
Design and Prototype of a Coercion-Resistant, Voter
Verifiable Electronic Voting System

Anna M. Shubina
Department of Computer Science

Dartmouth College
Hanover, NH 03755

E-mail: ashubina@cs.dartmouth.edu

Sean W. Smith
Department of Computer Science

Dartmouth College
Hanover, NH 03755

E-mail: sws@cs.dartmouth.edu

Abstract— In elections, it is important that voters be able to
verify that the tally reflects the sum of the votes that were actually
cast, as they were intended to be cast. It is also important that
voters not be subject to coercion from adversaries. Currently
most proposed voting systems fall short: they either do not
provide both properties, or require the voter to be a computer.

In this paper, we present a new voting system that uses
voter knowledge to allow voter verification by using a receipt
that is uninformative for a coercer without access to the voting
machine or the contents of the cast ballots. Our system does not
assume any trust in the voting machine, but requires a few other
assumptions which we believe to be reasonable in the real-world
situation. A basic prototype of this system is available on our
website.

I. INTRODUCTION

The US presidential elections of 2000 made the general
public aware of the problems of producing a voting system that
could be trusted by the voters to submit their votes correctly.
Despite the public review and control of the US electoral
system, many US citizens felt that the system had failed them.
Although the problems did not originate in the 2000 election,
the situation where a very small number of votes was sufficient
to flip the final tally raised the public’s awareness of the
inadequacy of the system.

The problem of producing a fair voting system has been
well-known in countries and situations where adversaries have
a very high degree of control. In totalitarian societies (or
other situations with almost complete adversarial control), it
may be futile to attempt to solve this problem. Such societies
provide no guarantee that the adversary will comply with the
solution, no guarantee that the observers and complainants will
be able to speak up, and no guarantee that the situation will be
corrected even if there is a valid complaint. However, in a free
democratic society in the 21st century, the electoral system is
subject to public review and control. Its failures do not have
to be possible.

If an electronic voting system is to be applied in secret-
ballot elections, it has to be receipt-free, i.e. not allow a voter
to carry away any evidence of who he voted for, since such
evidence would permit vote buying and coercion. Receipt-
freeness is hard to combine with voter verifiability: if a voter
is able to verify that his vote was counted as he cast it, what
could prevent him from proving how he voted to a third party?

Cryptography can help address this seeming incompatibility
between receipt-freeness and voter verifiability, if the voter
has an encrypted copy of his vote and can verify that his
encrypted vote made it to the final tally. However, that requires
the voter to be able to verify that the encryption of his vote is
correct. Chaum’s layered receipts [5] (discussed below) solve
this problem partially: they allow verification, but only with
probability 50%.

In this paper, we examine these properties and survey the
principal current approaches to electronic voting systems. We
then present a new design that improves on the previous work,
by being (arguably) the first one that achieves both voter
verifiability and coercion resistance, while not assuming the
voter is a computer, not relying on correct behavior by the
voting machine, and detecting close to 100% of misbehaviour.

Section II briefly discusses the requirements for a secure
election system. Section III presents a brief overview of
methods used in receipt-free election schemes. Section IV
discusses the most recently implemented election schemes.
Section V presents our election scheme. Section VI discusses
the practical applicability of our scheme. Section VII describes
our prototype. Section VIII offers some concluding remarks.

II. REQUIREMENTS FOR AN ELECTION SYSTEM

The two basic properties commonly required of election
systems are correctness and privacy. An election system
should produce a correct tally—the result of the election.
It should also ensure that the participant’s vote will remain
private (infeasible to find out without cooperation with the
voter)—although sacrificing the privacy requirement permits
making the system much simpler.

The more interesting properties extensively studied in the-
oretical literature are receipt-freeness and coercion resistance
(as described in Section II-C) and verifiability (as described
in Section II-D).

