugq ([44, 21]) and Mayhem ([31]) re-
main the most detailed guides to runtime ELF ABI, be-
sides Levine’s solitary [27] book on the subject. Many
Phrack articles [25, 9, 39, 10] illustrate both ABI engi-
neering principles and abuse of their artifacts. Hacker
publications, such as the Corkami collection [3], pro-
vide comprehensive tests of binary formats’ edge cases.
Hacker research into unexpected but reliable ways of bi-
nary composition by leveraging ABI structures has given
rise to a number of design patterns [7]. Not surpris-
ingly, the most advanced framework for manipulating
ABI metadata, ERESI [2], also originates from hacker
research [30, 41].

2.1 Exploits
Although metadata are rarely the main focus of an at-

tack, metadata have long been leveraged as a means of
carrying out exploits. Even the original stack-smashing
attacks can be said to target control flow metadata in
the stack frames [34]; more advanced software exploita-
tion techniques such as ROP and heap-smashing all aim
to overwrite metadata such as a function pointer stored
somewhere in writable memory waiting to be invoked.
Viruses and other types of malware are a classic example
of attacks achieved via manipulating metadata: parasitic
code injected into an existing executable will never see
the light of day unless the executable or library’s meta-
data are changed to inform the loader of its existence and
to get some other component in the runtime to eventually
invoke the parasitic code.

Data-driven Turing machines. We are not the first to
explore data-driven computation. Numerous instances

2

of data-driven Turing machines have surfaced during
the past decade and are presented as examples of how
computationally-rich the environments processing these
metadata are. For example, Eli Fox-Epstein has shown
that HTML in combination with CSS3, normally thought
of as markup languages, can drive Turing-complete com-
putation [17]. Others have shown how the instructions
written on the cards in the game Magic: The Gathering
can drive a Turing-complete machine [12]. Todd L. Veld-
huizen at Indiana University showed that C++ Templates
can drive a Turing machine [45]. These are only a few
examples of weird-machines driven by instructions that
are not normally thought of as true executable code.

2.2 Defenses

Metadata are often underappreciated by security re-
searchers and are often seen as a means to an end –
data that can be shaped in fuzzing to search for an ap-
plication’s vulnerabilities or data that can be leveraged
to carry out an exploit. And yet we find that software
defense practices do not always treat metadata with the
respect they deserve. For example, the antivirus industry
has long based their virus detection mechanisms on code
fingerprints. Although the antivirus industry has made
strides towards heuristic runtime virus detection, we still
see much effort spent on code signatures. Perhaps the
time will soon come to where they consider metadata fin-
gerprints.

Software integrity. A classic technique used in soft-
ware defense is to check the integrity of a piece of soft-
ware as it appears on disk before it is loaded and exe-
cuted. This type of defense and been developed mostly
in response the world of viruses, rootkits, and malware
but also can be used to determine who generated a par-
ticular executable or library.

Executable signing is one example of a software
integrity mechanism. Various implementations of
executable-signing schemes demonstrate that security
practitioners think of computation as something that can
only be generated from code and thus metadata can be
trusted to a small extent. The small amount of implicitly-
trusted (unsigned) metadata allowing for flexibility in the
signing scheme can end up being the implementation’s
Achilles’ heel.

At REcon 2012, Igor Glücksmann demonstrated how
data can be injected into a signed PE file without invali-
dating the signature [20]. His technique took advantage
of the fact that the signature and the signature’s meta-
data embedded in the PE were not themselves signed,
and that PE supported variable length signatures where
injected data could hide. This support for flexibility and

implied trust of some metadata ended up being this sig-
nature scheme’s weakness.

Various ELF-signing mechanisms have been imple-
mented, each differing on how and what components of
the ELF are signed. We discuss two such implementa-
tions: elfsign and signelf.
elfsign [42], which used to be available in the De-

bian package repositories, was designed to sign all ELF
metadata except data contained in the signature’s sec-
tion (the section named “.sig”), the null-terminated string
“.sig” in the string table, and the the last section header
(we assume to be the signature’s section header). Al-
though elfsign has been retired due to its use of the
weak MD5 signature-scheme before any attacks were de-
veloped3 this signing scheme appears to be very similar
to the PE-signing scheme, and thus is likely to be vulner-
able to attacks similar to those presented by Glücksmann.
signelf [13] is another example of an ELF-

signing implementation, although it is unclear whether
signelf is used in practice. signelf suffers from an
alarmingly obvious weakness – it only signs a specific
set of ELF sections that it looks up by name (whereas
the dynamic loader does not locate sections by name),
and it does not sign the metadata that describe where to
find these sections. Therefore section metadata can be
changed, and unsigned sections can be modified. This
is yet another example of how metadata is underappreci-
ated in practice.

3 Runtime linking and loading

In order to understand the ELF metadata-driven weird
machine present in Linux’s RTLD we must first un-
derstand the steps that are taken to load an executable
into memory and then kick off execution. The load-
ing process, starting at the initial call to exec(), until
the executable starts running is illustrated in Figure 1.
New processes are created using the exec() system
call which is provided with the path of the file to be
executed. Calls to exec() cause the kernel to read
small subset of the executable’s metadata in order to
map the executable to memory (hello, in the case of
Figure 1) and the executable’s interpreter (typically the
RTLD, ld.so) into the process’ address space. Next a
context switch into userland is made and the interpreter
is kicked off (RTLD START() is called in the case of
ld.so). It is the interpreter’s job to load any libraries
such as libc.so and patch memory as specified by the
executable’s metadata before finally passing off control
to the executable’s entry-point (typically start()).