Would ensuring correctness, privacy, receipt-freeness, and
verifiability be sufficient for a real-world election system?
Arguably, almost all problems in existing real-world election
systems stem from the lack of one of these properties. Less
discussed, and not ensured by any of these properties, is
another important property: trust.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 1



A. Correctness

The very first requirements of every voting scheme are that
every voter should be able to vote, but only vote once; only
votes cast by registered voters should be included in the final
tally; and all votes cast by registered voters should be correctly
counted.

Defining a correct tally is somewhat harder, because it is
unclear how to handle incorrectly cast votes. In the definitions
of Benaloh and Tuinstra [3], a tally is correct if correctly
cast votes representing a valid choice are counted, whereas
incorrectly cast votes that do not represent a valid choice may
be counted one way or another. It may be worth noting that
in a real-world situation it may be unacceptable to include
incorrectly cast votes into the tally, and thus the ability to
distinguish incorrectly cast votes may be important. Hirt and
Sako [6] get around this problem by requiring for correctness
that no voter be able to cast an invalid vote.

B. Privacy

Privacy, in the context of elections, means ensuring that
nobody except the voter can find what choices the voter made
without interacting with the voter. More precisely, an adversary
should not obtain more information about a voter’s vote than
provided by the election tally.

Privacy of a voting system is dependent on assumptions as
to what the adversary can or cannot do and is often based on
assertions about the adversary’s computational power.

One of the possible physical assumptions made for privacy
is a voting booth that allows the voter to secretly and interac-
tively communicate with an authority. A weaker assumption is
an untappable channel that allows a voter to send a message
that cannot be observed by the outsiders. Whereas voting
booths are used for voting in the real world, they are typically
used only for communication with the voting machine and do
not allow remote communication.

C. Receipt-freeness and Coercion Resistance

The initial papers on secret-ballot elections considered the
property of receipt-freeness. As introduced by Benaloh and
Tuinstra [3], receipt-freeness is the inability of a voter to prove
to an adversary how he voted, even if the voter would like
to provide this proof. Receipt-freeness is necessary in secret
ballot elections. Indeed, if the voter had the ability to prove
to an adversary the contents of his vote, the adversary would
be able to demand from the voter that he vote in a particular
manner and reward him for voting in this manner or penalize
him for not complying with the demand.

More recently, Juels and Jakobsson [7] introduced a stronger
notion of coercion resistance. A coercion-resistant system is
a system where the voter can cheat an adversary who may
interact with him and instruct him to vote in a given manner,
but the adversary will not be able to determine whether the
voter behaved as instructed—even if the adversary asks the
voter to disclose his keys or to abstain from voting.

D. Verifiability

In the ideal voting scheme, the voter should be able to verify
that his vote was committed as intended and made it into the
final tally as cast (individual verifiability, or voter verifiability),
and any observer should be able to verify the tally (universal
verifiability).

These two properties provide verifiability—the possibility
of verification that all votes are counted correctly.

E. Trust

The question of trust in a voting system is one of the most
discussed and least agreed upon. Who should trust whom for
what? Is it enough for an expert to trust another expert’s
assertion that the system functions correctly?

The range of opinions on what would constitute a trust-
worthy electronic voting system is very wide, ranging from
Rebecca Mercuri’s Statement on Electronic Voting [8] that
demands the use of “an indisputable paper ballot” and the Mer-
curi Method [9], to Andrew Neff’s [10] and David Chaum’s [5]
reliance on verification. There is, as yet, no agreement on
whether it would be sufficient to have a system that the experts
can prove sufficiently untamperable.

III. BASIC CRYPTOGRAPHIC SCHEMES

The literature provides three basic cryptographic approaches
for secure electronic voting.

A. Voting Schemes Based on Homomorphic Encryption

Homomorphic encryption is encryption over an algebraic
group such that the encryption of the sum of two elements of
the group is the sum of the encryptions of these elements. The
idea of using homomorphic encryption in electronic voting is
to sum the encrypted votes, and then decrypt the sum—without
decrypting individual votes.