3blog.andrew.net.au/2010/01/23

3

hello ld.so

sysexec ld.so hello
RTLD START() start()

libc.so

exec()

Figure 1: Overview of runtime loading process for an exe-
cutable named hello.

3.1 Symbol lookup and link map struc-
tures

As the RTLD loads the executable and each library the
executable is dependent on, the RTLD creates and main-
tains one link map data structure for each ELF object
(library and executable) that is loaded. link map struc-
tures are only created at runtime and contain information
including:

• The name of the ELF file for which the link map
structure corresponds.

• The base address at which the ELF object was
loaded.

• The virtual address of all the ELF object’s dynamic
table entries.

• Pointers to other loaded link map structures so
that they all form a doubly linked list.

All the link map structures form a doubly linked list
so that as long as we can locate a single link map struc-
ture, we can find information on any other loaded ELF
object. The ordering of these link map structures is
important with regard to symbol resolution – the symbol
resolver traverses these link map structures in linear
order as needed to locate the information needed to re-
solve the symbol.

3.2 ELF metadata
The metadata contained in ELF files are the conduit by
which the compiler, linker, and loader communicate. The
purpose of ELF metadata is to keep track of properties of
the machine code it encapsulates. Such properties in-
clude libraries that its code depends on and locations of
addresses or data in the file that need to be patched in
order for the code to cleanly execute once loaded.

The ELF header. All ELF files contain a structure
known as the ELF header (Elf64 Ehdr4) at the be-

4We are assuming a 64-bit architecture, ELF metadata for 32-bit
architectures begin with Elf32

ginning of the file. The ELF header contains informa-
tion such the ELF file’s type (executable, shared-object,
etc.), architecture it was compiled for, and where in the
file other metadata can be located. Any particular piece
of metadata needed by the linker or loader can be found
by crawling the data structures referenced by the ELF
header.

3.2.1 ELF sections and metadata tables

ELF files contain numerous tables of metadata, each
table contained in a single ELF section. The ELF
header contains information on how to locate ELF sec-
tion header table. ELF section headers allow us to locate
each table of metadata. Each metadata table generally
holds metadata of a single type: such as symbol metadata
(Elf64 Sym) or relocation metadata (Elf64 Sym).
The vast majority of ELF metadata is stored in one of
its many tables.

The dynamic table. All ELF executables and shared-
object libraries contain a table of Elf64 Dyn structures
known as the dynamic table. Each Elf64 Dyn structure
has a tag and a data field that contains either a pointer
or a value. The structure’s tag marks what the rest of
the structure contains and how it should be interpreted.
The dynamic table exists to summarize information re-
quired at runtime such as the names of libraries needed as
well as the locations and sizes of metadata that the RTLD
needs to process. The dynamic table acts as a convenient
one-stop shop for the dynamic linker and RTLD, most of
the data it contains can be found by crawling through the
structures pointed to by the ELF header.

Symbol metadata. Symbol metadata provide meaning
and context to data and functions that need to be located
at runtime. These metadata typically provide informa-
tion about objects that are imported or exported such as
binding information so that, for example, an executable
can call a function defined in an external library.

ELF files contain symbol metadata in the form of
Elf64 Sym structures. Figure 2 shows the definition of
Elf64 Sym structures. In summary, symbol structures
contain a pointer to the symbol’s name, information on
the type of symbol, and a value which most often is a
pointer to the object (data or function) itself. Symbols of
type STT IFUNC are not as simple to interpret as other
types of symbols. The purpose of STT IFUNC symbols
is to allow the decision of what version of a function to
be used to be deferred until load/runtime. A STT IFUNC
symbol’s value points to code that returns the address of
the function it ultimately decides to use.

4

typedef struct {
Elf64_Word st_name; //Index of name
unsigned char st_info; //Type info
unsigned char st_other; //Not used
Elf64_Half st_shndx; //Section #
Elf64_Addr st_value; //Sym value
Elf64_Xword st_size; //Size of object

} Elf64_Sym;

Figure 2: Contents of ELF symbol metadata, Elf64 Sym

typedef struct {
Elf64_Addr r_offset; //Addr to patch
Elf64_Xword r_info; //Type&sym index
Elf64_Sxword r_addend; //Addend

} Elf64_Rela;

Figure 3: Contents of ELF relocation metadata, Elf64 Rela

Relocation metadata. Relocation metadata provide
the linker and loader with information on which virtual
addresses should be patched, and how. For example, ex-
ecutables maintain a table of pointers to imported library
functions at runtime; some relocation entries are used to
patch the table with the locations of these imported func-
tions. Some, but not all, types of relocation table en-
tries make references to symbol metadata to provide ex-
tra context on how the patch value should be calculated.
Relocation metadata comes in the form of Elf64 Rela
structures as shown in Figure 3.5

ELF executables generally contain two relocation ta-
bles, .rela.dyn and .rela.plt. .rela.plt en-
tries are typically processed lazily during dynamic link-
ing. .rela.dyn relocation entries are processed dur-
ing load time after the RTLD has mapped all of the re-
quired libraries to memory but before the RTLD passes
control to the executable. Any references to symbols
made by the relocation-table entries in .rela.dyn are
encoded as indices into .dynsym symbol table in the
Elf64 Rela’s r info field. The ELF’s dynamic table
contains the address of both .rela.dyn and .dynsym
sections so that this information can be quickly looked
up.

The System V amd64 ABI [28] defines 37 differ-
ent types of relocation entries, the gcc toolchain we
worked with only uses 13 types (one of which is not
defined in the ABI), whereas our proof-of-concept Cob-
bler compiler, makes use of only 3 different types of re-
location entries: R X86 64 COPY, R X86 64 64, and
R X86 64 RELATIVE, which we will abbreviate as
COPY, SYM, and RELATIVE.

Table 1 summarizes these three types of relocation en-

5There are versions of 64-bit ELF relocation structures that do not
contain the addend field (Elf64 Rel structures) however we will not
consider them in this paper.

COPY memcpy(r.offset,s.value,s.size)
SYM *(base+r.offset)=s.value+r.addend+base
RELATIVE *(base+r.offset)=r.addend+base

Table 1: Relocation entries Cobbler makes use of and their
meaning presented in c syntax. For each type, r is the relo-
cation entry structure and s is the corresponding symbol, and
base is the base address of where the ELF object is loaded.

tries. Elf64 Relas of type COPY instructs the RTLD
and dynamic linker to perform what essentially is a
call to memcpy() where the associated symbol’s value
points to the bytes to be copied and size contains the
number of bytes to copy. Elf64 Relas of type SYM
request that the value in the addend is summed with the
symbol’s value and the ELF object’s base address (typi-
cally 0 for an executable), which is written to the spec-
ified offset plus base address. Elf64 Relas of type
RELATIVE do not make use of any symbols, they sim-
ply add the value of the object’s base address to their
addend and store that in the relocation entry’s offset plus
base address.

4 Cobbler implementation

ELF symbol and relocation entries allow for code adapt-
ability and reuse, however, they can be crafted to per-
form other types of computation. We have built a proof-
of-concept toolkit6, Cobbler, that compiles the non-I/O
related instructions in Brainfuck (an esoteric Turing-
complete language [1]) down to ELF metadata and in-
jects the metadata into an executable (Section ?? de-
scribes where to find the toolkit). The remainder of this
section will describe our implementation of the primitive
instructions upon which we built our Brainfuck to ELF
metadata compiler to demonstrates how ELF metadata
can awaken the Turing-complete weird machine hidden
in the RTLD.

4.1 Tools
Our proof-of-concept compiler was built and tested on
Ubuntu 11.10’s gcc toolchain, eglibc-2.13, running
on an amd64 architecture. We do not have any reasons to
believe that the compiler cannot be ported to work with
other gcc versions but we have not attempted to port the
our compiler and tools.

Figure 4 shows how an executable “enhanced” with
computation-driving metadata – what we will refer to as
a Cobbler-enhanced executable – is constructed. In or-
der to use Cobbler to take advantage of the RTLD’s weird
machine, one must have write access to some target/host
executable. Given a list of Cobbler-supported instruc-
tions and an executable in which to enhance, the Cobbler

6available at http://github.com/bx/elf-bf-tools

5

Cobbler
Source

hello ex-
ecutable

Cobbler
parser

eresi
ELF

parser

Cobbler
compiler

eresi ex-
ecutable
writer

enhanced
hello ex-
ecutable

Figure 4: How a Cobbler-enhanced executable is constructed.

compiler first parses the source code that it is compiling,
then by using the ERESI toolkit [2] to parse the exe-
cutable, it crafts metadata to inject and hands the new
metadata off to ERESI to create an Cobbler-enhanced
copy of the executable. Cobbler carefully constructs its
enhancements to allow for clean execution of the ex-
ecutable after the Cobbler-enhanced metadata are pro-
cessed.

It is important to note that currently only non position-
independent (PIC) executables – those whose base lo-
cation are not randomized – can be Cobbler-enhanced.
This is reasonable given that the majority of ELF ex-
ecutables are not compiled to be position-independent
by default. We have not attempted to work with PIC
executables but have no reason to believe that they are
fully resistant to Cobbler. Cobbler does not make any
assumptions about where libraries are mapped and thus
is unaffected by libraries mapped at random locations by
ASLR. It is in fact possible to locate all libraries at load-
time using ELF metadata. This technique is described in
Section 4.2.4.

4.2 Cobbler primitives
We can think of the primitives implemented in Cobbler
as an assembly-like language composed of three basic
instructions:

1. Addition (add),
2. Move/copy (mov),
3. Jump if not zero (jnz).

In this language, the bytecode is composed of relocation
metadata. Symbol metadata plays the role of registers.
These “registers” just also happen to be memory-mapped
and also contain inline metadata.