The first homomorphic encryption voting scheme was pro-
posed in the paper by Benaloh and Tuinstra [3]. This scheme
was proven by Hirt and Sako in [6] not to be receipt-free. In
the same paper Hirt and Sako proposed another, receipt-free,
homomorphic encryption voting scheme.

Homomorphic encryption schemes do not support write-in
votes.

B. Voting Schemes Based on Mix-nets

A number of electronic voting schemes are based on
Chaum’s mix-nets [4]. Mix-nets encrypt, permute, and re-
encrypt the sequences of input elements, producing permu-
tations of these elements intended to conceal their original
order.

In mix-net voting schemes, a vote is encrypted with a
sequence of the keys of the authorities and consequently
decrypted by the authorities who prove the correctness of the
decryption. An example of such a receipt-free voting scheme
is the scheme proposed by Sako and Kilian in [13].

Mix-net based schemes can support write-in votes.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 2



C. Voting Schemes Based on Blind Signatures

Blind signatures (also due to Chaum) allow an authority
to sign an encrypted message without seeing its contents.
In electronic voting schemes, blind signatures are used to
allow the administrator to authenticate a voter by signing an
encrypted ballot.

An example of a scheme based on blind signatures is the
scheme proposed by Okamoto in [11]. Okamoto later showed
this scheme not to be receipt-free and fixed it in [12].

Schemes based on blind signatures can support write-in
votes.

IV. MORE RECENT ELECTION SCHEMES

The recent literature has also provided examples of more
practical, implemented schemes.

A. David Chaum’s Encrypted Receipts

David Chaum’s new scheme [5] allows a voter to walk
away from the polling place with an encrypted receipt that
has previously been shown to him to correctly contain his
vote.

The scheme functions in the following steps. The voter
chooses his votes electronically. The voting machine prints
out a two-layer image that displays the vote. The user selects
which part of the image—the top layer or the bottom layer—
he would like to keep, and walks away with it. The voter
can later verify that the receipt was correctly posted on the
election site by looking it up by the receipt’s serial number in
the receipt batch, the set of receipts the authority intends to
count. The tally batch, the set of plaintext images of ballots
as seen in the voting booth, is also posted in random order,
allowing everyone to verify the tally.

On each ballot, the voting machine can cheat with probabil-
ity 50% by either printing one incorrect layer, or reusing the
serial number, or performing a tally process step incorrectly.
Thus, if even only 10 modified ballots are verified, the chances
that the tampering will go undetected would be less than 1 in
1000.

The scheme does not reply the question of what to do if
the election did get tampered with. Since only 50% modified
ballots will be detected, there is no opportunity to recast only
the modified ballots.

B. VoteHere

In an attempt at providing voter verification and ensuring
user trust, the VoteHere [1] [10] system hands a voter a paper
receipt.

In the VoteHere scheme, a voter starts with a voting token
(a smart card or a key). This voting token can be inserted
into a machine that lists all candidates and provides a veri-
fication code for every candidate. The verification codes are
different for every voting token. The voter picks the codes
corresponding to his choices and gets a receipt listing the
ballot number, these codes, and the signature of the ballot
produced by the voting machine. Later, the voter can use the
ballot number to verify that the codes were recorded correctly;

however, he cannot verify that the voting machine did not
swap candidates before presenting to him the codes. Instead,
the voter should trust that the trustees responsible for the
generation of codebooks and auditing of the machines made
this impossible.

V. PROPOSAL FOR A VERIFIABLE ELECTION SCHEME

All of the above described voting schemes—both the the-
oretical ones and the implemented ones—appear to allow
receipt-free implementations. However, verifiability (and also
correctness, in schemes relying on verifiability for correctness)
turns out to be harder to achieve in practice than in theory.
VoteHere’s scheme depends for its correctness and verifiability
on the correct behavior of the voting machine; Chaum’s
scheme detects voting machine misbehavior in only 50% of
votes.

To make a step toward ensuring users’ trust, we would
like to propose a scheme that would allow a user to verify
how he voted, not only that a vote in his name made it to
the destination. Our scheme does not make any assumptions
about the correct behavior of a voting machine and makes
voting machine misbehavior detectable in almost 100% cases,
achieving correctness and voter verifiability at the cost of one
extra assumption.

This goal is hard to achieve without sacrificing coercion
resistance; indeed, if the voter can verify how he voted, then
what prevents him from proving to someone else how he
voted? We will attempt to solve this problem by taking into
account voter knowledge—that is, information known to the
voter but not accessible to the coercer.

In our scheme, we make an attempt to achieve voter trust by
permitting a voter to verify his vote by using a printed receipt
to query the central authority for the record on a certain key.
However, in order to avoid coercion, the voter should possess
also the keys corresponding to his other possible votes and
should be aware of this correspondence, perhaps by having it
recorded on the same printed receipt. Also, in order for this
idea to work, the voter’s choice should be specified by the
voter in such a manner that no malicious authority would be
able to tamper with it without detection.

Our scheme provides the voter with pre-generated keys
and allows him to permute them, matching the keys with
the possible votes. This permutation ensures that a malicious
authority cannot on its own generate a desired ballot. The
permutation is also used to provide a visually satisfying receipt
and verification routine. The voter’s choice is specified by
submitting the key corresponding to the desired candidate.
Finally, a signature of the ballot is generated by the voting
machine. This signature is printed on the voter’s receipt and
publicly posted. The signature can be used by the trusted
observers to check that the recorded ballot matches it.

A. Assumptions

In our scenario, we are trying to imitate the real-world
model of electronic voting. We assume that the world consists
of:

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 3



Fig. 1. The voting process.

PSfrag replacements

voter Vj ,
casting choice cv

central authority A

ticket pool

voting machine Bk

tickets

random ticket

E(i);F
i(1)

, . . .
Fi(d)

ballot E(i), π, Fi(πc)

encrypted ballotand signature

signed receipt

E(i), pairs (πm, cm
)

• the central authority A (in the real world, the central
election committee);

• local authorities B1, . . . , Bm (in the real world, the voting
machines);

• n voters V1, . . . , Vn;
• only a finite number d of possible choices c1, . . . , cd for

all votes.

(One of these possible choices should be “no selection”, to
allow the voter to abstain from voting. A few choices may be
dummy votes.)

We assume no communication by the central authority with
the voters, but we assume the existence of voting booths—
that is, interactive communication of voters with the voting
machines. This latter assumption does not appear to be unrea-
sonable; voting booths are frequently used in the real world
for ensuring voters’ privacy.

Our scheme involves tickets generated by the central au-
thority A. We require another assumption: that no information
leaks from the initial process of generating voting tickets
for voters leaks to local authorities. One method of ensuring
this assumption could be allowing having different authorities
participate in generating keys on cards, so that no authority
would have the full information.

B. Process

The steps necessary to cast a vote are illustrated in Figure 1.

• The central authority A (or a set of authorities) uses
its public-key encryption function E to encrypt some
numbers. (This encryption function should not allow an
adversary to guess the plaintext and then verify this guess
by encrypting it. It would suffice, for example, to use
RSA encryption with OAEP ([2]) padding.) The authority
uses E to encrypt numbers 1, . . . , n to serve as ticket
identifiers. (We use n, so there will be a distinct identifier
for each voter.) The authority also encrypts numbers
1, . . . , dn to serve as keys printed on tickets. (We use
dn, so there will be a distinct identifier for each choice,
for each ticket.)
For each ticket i, let us define Fi(k) = E(di+k) (that is,
the kth key on the ith ticket). The authority stores both
the ticket identifiers and the keys.

• The central authority A then prints out n tickets (but
does not publicize their contents). Ticket i consists of
the ticket identifier E(i) and keys Fi(1), . . . , Fi(d). In the
real world the authority could either produce a number of
sealed envelopes containing these tickets, or make them
obtainable from the official election website only.