Cobbler primitives use four different addressing
modes for its operands, although no single instruction
operand supports all addressing methods. The supported
addressing modes and syntax we use are as follows:

• Immediate: value is specified directly in instruc-
tion (e.g. $0x01)

• Direct: instruction contains value’s address (e.g.
*0xdeadbeef)

• Register: value is contained in register (e.g. %reg)
• Register indirect: register contains value’s address

(e.g. [%reg])

All destinations are directly addressed across all instruc-
tions. The following sections demonstrate how each in-
struction is implemented.

4.2.1 Move

The mov instruction is expressed as

mov <dest>, <value>

where <dest> is specified in direct mode and
<value> can be specified either as an immediate or
register indirect. The mov instruction copies the value
to the address specified by <dest>, the destination. We
have implemented mov to always copy 8 bytes to its des-
tination, but the number of bytes that are copied can be
adjusted.

Consider the following mov instruction that uses im-
mediate addressing:

mov *0xbeef0000, $0x04

The following relocation entry implements this immedi-
ate mov instruction:

{type=RELATIVE, offset=0xbeef0000,
symbol=0, addend=0x04}

Relocation entries of type RELATIVE naturally imple-
ment Cobbler mov instructions with immediate values.
This is because they instruct the linker to copy the value
of their addend to the address specified at their offset.
(Note that the RTLD ignores ignores symbols when pro-
cessing RELATIVE relocation entries.)

Consider the following mov instruction that uses reg-
ister indirect addressing:

mov *0xbeef0000, [%foo]

A relocation entry and symbol table entry are both
needed to support this instruction. In this example the
relocation entry should be setup as follows:

{type=COPY, offset=0xbeef0000,
symbol=foo, addend=0}

This relocation entry makes reference to the symbol
foo, which is consulted when the relocation entry is pro-
cessed. The symbol’s type is set as an FUNC (and not an
IFUNC) so that it is treated as a regular symbol. The
symbol’s size is 8, this ensures that exactly 8 bytes are
copied.

{name=foo, value=0xb0000000,
type=FUNC, shndx=1, size=8}

This symbol and relocation entry pair instruct the loader
to copy 8 bytes starting at 0xb0000000, the symbol’s
value, to 0xbeef000, the relocation entry’s specified
offset, like memcpy()

6

4.2.2 Addition

The add instruction is written as

add <dest>, <addend1>, <addend 2>

where <dest> is specified in direct mode, <addend
1> is a register, and <addend 2> is specified as an
immediate. add adds the 8 byte <addend 2> to the 8
byte value in the registered specified by <addend 1>
and stores that 8 byte result at the address specified by
<dest>.

Consider the following add instruction:

add *0xbeef0000, %foo, $0x02

The following relocation entry implements this instruc-
tion:

{type=SYM, offset=0xbeef0000,
symbol=foo, addend=2}

A SYM typed relocation entry instructs the loader to copy
in the specified symbol’s value (in this case foo). It is
important that the corresponding symbol’s type be a stan-
dard, non-IFUNC, type so that the symbol’s value is sim-
ply treated as a value. The symbol may look as follows:

{name=foo, value=1,
type=FUNC, shndx=1, size=8}

Such a relocation entry and symbol table entry pair in-
struct the loader to add the relocation entry’s addend (2)
to the symbol’s value (1) and store the result (3) at the
relocation entry’s offset (0xbeef0000).

4.2.3 Jump if not zero

The jnz instruction is written as

jnz <dest>, <value>

where the jump destination, <dest>, is specified as an
immediate and <value> is specified in direct mode.
Unlike the mov and add instructions, jnz cannot be im-
plemented cleanly with a single relocation entry, this is
because the loader was not designed to arbitrarily jump
over relocation entries. In this section we will only high-
light the major issues encountered when implementing
jump instructions, other complications will be discussed
in Section 4.3.

In order to understand how such functionality can
be implemented using ELF metadata we must under-
stand the context in which relocation entries are pro-
cessed. The pseudocode in Figure 5 represents a high
level/simplified algorithm of how relocation entries are
processed by the RTLD.

While processing relocation entries, the RTLD walks
through the list of link map structures (via lm

while (lm != NULL) {
r = lm->dyn[DT_RELA];
end = r + lm->dyn[DT_RELASZ];
for (r ; r < end; r++) {
relocate(lm, r, &dyn[DT_SYM]);

}
lm = lm->prev;

}

Figure 5: Simplified representation of how RTLD processes
relocation tables.

= lm->prev) starting at the last link map struc-
ture on the chain and processes each ELF ob-
ject’s link map relocation entries in the chain.
For each link map structure, the RTLD looks
up the location (lm->dyn[DT RELA]) and size
(lm->dyn[DT RELASZ]) of the object’s relocation ta-
ble then processes each relocation table entry.

We first demonstrate how to implement an uncondi-
tional jump instruction before we demonstrate the more
difficult task of conditionally branches.

Jump. There are several tasks relocation entries need
to perform in order to be able to perform an uncondi-
tional branch:

1. Set the value of lm->prev so that the same relo-
cation table is processed on the next while loop
iteration.

• The original lm->prev value needs to be re-
stored later to allow the executable to eventu-
ally run

2. Set the value of lm->dyn[DT RELA] to point to
the the jump’s destination (relocation entry)

3. Update the size of lm->dyn[DT RELASZ] to re-
flect the “new” relocation table size

4. Clobber the value of end so that the RTLD does not
process the next relocation entry

Step 1 requires knowledge of where the executable’s
link map structure is mapped. It turns out that the
RTLD stores a pointer to a dynamically linked exe-
cutable’s link map in a table the dynamic linker is
dependent on – the global offset table (GOT). The
virtual address of this table is known at compile time
(the DT PLTGOT field in the executable’s dynamic ta-
ble). Using the address of a pointer to the executable’s
link map structure we can calculate the address of that
structure’s prev value. A simple move instruction will
implement this for us:

mov *<addr of prev>, $<addr of link_map>

Writing instructions to restore the executable
link map’s prev value is trivial because this

7

link map is always the head of the list and thus merely
needs to be set to 0 allow the RTLD to continue.

Steps 2–3 requires knowledge of the virtual address
of the executable’s dynamic table. The executable’s en-
tire dynamic table is mapped into memory at the ad-
dress specified by metadata present in the ELF. Thus we
can calculate the virtual address of any item in the exe-
cutable’s dynamic table at compile time. The same holds
true for the location of the executable’s relocation and
symbol tables. Therefore it is trivial to construct a relo-
cation entry that essentially implements:

mov *(<address of DT_RELA>), <address
of next relocation entry to process>}

The same applies to step 3.
Step 4 requires the knowledge of the address of end

so that we can set it to a value that will cause the next
iteration of the loop to exit. It turns out that end is
stored on the stack. Because the location of stacks are
randomized, calculating the address of end is not so
simple. However,the loader stores the address of some
stack-allocated data in a statically-allocated variable
(dl auxv). As described in Section 4.2.4, we can
lookup the base-address of the loader to calculate the
location of this static variable. The location of end is
at a fixed distance from the data dl auxv points to,
thus using mov instructions we can calculate the address
of end and store this value in a symbol. Assuming the
address of end is stored in a symbol called sym-end,
the following instructions will set end to 0 forcing the
loop to exit otherwise prematurely:

mov *<addr of next Rela’s offset>, %sym-end
mov *<(value overwritten)>, $0

Note that the first instruction modifies the second in-
struction’s destination at runtime, copying the address of
end found in the sym-end register over to the destina-
tion of the second instruction so that when the second in-
struction executes, its immediate value, 0, will be written
to end, forcing the RTLD to stop processing relocation
entries.

Given that the dynamic table and link map are ma-
nipulated by steps 1–3 before end is overwritten, the
stage is set for a branch before the RTLD quits process-
ing the current round of relocation entries. Once the
RTLD quits processing the table, it will attempt to pro-
cess relocation entries of the previous link map which
now points to the same link map (due to step 1). The
RTLD is none-the-wiser so it looks at the link map’s
dynamic table for the addresses of the relocation table
to process which now points to the “instructions” of our
choosing (from steps 2–3).

Conditional branch. Now that we know how to imple-
ment an unconditional branch, we just need to implement

a few more instructions to allow for conditional branch-
ing. The trick to implementing conditional branching
lies in how the RTLD handles symbols of type IFUNC. It
turns out that if the RTLD is interpreting a symbol of type
IFUNC (an indirect function) there are two ways that that
it may handle the IFUNC: (1) If the shndx field of the
symbol is not 0, then the RTLD treats the symbol as an
indirect function, calling the function it points to and us-
ing the value returned by the indirect function. (2) If the
shndx field is zero, then that symbol’s value is used
directly. Therefore conditional branches requires a spe-
cial symbol (we call sym-zero) as well as special Cob-
bler instructions to initialize the environment for branch-
ing. sym-zero is a symbol type IFUNC whose value
points to executable code that simply returns 0. Such
a gadget can be found in ld.so which is mapped at a
higher address than the executable’s metadata. We can
write the gadget’s offset from the base of ld.so into
sym-zero’s value at compile-time and include Cobbler
instructions that can locate ld.so (using the technique
discussed in Section 4.2.4) and set sym-zero’s value
with the sum of its former value (the offset of the gadget
that returns 0) and the base address of ld.so.

We then use the following instructions to perform the
conditional the branch:

mov *<addr of sym-zero shndx>, $<test val>
add *<addr of end>, %sym-zero, $0

With this setup, if the value being tested is 0, then the
value of the function pointer in sym-zero is written to
end, a value which we picked to be larger than the ad-
dress of the executable’s relocation entries, so relocation
entry processing continues. We can insert instructions
immediately following the jnz bytecode that reset the
value of end in case the branch is not taken. If the value
we are testing is not 0, then the symbol will be treated
as an indirect function rigged to return 0, thus 0 will be
written to end forcing a branch.

4.2.4 Locating libraries

We must be able to locate the base address of ld.so
to implement conditional branching as described in Sec-
tion 4.2.3. It can also be useful to locate other libraries
too. In this section we describe a technique that uses
Cobbler to locate the base address of any library loaded
by the RTLD. As described in Section 4.2.3, it is rel-
atively trivial to locate the address of the executable’s
link map structure. Given that all link maps are in a
doubly linked list, and each link map contains the base
address in which it’s ELF object was loaded, we can use
the executable’s link map to locate any library that the
RTLD loaded. Given the executable’s link map, we:

8

1. Dereference the pointer we have to the to get the
base address of the link map

2. Calculate the address of its next field (by adding
0x18 to the address of the link map)

3. Repeat steps 1 and 2 until we arrive at the
link map of the library we are trying to locate

4. Deference the pointer we have to the to get the base
address of the next link map

5. Copy the value at the beginning of the link map
structure to a register to be used later (by derefer-
encing the pointer). This value is the library’s base
address.