• Each voter selects a random ticket (for example, by
pulling them out of a box or by getting them from the
election website).

• Suppose voter Vj selected ticket i and wishes to vote for
choice cv (for some v with 1 ≤ v ≤ d). Then Vj casts to
his local authority Bk a ballot consisting of

– ticket identifier E(i);
– a random permutation π of 1, . . . , d;
– Fi(πv). (Recall that v is the index associated with

voter’s choice cv .)

• The local authority Bk prints out a receipt including ticket
number i, all pairs (πm, cm) (ordered by πm) and the
signature of the ballot, as shown in Table I. Bk hands
the receipt to the voter.

• Bk encrypts the ballot and signature with the public key
of the central authority and submits this to the central
authority A.

• When the central authority A receives this ballot, it
checks that it is properly formatted—and that the key
(allegedly Fi(πv)) really does decrypt to the index of a
valid choice cv. The authority A also validates that the
signature provided is valid for this ballot. If both these
conditions are satisfied, the authority A records this ballot
as a vote for cv.

Within the ballot, the only information about the voter’s
selection is Fi(πv), the key corresponding to the permuted
index of the voter’s real vote. The central authority A can
decode it and find πv, thus finding the real vote (unless
corrupted by the local authority). However, by the assumptions
of cryptography, the local authority cannot extract πv from the
key, and thus cannot find out who the voter voted for (unless
the central authority A cheats).

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 4



TABLE I

AN EXAMPLE VOTER RECEIPT

Ballot ID 3708DD567880145B
Index Vote

1
2 no selection
3 Bob
4
5
6
7
8 Alice
9

10
Signature 0DA7E8339A56730024C

Note also that the voter does not submit keys Fi(t) for
t 6= v. Thus if the central authority did not share information
with the local authority, the local authority cannot know what
these keys are.

If the local authority does not know the other keys on the
ticket, it cannot manufacture a ticket that features the votes in
the same order but with an incorrect vote matched to a real
key. The local authority can attempt to record a different vote
under a correct key or corrupt the correct key, but this attempt
will later be caught by the verification process.

After the election is done, the central authority A publishes
the receipt signatures, thus allowing any voter to verify that his
ballot made it to the final count. For additional assurance, the
authority A can provide a post-election query service: a voter
can submit any key Fi(πt) (and the ticket identifier E(i)),
and check that he gets back ct as shown. Figure 2 shows this
process. If he sees that his vote did not make it as intended,
he can request resubmission.

C. Adversarial Model

Our scheme will protect against all of the following:
• loss of votes,
• casting of an incorrect vote by a voting machine,
• coercion by an adversary that does not have access to the

voting machine or the central authority,
• tampering with the tally by an adversary that did not have

access to the voting machines during the election.

D. Properties

The ability to look a vote up by the corresponding key
allows voter verification. Indeed, suppose looking up all keys
on the ticket matches the votes submitted by the voter under
the corresponding indices. This could only be achieved in three
ways.

1) The real vote is submitted correctly.
2) The local authority submitted a fake vote as a real vote.

However, this would require that the local authority
know a key different than the one the voter submitted.
Since the local authority does not know any of the other
keys printed on the voter’s ticket, it cannot swap the real
and the fake vote provided by the voter without being
detected.

Fig. 2. The verification process, for voter Vj with ticket E(i). In (A), a
voter checks that his ballot made it; in (B), a voter checks that the ballot that
made it in matches his ticket.

(A)

(B)

PSfrag replacements

voter Vj ,
casting choice cv

central authority A

signature from receipt

present or absent

key Fi(πt)

candidate ct

3) The central authority considers a fake vote to be a real
vote. However, the signatures are published and can
be checked by voters, and trusted parties could verify
that the decryptions of the encrypted votes produce
signatures matching these records.

Therefore, if the local authority does not have any prior knowl-
edge of the keys, neither the local nor the central authority
can tamper with the voter’s choice without detection. Thus
the voter can verify whether his vote is submitted correctly.