Assuming the library we are trying to locate is the
second item on the link map chain and that there is
a sym-lm register that initially contains the virtual ad-
dress of the executable’s link map structure (known at
compile time), the address of the library will be found in
the sym-lm register after following four instructions are
executed:

1. mov *<address of sym-lm’s value>,
[%sym-lm]

2. add *<address of sym-lm’s value>,
%sym-lm, $0x18

3. mov *<address of sym-lm’s value>,
[%sym-lm]

4. mov *<address of sym-lm’s value>,
[%sym-lm]

4.3 Implementation challenges
This section lists the various challenges we encountered
in our implementation of Cobbler primitives while still
allowing for clean execution after the RTLD passes con-
trol off to the executable’s entrypoint.

Preserve existing metadata. In order to allow for the
executable to cleanly execute after the RTLD interprets
the Cobbler instructions, we must be careful to preserve
the existing metadata and to not allow the original set of
relocation entries to be processed more than once. The
Cobbler-enhanced executable is configured so that our
Cobbler instructions are interpreted before the original
relocation metadata. The last several relocation entries
we inject instruct the RTLD to process the original relo-
cation entries next before processing a final set of relo-
cation entries that restore the link map structure to its
original state.

Do not let sanity checks get in the way of branch-
ing. The RTLD has some sanity checks as it processes
its metadata. Two sanity checks in particular get in the
way of branching. One of these tests a boolean stored
in the link map structure to see if the relocation en-
tries have been processed yet. It is possible to play tricks

with pointers maintained by the link map to get the
RTLD to reset the boolean before it attempts to repro-
cess the link map’s relocation table. A second sanity
check causes the RTLD to set the relocation entries as
read-only. The workaround is fairly simple and involves
setting a particular field in the link map to zero before
branching.

4.4 A Cobbler-built backdoor
To demonstrate how Cobbler can be used as an at-
tack vector, we have used Cobbler to insert a proof-of-
concept metadata backdoor into the implementation of
ping found in Ubuntu’s inetutils v1.8. We will briefly de-
scribe how a root shell backdoor was inserted into this
version of ping. It is interesting to note that we did not
need to harness the full computational power to these
metadata to insert the backdoor which shows that even
relatively weak weird machines can be interesting.

There are two features of this ping implementation
we make use of to construct a backdoor:

1. ping runs setuid as root, but drops its root priv-
ileges early on

2. The optional --type command-line argument
takes a single argument to customize the type of
packets sent. If provided, ping tests the argument
in the following manner:

if(strcasecmp (<string>, "echo") == 0) {

To get ping to execute arbitrary programs as root, we
must insert metadata capable of doing the following at
runtime:

1. Override the call to setuid()with something that
doesn’t produce any noticeable side effects, such as
getuid()

2. Override the call to strcasecmp() with
execl() so that the exec system cal is made
instead.

These two actions, in combination, will cause ping
not to drop root privileges and to treat the argument to
--type (if provided) as a path to an executable in the
call to execl() that replaced strcasecmp(). If the
--type option is not provided to ping, ping still
cleanly performs its pinging duties.

Both setuid() and strcasecmp() are functions
that imported from libc. The compiler building the
ping executable does not know where these functions
will live at runtime and thus creates entries in the exe-
cutable’s GOT for each function which get lazily filled
in by the dynamic linker once their addresses are known.
If we fill in the GOT entry for a function before the dy-
namic linker, the address we provide will be assumed to

9

be the function’s location in memory. The location of the
GOT table in memory is known at compile time as are
the offsets of getuid() and execl() from the base
address of libc. Armed with this information, we can
use the library location trick described in Section 4.2.4
to craft metadata that lookup the base address of libc,
then calculate the absolute addresses of getuid() and
execl(), and finally patch ping’s GOT in memory
before ping is finally executed. It turns out that this
backdoor behavior can be implemented using nine re-
location entries and one symbol table entry and with-
out making any changes to the executable segments of
ping. You can build a backdoored version of ping using
our scripts provided in elf-bf-tools in order to see
these relocation entries for yourself.

5 Crafting metadata in other types of exe-
cutables

Although we have mostly focused on ELF metadata,
other types of executable metadata have interesting com-
putational influences over their RTLDs.

5.1 PE
In 2006, Skape published a paper called LOCREATE
studying novel ways to craft metadata in Windows PE
executables [43] LOCREATE’s PE metadata crafting
technique work as a code unpacking mechanism for ma-
licious software and are more difficult to analyze than
traditional code-based malware unpackers. Skape shows
how well-formed PE metadata can be crafted to tell the
RTLD to overwrite code already loaded in memory. Thus
the code that eventually executes does not resemble the
code as it appears on disk.