As mentioned above, the central authority cannot lie about
the contents of the ballots it got, because signatures will be
posted and can be checked by voters, whereas the fact that the
decryptions got correctly counted may be verified by trusted
parties.

If an external adversary who does not have access to the
voting machine or to the central authority’s data instructs a
voter to behave in a certain manner, the only evidence of
the voter’s behavior will be his receipt (unless, as mentioned
above, the ballots are disclosed). However, even if the adver-
sary’s choices show on the receipt as requested, any of them
can be the voter’s real choice.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 5



E. Vulnerabilities

Our scheme is vulnerable in the following respects.
• If the central authority shares the keys with the local

authorities before the election, this would allow the local
authorities to corrupt ballots without detection.

• If ballots are disclosed, the property of coercion resis-
tance would be lost.

• A voter can claim that his vote was recorded incorrectly
when in fact it was not.

• The central authority can check ballots and post signa-
tures in accordance with the rules, but lie about the tally.
Only trusted observers will be able to verify the tally.

VI. PRACTICAL APPLICABILITY

To cast one vote, the voters will have to submit two long
numbers (the ticket identifier and the encrypted index of the
real vote) and some short numbers. To avoid this in practice,
a ticket could contain subtickets that can be scanned by the
machine, containing these long numbers. Alternatively, the
vote could be cast electronically (as in the prototype described
in the next section).

To simplify the voter’s interaction with the voting machine,
the permutation of votes could be randomly generated by the
machine for the voter.

The second problem is that if the user declares that an
incorrect vote was submitted, there is no way to tell whether
he is lying or whether the voting machine really submitted the
incorrect vote.

Another usability problem is due to the fact that the voter
should submit only one key. If the voter changes his mind
after submitting this key, he will not be able to change his
choice without either leaking information or drawing another
ticket.

Finally, in a real election more than one vote usually has to
be cast, and more than one ticket will have to be used.

VII. PROTOTYPE

We created a prototype for this scheme. The prototype
imitates user interaction with the remote authority and with the
local voting machine. It is currently accessible at althing.
dartmouth.edu/cgi-bin/electme2/master.pl.

The interaction proceeds as follows.
• First, the user opens two browser processes: one simu-

lating the remote authority, another simulating the local
voting machine.

• The user requests initialization of the election from the
remote authority. The remote authority generates keys and
tickets.

• The user selects a random ticket. The remote authority
marks the ticket as taken.

• The user submits the ticket ID to the local voting ma-
chine. (See Figure 3.)

• The local voting machine prompts the user for a permu-
tation of the indices on the ticket corresponding to the
placement of the votes (“customization of the ballot”).
(See Figure 4.)

• The local voting machine then lets the user vote. (See
Figure 5.)

• The local voting machine generates the receipt consisting
of the ticket ID and the indices, and of the signature (the
encryption of the hash of the message with the public
key of the central authority).

• The local voting machine submits the encryption of the
ballot and the signature to the central authority.

• The user can go to the website of the central authority
and enter the keys listed under the indices submitted.
If the keys have his receipt’s vote choices listed under
them, he either gets the vote listed back (e.g., Figure 6,
or knows that his vote did not get submitted correctly
(e.g., Figure 7).

VIII. CONCLUSIONS AND FUTURE WORK

We believe that in real-world situations, our scheme may
work to allow voter verification without making the voter
susceptible to coercion more than he already is. (For example,
in the real-world situation the voter may be coerced not to go
to the polling place.) The scheme achieves these results by
allowing the use of voter knowledge that cannot be used by a
hypothetic coercer.

Our scheme takes the possible malfunctioning of or ma-
licious interference with voting machines and loss of votes
out of consideration, by replacing it with later verification.
Whereas the correctness of VoteHere’s scheme depends on
the initial step of generation of codebooks and on verification
that all voting machines function as intended (which may not
be a trivial task), the correctness of our scheme depends only
on the secrecy of data distributed before the election. Every
voter’s vote can be modified only with a small probability,
ensuring that if the tampering is detected the votes can be
cast again.

Our scheme hands out a readable receipt that allows the
voter to see that his vote got cast as intended if the initial
conditions of secrecy were met. We believe that this may help
with achieving voter trust in the system.

Our scheme is vulnerable if the central authority cheats
before the election by cooperating with the local authorities,
and if a sufficient audit process is not feasible to verify the
tally after the election.

Our scheme does not reply to the question of whether the
user is telling the truth if he claims his vote got recorded
incorrectly. This is a problem we would like to try to solve in
the future.

Our scheme is also vulnerable to hypothetic post-election
disclosures of ballots. It may be possible to address this issue
by providing an extra layer of encryption between the user
and the voting machine, at the cost to usability. However, we
do not believe that this is likely to be a problem in a situation
without a strong adversary.

In future work, we plan to address these shortcomings,
as well as carry out pilots with real users, and examine
the usability of the various ways of a human user might
communicate the keys to the voting machine.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 6



Fig. 3. The user submits the ticket to the voting machine.

ACKNOWLEDGMENTS

This work was supported in part by the Mellon Foundation,
by the NSF (CCR-0209144), by Internet2/AT&T, and by the
Office for Domestic Preparedness, U.S. Dept of Homeland
Security (2000-DT-CX-K001). The views and conclusions do
not necessarily represent those of the sponsors.

REFERENCES

[1] “VoteHere,” www.votehere.net.
[2] M. Bellare and P.Rogaway, “Optimal asymmetric encryption/how to

encrypt with RSA,” in Advances in Cryptology—Eurocrypt ’94, vol.
950, 1994, pp. 92–111.

[3] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections,” in
Proc. of 26th Symp. on Theory of Computing (STOC’94), New York,
1994, pp. 544–553.

[4] D. Chaum, “Untraceable electronic mail, return addresses and digital
pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–88,
February 1981. [Online]. Available: http://www.eskimo.com/∼weidai/
mix-net.txt

[5] ——, “Secret-ballot receipts: True voter-verifiable elections,” IEEE
Security & Privacy, vol. 2, no. 1, pp. 38–47, January/February 2004.

[6] M. Hirt and K. Sako, “Efficient receipt-free voting based on
homomorphic encryption,” Lecture Notes in Computer Science, vol.
1807, pp. 539–??, 2000. [Online]. Available: citeseer.ist.psu.edu/article/
hirt00efficient.html

[7] A. Juels and M. Jakobsson, “Coercion-resistant electronic elections.”
[Online]. Available: citeseer.ist.psu.edu/555869.html

[8] R. Mercuri, “Rebecca Mercuri’s statement on electronic voting,” http:
//www.notablesoftware.com/RMstatement.html, 2001.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 7



Fig. 4. The voting machine responds with a prompt for the permutation.

[9] ——, “A better ballot box?” IEEE Spectrum Online, vol. 39, 10, October
2002.

[10] A. Neff and J. Adler, “Verifiable e-Voting,” www.votehere.net/vhti/
documentation/verifiable e-voting.pdf, 2003.

[11] T. Okamoto, “An electronic voting scheme,” in IFIP’96, Advanced IT
Tools. Chapman & Hall, 1996, pp. 21–30.

[12] ——, “Receipt-free electronic voting schemes for large scale elections,”
Security Protocols Workshop, pp. 25–35, 1997.

[13] K. Sako and J. Kilian, “Receipt-free mix-type voting scheme—a prac-
tical solution to the implementation of a voting booth.” in Advances in
Cryptology—Eurocrypt ’95, vol. 921. Berlin: Springer-Verlag, 1995,
pp. 393–403.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 8



Fig. 5. The voter casts his vote.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 9



Fig. 6. The voter checks that a ballot matching his ticket has been cast.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 10



Fig. 7. The voter submits an invalid key.

Appeared in the Proceedings of the 2nd Annual Conference on Privacy, Security, and Trust (PST), Oct 2004. 11