5.2 Mach-O
Mach-O is the executable file format used in Mac OS X.
Mach-O stores its relocation metadata at the end of the
file with its other dynamic linker metadata. Given that
its relocation metadata is located at the end of the file,
injecting metadata is relatively straightforward. Mach-O
relocation metadata is not stored in fixed-sized structures
like ELF and PE but instead is “compressed” into special
variable-length bytecode/instructions. For example, the
following stream of relocation instructions are used to
instruct the linker to patch a particular segment’s offset
with the address of some library’s setuid():

1. SET DYLIB ORDINAL IMM <# of library to
search>

2. SET SEGMENT AND OFFSET ULEB <segment #>
<offset>

3. SET SYMBOL TRAILING FLAGS IMM <flags>
"setuid"

4. DO BIND
5. DONE

Note that the name of the symbol and library to search
is embedded within the relocation instructions.

Imagine an executable that calls setuid() to re-
lease its administrative privileges. If we change the
string setuid to getuid, a single byte edit, the dy-
namic linker will link and call getuid() instead of
setuid(), preventing the process from releasing ad-
ministrative privileges. This small metadata edit has a
significant effect on the processes’ execution. Mach-O
binding instructions available to the RTLD and dynamic
linker build a fairly rich language and we suspect that
there may be more interesting weird machines hiding
there.

6 Future Work

Our analysis of execution models driven by metadata is
by no means exhaustive; it is merely meant to attract
attention to their computational power and their crucial
part in the chain of tools currently implied to “just work”
for a computing environment to be trustworthy. Our
computation model-based approach to the phenomenon
of a “malicious” computation that could be performed
with well-formed metadata alone raises important formal
questions:

• What should be the trust model and role of metadata
in a trusted tool chain?

• Whereas static analysis of code is fraught with halt-
ing problem-related challenges, could static analy-
sis of metadata be more satisfactory?

• What properties of currently existing metadata can
be formally validated?

• What formal properties should metadata be de-
signed to satisfy so that the computation it drives
is trustworthy and validatable?

7 Conclusion

Modern ABI metadata provide powerful composabil-
ity and diversity benefits for both software engineering
in general and security in particular. However, they
also developed into a powerful execution environment
in which well-formed crafted metadata can drive “weird
machines” that transform, with Turing-complete power,
the code and data of a process. In designing a trusted
toolchain to guarantee trustworthy execution of a pro-
cess, binary code should no longer be considered the sole
seat of computation. We expect that linkers and loaders
will become the next nexus of trust in engineering binary
tool chains; urgent reflection on the computations they
perform is needed if we are to continue to trust them.

10

8 Acknowledgments

This research was supported in part by the Department of
Energy under Award No. DE-OE0000097 and by Intel
Lab’s University Research Office. The views and opin-
ions in this paper are those of the authors and do not nec-
essarily reflect those of any of the sponsors.

References
[1] Brainfuck. http://esolangs.org/wiki/brainfuck.

[2] ERESI Project. http://www.eresi-project.org.

[3] ALBERTINI, A. Corkami reverse engineering & visual documen-
tations. http://code.google.com/p/corkami/.

[4] ANONYMOUS AUTHOR. Once upon a free(). Phrack
57:9. http://phrack.org/issues.html?issue=
57&id=9.

[5] ARGYROUDIS, P., AND KARAMITAS, C. Heap Ex-
ploitation. Abstraction by Example. OWASP AppSecRe-
search, 2012. http://census-labs.com/media/
heap-owasp-appsec-2012.pdf.

[6] BRATUS, S. Hackers and Computer Science: What Hacker
Research Taught Me. 27th Chaos Communications Congress,
December 2010. http://events.ccc.de/congress/
2010/Fahrplan/events/3983.en.html.

[7] BRATUS, S., BANGERT, J., GABROVSKY, A., SHUBINA, A.,
BILAR, D., AND LOCASTO, M. E. Composition Patterns of
Hacking. The First International Workshop on Cyberpatterns
Unifying Design Patterns with Security, Attack and Forensic Pat-
terns, July 2012.

[8] BRATUS, S., LOCASTO, M. E., PATTERSON, M. L., SAS-
SAMAN, L., AND SHUBINA, A. Exploit Programming: from
Buffer Overflows to “Weird Machines” and Theory of Computa-
tion. ;login: (December 2011).

[9] CESARE, S. Runtime Kernel kmem Patching. http://
althing.cs.dartmouth.edu/local/vsc07.html.

[10] CESARE, S. Shared Library Call Redirection via ELF PLT Infec-
tion, Dec 2000.

[11] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In In
USENIX Security Symposium (2005), pp. 177–192.

[12] CHURCHILL, A. Magic Turing Machine v5: Rotlung Reanimator
/ Chancellor of the Spires. http://www.toothycat.net/
˜hologram/Turing/HowItWorks.html.

[13] CODEFOX. SignElf. http://sourceforge.net/
projects/signelf/.

[14] DULLIEN, T. Exploitation and state machines: Programming the
”weird machine”, revisited. In Infiltrate Conference (Apr 2011).

[15] DULLIEN, T., KORNAU, T., AND WEINMANN, R.-P. A Frame-
work for Automated Architecture-Independent Gadget Search. In
USENIX WOOT (August 2010).

[16] EAGLE, C. Ripples in the Gene Pool - Creating Genetic: Mu-
tations to Survive the Vulerability Window. Defcon 14, August
2006.

[17] ELITHEELI. “stupid machines”. https://github.com/
elitheeli/stupid-machines.

[18] FORREST, S., SOMAYAJI, A., AND ACKLEY, D. Building di-
verse computer systems. In Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (HotOS-VI) (Washington, DC,
USA, 1997), HOTOS ’97, IEEE Computer Society, pp. 67–.

[19] GEER, D. CyberInsecurity: The Cost of Monopoly. Computer
and Communications Industry Association (CCIA) report, 2003.

[20] GLÜCKSMANN, I. Injecting custom payload into signed Win-
dows executables Analysis of the CVE-2012-0151 vulnera-
bility. ReCON, June 2012. http://recon.cx/2012/
schedule/events/246.en.html.

[21] GRUGQ, AND SCUT. Armouring the ELF: Binary encryption on
the UNIX platform. Phrack 58:5. http://phrack.org/
issues.html?issue=58&id=5.

[22] HUKU, AND ARGP. The Art of Exploitation: Exploiting VLC, a
jemalloc Case Stud y. Phrack Magazine 68, 13 (Apr 2012).

[23] HUND, R., HOLZ, T., AND FREILING, F. C. Return-oriented
rootkits: bypassing kernel code integrity protection mechanisms.
In Proceedings of the 18th USENIX Security Symposium (2009),
USENIX Association, pp. 383–398.

[24] JP. Advanced Doug Lea’s malloc Exploits. Phrack 61:6. http:
//phrack.org/issues.html?issue=61&id=6.

[25] KLOG. Backdooring Binary Objects. Phrack 56:9. http://
phrack.org/issues.html?issue=56&id=9.

[26] KORNAU, T. A gentle introduction to return-oriented program-
ming. http://blog.zynamics.com/2010/03/12/,
March 2010. Zynamics blog.

[27] LEVINE, J. Linkers and Loaders. The Morgan Kaufmann Series
in Software Engineering and Programming, 1999.

[28] MATZ, M., HUBICKA, J., JAEGER, A., AND MITCHELL, M.
System V Application Binary Interface AMD64 Architecture
Processor Supplement Draft Version 0.96, June 2005. http:
//www.uclibc.org/docs/psABI-x86_64.pdf.

[29] MAXX. Vudo malloc Tricks. Phrack 57:8. http://phrack.
org/issues.html?issue=57&id=8.

[30] MAYHEM. The Cerberus ELF Interface. Phrack 61:8. http:
//phrack.org/issues.html?issue=61&id=8.

[31] MAYHEM. Understanding Linux ELF RTLD internals.
http://s.eresi-project.org/inc/articles/
elf-rtld.txt, Dec 2002.

[32] NERGAL. The Advanced return-into-lib(c) Exploits: PaX Case
Study. Phrack Magazine 58, 4 (Dec 2001).

[33] OAKLEY, J., AND BRATUS, S. Exploiting the Hard-Working
DWARF: Trojan and Exploit Techniques with No Native Exe-
cutable Code. In USENIX WOOT (2011), pp. 91–102.

[34] ONE, A. Smashing the Stack for Fun and Profit. Phrack
49:14. http://phrack.org/issues.html?issue=
49&id=14.

[35] PATTERSON, M. L., AND BRATUS, S. The Science of Insecurity.
28th Chaos Communications Congress, December 2011. http:
//langsec.org/.

[36] REDPANTZ. The Art of Exploitation: MS IIS 7.5 Remote Heap
Overflow. Phrack Magazine 68, 12 (Apr 2012).

[37] RICHARTE, G. Re: Future of Buffer Overflows. Bugtraq,
October 2000. http://seclists.org/bugtraq/2000/
Nov/32.

[38] ROEMER, R., BUCHANAN, E., SHACHAM, H., AND SAVAGE,
S. Return-oriented programming: Systems, languages, and appli-
cations. ACM Trans. Inf. Syst. Secur. 15, 1 (Mar. 2012), 2:1–2:34.

[39] SD, AND DEVIK. Linux On-the-fly Kernel Patching without
LKM, Dec 2001.

[40] SHACHAM, H. The Geometry of Innocent Flesh on the Bone:
return-into-libc without Function Calls. In ACM Conference on
Computer and Communications Security (2007), pp. 552–561.

11

[41] SHELL CREW, T. E. Embedded ELF Debugging : the mid-
dle head of Cerberus. Phrack 63:9. http://phrack.org/
issues.html?issue=63&id=9.

[42] SKAPE. ELF binary signing and verification. ttp://
www.hick.org/code/skape/papers/elfsign.txt,
January 2003.

[43] SKAPE. Locreate: an Anagram for Relocate. Uninformed 6 (Jan
2007).

[44] THE GRUGQ. Cheating the ELF: Subversive Dynamic Link-
ing to Libraries. althing.cs.dartmouth.edu/local/
subversiveld.pdf.

[45] VELDHUIZEN, T. L. C++ Templates are Turing Com-
plete. http://ubietylab.net/ubigraph/content/
Papers/pdf/CppTuring.pdf. Indiana University Com-
puter Science.

12

